1 /* 2 * Copyright (c) 2004-2008 Reyk Floeter <reyk (at) openbsd.org> 3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm (at) gmail.com> 4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof (at) winlab.rutgers.edu> 5 * Copyright (c) 2007-2008 Pavel Roskin <proski (at) gnu.org> 6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby (at) gmail.com> 7 * 8 * Lightly modified for gPXE, July 2009, by Joshua Oreman <oremanj (at) rwcr.net>. 9 * 10 * Permission to use, copy, modify, and distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 * 22 */ 23 24 FILE_LICENCE ( MIT ); 25 26 #define _ATH5K_RESET 27 28 /*****************************\ 29 Reset functions and helpers 30 \*****************************/ 31 32 #include <gpxe/pci.h> /* To determine if a card is pci-e */ 33 #include <unistd.h> 34 35 #include "ath5k.h" 36 #include "reg.h" 37 #include "base.h" 38 39 /* Find last set bit; fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32 */ 40 static int fls(int x) 41 { 42 int r = 32; 43 44 if (!x) 45 return 0; 46 if (!(x & 0xffff0000u)) { 47 x <<= 16; 48 r -= 16; 49 } 50 if (!(x & 0xff000000u)) { 51 x <<= 8; 52 r -= 8; 53 } 54 if (!(x & 0xf0000000u)) { 55 x <<= 4; 56 r -= 4; 57 } 58 if (!(x & 0xc0000000u)) { 59 x <<= 2; 60 r -= 2; 61 } 62 if (!(x & 0x80000000u)) { 63 x <<= 1; 64 r -= 1; 65 } 66 return r; 67 } 68 69 70 /** 71 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212 72 * 73 * @ah: the &struct ath5k_hw 74 * @channel: the currently set channel upon reset 75 * 76 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM 77 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset(). 78 * 79 * Since delta slope is floating point we split it on its exponent and 80 * mantissa and provide these values on hw. 81 * 82 * For more infos i think this patent is related 83 * http://www.freepatentsonline.com/7184495.html 84 */ 85 static int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah, 86 struct net80211_channel *channel) 87 { 88 /* Get exponent and mantissa and set it */ 89 u32 coef_scaled, coef_exp, coef_man, 90 ds_coef_exp, ds_coef_man, clock; 91 92 if (!(ah->ah_version == AR5K_AR5212) || 93 !(channel->hw_value & CHANNEL_OFDM)) { 94 DBG("ath5k: attempt to set OFDM timings on non-OFDM channel\n"); 95 return -EFAULT; 96 } 97 98 /* Get coefficient 99 * ALGO: coef = (5 * clock * carrier_freq) / 2) 100 * we scale coef by shifting clock value by 24 for 101 * better precision since we use integers */ 102 /* TODO: Half/quarter rate */ 103 clock = ath5k_hw_htoclock(1, channel->hw_value & CHANNEL_TURBO); 104 105 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq; 106 107 /* Get exponent 108 * ALGO: coef_exp = 14 - highest set bit position */ 109 coef_exp = fls(coef_scaled) - 1; 110 111 /* Doesn't make sense if it's zero*/ 112 if (!coef_scaled || !coef_exp) 113 return -EINVAL; 114 115 /* Note: we've shifted coef_scaled by 24 */ 116 coef_exp = 14 - (coef_exp - 24); 117 118 119 /* Get mantissa (significant digits) 120 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */ 121 coef_man = coef_scaled + 122 (1 << (24 - coef_exp - 1)); 123 124 /* Calculate delta slope coefficient exponent 125 * and mantissa (remove scaling) and set them on hw */ 126 ds_coef_man = coef_man >> (24 - coef_exp); 127 ds_coef_exp = coef_exp - 16; 128 129 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, 130 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man); 131 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, 132 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp); 133 134 return 0; 135 } 136 137 138 /* 139 * index into rates for control rates, we can set it up like this because 140 * this is only used for AR5212 and we know it supports G mode 141 */ 142 static const unsigned int control_rates[] = 143 { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 }; 144 145 /** 146 * ath5k_hw_write_rate_duration - fill rate code to duration table 147 * 148 * @ah: the &struct ath5k_hw 149 * @mode: one of enum ath5k_driver_mode 150 * 151 * Write the rate code to duration table upon hw reset. This is a helper for 152 * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on 153 * the hardware, based on current mode, for each rate. The rates which are 154 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have 155 * different rate code so we write their value twice (one for long preample 156 * and one for short). 157 * 158 * Note: Band doesn't matter here, if we set the values for OFDM it works 159 * on both a and g modes. So all we have to do is set values for all g rates 160 * that include all OFDM and CCK rates. If we operate in turbo or xr/half/ 161 * quarter rate mode, we need to use another set of bitrates (that's why we 162 * need the mode parameter) but we don't handle these proprietary modes yet. 163 */ 164 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah, 165 unsigned int mode __unused) 166 { 167 struct ath5k_softc *sc = ah->ah_sc; 168 u16 rate; 169 int i; 170 171 /* Write rate duration table */ 172 for (i = 0; i < sc->hwinfo->nr_rates[NET80211_BAND_2GHZ]; i++) { 173 u32 reg; 174 u16 tx_time; 175 176 rate = sc->hwinfo->rates[NET80211_BAND_2GHZ][i]; 177 178 /* Set ACK timeout */ 179 reg = AR5K_RATE_DUR(ath5k_bitrate_to_hw_rix(rate)); 180 181 /* An ACK frame consists of 10 bytes. If you add the FCS, 182 * it's 14 bytes. Note we use the control rate and not the 183 * actual rate for this rate. See mac80211 tx.c 184 * ieee80211_duration() for a brief description of 185 * what rate we should choose to TX ACKs. */ 186 tx_time = net80211_duration(sc->dev, 14, rate); 187 188 ath5k_hw_reg_write(ah, tx_time, reg); 189 190 if (rate != 20 && rate != 55 && rate != 110) 191 continue; 192 193 /* 194 * We're not distinguishing short preamble here, 195 * This is true, all we'll get is a longer value here 196 * which is not necessarilly bad. 197 */ 198 ath5k_hw_reg_write(ah, tx_time, 199 reg + (AR5K_SET_SHORT_PREAMBLE << 2)); 200 } 201 } 202 203 /* 204 * Reset chipset 205 */ 206 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val) 207 { 208 int ret; 209 u32 mask = val ? val : ~0U; 210 211 /* Read-and-clear RX Descriptor Pointer*/ 212 ath5k_hw_reg_read(ah, AR5K_RXDP); 213 214 /* 215 * Reset the device and wait until success 216 */ 217 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL); 218 219 /* Wait at least 128 PCI clocks */ 220 udelay(15); 221 222 if (ah->ah_version == AR5K_AR5210) { 223 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA 224 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY; 225 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA 226 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY; 227 } else { 228 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND; 229 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND; 230 } 231 232 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, 0); 233 234 /* 235 * Reset configuration register (for hw byte-swap). Note that this 236 * is only set for big endian. We do the necessary magic in 237 * AR5K_INIT_CFG. 238 */ 239 if ((val & AR5K_RESET_CTL_PCU) == 0) 240 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG); 241 242 return ret; 243 } 244 245 /* 246 * Sleep control 247 */ 248 int ath5k_hw_wake(struct ath5k_hw *ah) 249 { 250 unsigned int i; 251 u32 staid, data; 252 253 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1); 254 staid &= ~AR5K_STA_ID1_PWR_SV; 255 256 /* Preserve sleep duration */ 257 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL); 258 if (data & 0xffc00000) 259 data = 0; 260 else 261 data = data & 0xfffcffff; 262 263 ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL); 264 udelay(15); 265 266 for (i = 50; i > 0; i--) { 267 /* Check if the chip did wake up */ 268 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) & 269 AR5K_PCICFG_SPWR_DN) == 0) 270 break; 271 272 /* Wait a bit and retry */ 273 udelay(200); 274 ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL); 275 } 276 277 /* Fail if the chip didn't wake up */ 278 if (i <= 0) 279 return -EIO; 280 281 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1); 282 283 return 0; 284 } 285 286 /* 287 * Bring up MAC + PHY Chips and program PLL 288 * TODO: Half/Quarter rate support 289 */ 290 int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, int initial __unused) 291 { 292 struct pci_device *pdev = ah->ah_sc->pdev; 293 u32 turbo, mode, clock, bus_flags; 294 int ret; 295 296 turbo = 0; 297 mode = 0; 298 clock = 0; 299 300 /* Wakeup the device */ 301 ret = ath5k_hw_wake(ah); 302 if (ret) { 303 DBG("ath5k: failed to wake up the MAC chip\n"); 304 return ret; 305 } 306 307 if (ah->ah_version != AR5K_AR5210) { 308 /* 309 * Get channel mode flags 310 */ 311 312 if (ah->ah_radio >= AR5K_RF5112) { 313 mode = AR5K_PHY_MODE_RAD_RF5112; 314 clock = AR5K_PHY_PLL_RF5112; 315 } else { 316 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/ 317 clock = AR5K_PHY_PLL_RF5111; /*Zero*/ 318 } 319 320 if (flags & CHANNEL_2GHZ) { 321 mode |= AR5K_PHY_MODE_FREQ_2GHZ; 322 clock |= AR5K_PHY_PLL_44MHZ; 323 324 if (flags & CHANNEL_CCK) { 325 mode |= AR5K_PHY_MODE_MOD_CCK; 326 } else if (flags & CHANNEL_OFDM) { 327 /* XXX Dynamic OFDM/CCK is not supported by the 328 * AR5211 so we set MOD_OFDM for plain g (no 329 * CCK headers) operation. We need to test 330 * this, 5211 might support ofdm-only g after 331 * all, there are also initial register values 332 * in the code for g mode (see initvals.c). */ 333 if (ah->ah_version == AR5K_AR5211) 334 mode |= AR5K_PHY_MODE_MOD_OFDM; 335 else 336 mode |= AR5K_PHY_MODE_MOD_DYN; 337 } else { 338 DBG("ath5k: invalid radio modulation mode\n"); 339 return -EINVAL; 340 } 341 } else if (flags & CHANNEL_5GHZ) { 342 mode |= AR5K_PHY_MODE_FREQ_5GHZ; 343 344 if (ah->ah_radio == AR5K_RF5413) 345 clock = AR5K_PHY_PLL_40MHZ_5413; 346 else 347 clock |= AR5K_PHY_PLL_40MHZ; 348 349 if (flags & CHANNEL_OFDM) 350 mode |= AR5K_PHY_MODE_MOD_OFDM; 351 else { 352 DBG("ath5k: invalid radio modulation mode\n"); 353 return -EINVAL; 354 } 355 } else { 356 DBG("ath5k: invalid radio frequency mode\n"); 357 return -EINVAL; 358 } 359 360 if (flags & CHANNEL_TURBO) 361 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT; 362 } else { /* Reset the device */ 363 364 /* ...enable Atheros turbo mode if requested */ 365 if (flags & CHANNEL_TURBO) 366 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE, 367 AR5K_PHY_TURBO); 368 } 369 370 /* reseting PCI on PCI-E cards results card to hang 371 * and always return 0xffff... so we ingore that flag 372 * for PCI-E cards */ 373 if (pci_find_capability(pdev, PCI_CAP_ID_EXP)) 374 bus_flags = 0; 375 else 376 bus_flags = AR5K_RESET_CTL_PCI; 377 378 /* Reset chipset */ 379 if (ah->ah_version == AR5K_AR5210) { 380 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | 381 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA | 382 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI); 383 mdelay(2); 384 } else { 385 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | 386 AR5K_RESET_CTL_BASEBAND | bus_flags); 387 } 388 if (ret) { 389 DBG("ath5k: failed to reset the MAC chip\n"); 390 return -EIO; 391 } 392 393 /* ...wakeup again!*/ 394 ret = ath5k_hw_wake(ah); 395 if (ret) { 396 DBG("ath5k: failed to resume the MAC chip\n"); 397 return ret; 398 } 399 400 /* ...final warm reset */ 401 if (ath5k_hw_nic_reset(ah, 0)) { 402 DBG("ath5k: failed to warm reset the MAC chip\n"); 403 return -EIO; 404 } 405 406 if (ah->ah_version != AR5K_AR5210) { 407 408 /* ...update PLL if needed */ 409 if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) { 410 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL); 411 udelay(300); 412 } 413 414 /* ...set the PHY operating mode */ 415 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE); 416 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO); 417 } 418 419 return 0; 420 } 421 422 static int ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah, 423 struct net80211_channel *channel) 424 { 425 u8 refclk_freq; 426 427 if ((ah->ah_radio == AR5K_RF5112) || 428 (ah->ah_radio == AR5K_RF5413) || 429 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) 430 refclk_freq = 40; 431 else 432 refclk_freq = 32; 433 434 if ((channel->center_freq % refclk_freq != 0) && 435 ((channel->center_freq % refclk_freq < 10) || 436 (channel->center_freq % refclk_freq > 22))) 437 return 1; 438 else 439 return 0; 440 } 441 442 /* TODO: Half/Quarter rate */ 443 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah, 444 struct net80211_channel *channel) 445 { 446 if (ah->ah_version == AR5K_AR5212 && 447 ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { 448 449 /* Setup ADC control */ 450 ath5k_hw_reg_write(ah, 451 (AR5K_REG_SM(2, 452 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) | 453 AR5K_REG_SM(2, 454 AR5K_PHY_ADC_CTL_INBUFGAIN_ON) | 455 AR5K_PHY_ADC_CTL_PWD_DAC_OFF | 456 AR5K_PHY_ADC_CTL_PWD_ADC_OFF), 457 AR5K_PHY_ADC_CTL); 458 459 460 461 /* Disable barker RSSI threshold */ 462 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL, 463 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR); 464 465 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL, 466 AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2); 467 468 /* Set the mute mask */ 469 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK); 470 } 471 472 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */ 473 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B) 474 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH); 475 476 /* Enable DCU double buffering */ 477 if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B) 478 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, 479 AR5K_TXCFG_DCU_DBL_BUF_DIS); 480 481 /* Set DAC/ADC delays */ 482 if (ah->ah_version == AR5K_AR5212) { 483 u32 scal; 484 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)) 485 scal = AR5K_PHY_SCAL_32MHZ_2417; 486 else if (ath5k_eeprom_is_hb63(ah)) 487 scal = AR5K_PHY_SCAL_32MHZ_HB63; 488 else 489 scal = AR5K_PHY_SCAL_32MHZ; 490 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL); 491 } 492 493 /* Set fast ADC */ 494 if ((ah->ah_radio == AR5K_RF5413) || 495 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) { 496 u32 fast_adc = 1; 497 498 if (channel->center_freq == 2462 || 499 channel->center_freq == 2467) 500 fast_adc = 0; 501 502 /* Only update if needed */ 503 if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc) 504 ath5k_hw_reg_write(ah, fast_adc, 505 AR5K_PHY_FAST_ADC); 506 } 507 508 /* Fix for first revision of the RF5112 RF chipset */ 509 if (ah->ah_radio == AR5K_RF5112 && 510 ah->ah_radio_5ghz_revision < 511 AR5K_SREV_RAD_5112A) { 512 u32 data; 513 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD, 514 AR5K_PHY_CCKTXCTL); 515 if (channel->hw_value & CHANNEL_5GHZ) 516 data = 0xffb81020; 517 else 518 data = 0xffb80d20; 519 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL); 520 } 521 522 if (ah->ah_mac_srev < AR5K_SREV_AR5211) { 523 u32 usec_reg; 524 /* 5311 has different tx/rx latency masks 525 * from 5211, since we deal 5311 the same 526 * as 5211 when setting initvals, shift 527 * values here to their proper locations */ 528 usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211); 529 ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 | 530 AR5K_USEC_32 | 531 AR5K_USEC_TX_LATENCY_5211 | 532 AR5K_REG_SM(29, 533 AR5K_USEC_RX_LATENCY_5210)), 534 AR5K_USEC_5211); 535 /* Clear QCU/DCU clock gating register */ 536 ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT); 537 /* Set DAC/ADC delays */ 538 ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL); 539 /* Enable PCU FIFO corruption ECO */ 540 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211, 541 AR5K_DIAG_SW_ECO_ENABLE); 542 } 543 } 544 545 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah, 546 struct net80211_channel *channel, u8 *ant, u8 ee_mode) 547 { 548 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 549 s16 cck_ofdm_pwr_delta; 550 551 /* Adjust power delta for channel 14 */ 552 if (channel->center_freq == 2484) 553 cck_ofdm_pwr_delta = 554 ((ee->ee_cck_ofdm_power_delta - 555 ee->ee_scaled_cck_delta) * 2) / 10; 556 else 557 cck_ofdm_pwr_delta = 558 (ee->ee_cck_ofdm_power_delta * 2) / 10; 559 560 /* Set CCK to OFDM power delta on tx power 561 * adjustment register */ 562 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { 563 if (channel->hw_value == CHANNEL_G) 564 ath5k_hw_reg_write(ah, 565 AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1), 566 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) | 567 AR5K_REG_SM((cck_ofdm_pwr_delta * -1), 568 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX), 569 AR5K_PHY_TX_PWR_ADJ); 570 else 571 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ); 572 } else { 573 /* For older revs we scale power on sw during tx power 574 * setup */ 575 ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta; 576 ah->ah_txpower.txp_cck_ofdm_gainf_delta = 577 ee->ee_cck_ofdm_gain_delta; 578 } 579 580 /* Set antenna idle switch table */ 581 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL, 582 AR5K_PHY_ANT_CTL_SWTABLE_IDLE, 583 (ah->ah_antenna[ee_mode][0] | 584 AR5K_PHY_ANT_CTL_TXRX_EN)); 585 586 /* Set antenna switch table */ 587 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]], 588 AR5K_PHY_ANT_SWITCH_TABLE_0); 589 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]], 590 AR5K_PHY_ANT_SWITCH_TABLE_1); 591 592 /* Noise floor threshold */ 593 ath5k_hw_reg_write(ah, 594 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]), 595 AR5K_PHY_NFTHRES); 596 597 if ((channel->hw_value & CHANNEL_TURBO) && 598 (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) { 599 /* Switch settling time (Turbo) */ 600 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING, 601 AR5K_PHY_SETTLING_SWITCH, 602 ee->ee_switch_settling_turbo[ee_mode]); 603 604 /* Tx/Rx attenuation (Turbo) */ 605 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN, 606 AR5K_PHY_GAIN_TXRX_ATTEN, 607 ee->ee_atn_tx_rx_turbo[ee_mode]); 608 609 /* ADC/PGA desired size (Turbo) */ 610 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, 611 AR5K_PHY_DESIRED_SIZE_ADC, 612 ee->ee_adc_desired_size_turbo[ee_mode]); 613 614 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, 615 AR5K_PHY_DESIRED_SIZE_PGA, 616 ee->ee_pga_desired_size_turbo[ee_mode]); 617 618 /* Tx/Rx margin (Turbo) */ 619 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ, 620 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX, 621 ee->ee_margin_tx_rx_turbo[ee_mode]); 622 623 } else { 624 /* Switch settling time */ 625 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING, 626 AR5K_PHY_SETTLING_SWITCH, 627 ee->ee_switch_settling[ee_mode]); 628 629 /* Tx/Rx attenuation */ 630 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN, 631 AR5K_PHY_GAIN_TXRX_ATTEN, 632 ee->ee_atn_tx_rx[ee_mode]); 633 634 /* ADC/PGA desired size */ 635 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, 636 AR5K_PHY_DESIRED_SIZE_ADC, 637 ee->ee_adc_desired_size[ee_mode]); 638 639 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, 640 AR5K_PHY_DESIRED_SIZE_PGA, 641 ee->ee_pga_desired_size[ee_mode]); 642 643 /* Tx/Rx margin */ 644 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) 645 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ, 646 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX, 647 ee->ee_margin_tx_rx[ee_mode]); 648 } 649 650 /* XPA delays */ 651 ath5k_hw_reg_write(ah, 652 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) | 653 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) | 654 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) | 655 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4); 656 657 /* XLNA delay */ 658 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3, 659 AR5K_PHY_RF_CTL3_TXE2XLNA_ON, 660 ee->ee_tx_end2xlna_enable[ee_mode]); 661 662 /* Thresh64 (ANI) */ 663 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF, 664 AR5K_PHY_NF_THRESH62, 665 ee->ee_thr_62[ee_mode]); 666 667 668 /* False detect backoff for channels 669 * that have spur noise. Write the new 670 * cyclic power RSSI threshold. */ 671 if (ath5k_hw_chan_has_spur_noise(ah, channel)) 672 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR, 673 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1, 674 AR5K_INIT_CYCRSSI_THR1 + 675 ee->ee_false_detect[ee_mode]); 676 else 677 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR, 678 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1, 679 AR5K_INIT_CYCRSSI_THR1); 680 681 /* I/Q correction 682 * TODO: Per channel i/q infos ? */ 683 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, 684 AR5K_PHY_IQ_CORR_ENABLE | 685 (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) | 686 ee->ee_q_cal[ee_mode]); 687 688 /* Heavy clipping -disable for now */ 689 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1) 690 ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE); 691 692 return; 693 } 694 695 /* 696 * Main reset function 697 */ 698 int ath5k_hw_reset(struct ath5k_hw *ah, 699 struct net80211_channel *channel, int change_channel) 700 { 701 u32 s_seq[10], s_ant, s_led[3], staid1_flags, tsf_up, tsf_lo; 702 u32 phy_tst1; 703 u8 mode, freq, ee_mode, ant[2]; 704 int i, ret; 705 706 s_ant = 0; 707 ee_mode = 0; 708 staid1_flags = 0; 709 tsf_up = 0; 710 tsf_lo = 0; 711 freq = 0; 712 mode = 0; 713 714 /* 715 * Save some registers before a reset 716 */ 717 /*DCU/Antenna selection not available on 5210*/ 718 if (ah->ah_version != AR5K_AR5210) { 719 720 switch (channel->hw_value & CHANNEL_MODES) { 721 case CHANNEL_A: 722 mode = AR5K_MODE_11A; 723 freq = AR5K_INI_RFGAIN_5GHZ; 724 ee_mode = AR5K_EEPROM_MODE_11A; 725 break; 726 case CHANNEL_G: 727 mode = AR5K_MODE_11G; 728 freq = AR5K_INI_RFGAIN_2GHZ; 729 ee_mode = AR5K_EEPROM_MODE_11G; 730 break; 731 case CHANNEL_B: 732 mode = AR5K_MODE_11B; 733 freq = AR5K_INI_RFGAIN_2GHZ; 734 ee_mode = AR5K_EEPROM_MODE_11B; 735 break; 736 case CHANNEL_T: 737 mode = AR5K_MODE_11A_TURBO; 738 freq = AR5K_INI_RFGAIN_5GHZ; 739 ee_mode = AR5K_EEPROM_MODE_11A; 740 break; 741 case CHANNEL_TG: 742 if (ah->ah_version == AR5K_AR5211) { 743 DBG("ath5k: TurboG not available on 5211\n"); 744 return -EINVAL; 745 } 746 mode = AR5K_MODE_11G_TURBO; 747 freq = AR5K_INI_RFGAIN_2GHZ; 748 ee_mode = AR5K_EEPROM_MODE_11G; 749 break; 750 case CHANNEL_XR: 751 if (ah->ah_version == AR5K_AR5211) { 752 DBG("ath5k: XR mode not available on 5211\n"); 753 return -EINVAL; 754 } 755 mode = AR5K_MODE_XR; 756 freq = AR5K_INI_RFGAIN_5GHZ; 757 ee_mode = AR5K_EEPROM_MODE_11A; 758 break; 759 default: 760 DBG("ath5k: invalid channel (%d MHz)\n", 761 channel->center_freq); 762 return -EINVAL; 763 } 764 765 if (change_channel) { 766 /* 767 * Save frame sequence count 768 * For revs. after Oahu, only save 769 * seq num for DCU 0 (Global seq num) 770 */ 771 if (ah->ah_mac_srev < AR5K_SREV_AR5211) { 772 773 for (i = 0; i < 10; i++) 774 s_seq[i] = ath5k_hw_reg_read(ah, 775 AR5K_QUEUE_DCU_SEQNUM(i)); 776 777 } else { 778 s_seq[0] = ath5k_hw_reg_read(ah, 779 AR5K_QUEUE_DCU_SEQNUM(0)); 780 } 781 } 782 783 /* Save default antenna */ 784 s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA); 785 786 if (ah->ah_version == AR5K_AR5212) { 787 /* Since we are going to write rf buffer 788 * check if we have any pending gain_F 789 * optimization settings */ 790 if (change_channel && ah->ah_rf_banks != NULL) 791 ath5k_hw_gainf_calibrate(ah); 792 } 793 } 794 795 /*GPIOs*/ 796 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & 797 AR5K_PCICFG_LEDSTATE; 798 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR); 799 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO); 800 801 /* AR5K_STA_ID1 flags, only preserve antenna 802 * settings and ack/cts rate mode */ 803 staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 804 (AR5K_STA_ID1_DEFAULT_ANTENNA | 805 AR5K_STA_ID1_DESC_ANTENNA | 806 AR5K_STA_ID1_RTS_DEF_ANTENNA | 807 AR5K_STA_ID1_ACKCTS_6MB | 808 AR5K_STA_ID1_BASE_RATE_11B | 809 AR5K_STA_ID1_SELFGEN_DEF_ANT); 810 811 /* Wakeup the device */ 812 ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, 0); 813 if (ret) 814 return ret; 815 816 /* PHY access enable */ 817 if (ah->ah_mac_srev >= AR5K_SREV_AR5211) 818 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); 819 else 820 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40, 821 AR5K_PHY(0)); 822 823 /* Write initial settings */ 824 ret = ath5k_hw_write_initvals(ah, mode, change_channel); 825 if (ret) 826 return ret; 827 828 /* 829 * 5211/5212 Specific 830 */ 831 if (ah->ah_version != AR5K_AR5210) { 832 833 /* 834 * Write initial RF gain settings 835 * This should work for both 5111/5112 836 */ 837 ret = ath5k_hw_rfgain_init(ah, freq); 838 if (ret) 839 return ret; 840 841 mdelay(1); 842 843 /* 844 * Tweak initval settings for revised 845 * chipsets and add some more config 846 * bits 847 */ 848 ath5k_hw_tweak_initval_settings(ah, channel); 849 850 /* 851 * Set TX power (FIXME) 852 */ 853 ret = ath5k_hw_txpower(ah, channel, ee_mode, 854 AR5K_TUNE_DEFAULT_TXPOWER); 855 if (ret) 856 return ret; 857 858 /* Write rate duration table only on AR5212 */ 859 if (ah->ah_version == AR5K_AR5212) 860 ath5k_hw_write_rate_duration(ah, mode); 861 862 /* 863 * Write RF buffer 864 */ 865 ret = ath5k_hw_rfregs_init(ah, channel, mode); 866 if (ret) 867 return ret; 868 869 870 /* Write OFDM timings on 5212*/ 871 if (ah->ah_version == AR5K_AR5212 && 872 channel->hw_value & CHANNEL_OFDM) { 873 ret = ath5k_hw_write_ofdm_timings(ah, channel); 874 if (ret) 875 return ret; 876 } 877 878 /*Enable/disable 802.11b mode on 5111 879 (enable 2111 frequency converter + CCK)*/ 880 if (ah->ah_radio == AR5K_RF5111) { 881 if (mode == AR5K_MODE_11B) 882 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, 883 AR5K_TXCFG_B_MODE); 884 else 885 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, 886 AR5K_TXCFG_B_MODE); 887 } 888 889 /* 890 * In case a fixed antenna was set as default 891 * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE 892 * registers. 893 */ 894 if (s_ant != 0) { 895 if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */ 896 ant[0] = ant[1] = AR5K_ANT_FIXED_A; 897 else /* 2 - Aux */ 898 ant[0] = ant[1] = AR5K_ANT_FIXED_B; 899 } else { 900 ant[0] = AR5K_ANT_FIXED_A; 901 ant[1] = AR5K_ANT_FIXED_B; 902 } 903 904 /* Commit values from EEPROM */ 905 ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode); 906 907 } else { 908 /* 909 * For 5210 we do all initialization using 910 * initvals, so we don't have to modify 911 * any settings (5210 also only supports 912 * a/aturbo modes) 913 */ 914 mdelay(1); 915 /* Disable phy and wait */ 916 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); 917 mdelay(1); 918 } 919 920 /* 921 * Restore saved values 922 */ 923 924 /*DCU/Antenna selection not available on 5210*/ 925 if (ah->ah_version != AR5K_AR5210) { 926 927 if (change_channel) { 928 if (ah->ah_mac_srev < AR5K_SREV_AR5211) { 929 for (i = 0; i < 10; i++) 930 ath5k_hw_reg_write(ah, s_seq[i], 931 AR5K_QUEUE_DCU_SEQNUM(i)); 932 } else { 933 ath5k_hw_reg_write(ah, s_seq[0], 934 AR5K_QUEUE_DCU_SEQNUM(0)); 935 } 936 } 937 938 ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA); 939 } 940 941 /* Ledstate */ 942 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]); 943 944 /* Gpio settings */ 945 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR); 946 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO); 947 948 /* Restore sta_id flags and preserve our mac address*/ 949 ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_sta_id), 950 AR5K_STA_ID0); 951 ath5k_hw_reg_write(ah, staid1_flags | AR5K_HIGH_ID(ah->ah_sta_id), 952 AR5K_STA_ID1); 953 954 955 /* 956 * Configure PCU 957 */ 958 959 /* Restore bssid and bssid mask */ 960 /* XXX: add ah->aid once mac80211 gives this to us */ 961 ath5k_hw_set_associd(ah, ah->ah_bssid, 0); 962 963 /* Set PCU config */ 964 ath5k_hw_set_opmode(ah); 965 966 /* Clear any pending interrupts 967 * PISR/SISR Not available on 5210 */ 968 if (ah->ah_version != AR5K_AR5210) 969 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR); 970 971 /* Set RSSI/BRSSI thresholds 972 * 973 * Note: If we decide to set this value 974 * dynamicaly, have in mind that when AR5K_RSSI_THR 975 * register is read it might return 0x40 if we haven't 976 * wrote anything to it plus BMISS RSSI threshold is zeroed. 977 * So doing a save/restore procedure here isn't the right 978 * choice. Instead store it on ath5k_hw */ 979 ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES | 980 AR5K_TUNE_BMISS_THRES << 981 AR5K_RSSI_THR_BMISS_S), 982 AR5K_RSSI_THR); 983 984 /* MIC QoS support */ 985 if (ah->ah_mac_srev >= AR5K_SREV_AR2413) { 986 ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL); 987 ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL); 988 } 989 990 /* QoS NOACK Policy */ 991 if (ah->ah_version == AR5K_AR5212) { 992 ath5k_hw_reg_write(ah, 993 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) | 994 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) | 995 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET), 996 AR5K_QOS_NOACK); 997 } 998 999 1000 /* 1001 * Configure PHY 1002 */ 1003 1004 /* Set channel on PHY */ 1005 ret = ath5k_hw_channel(ah, channel); 1006 if (ret) 1007 return ret; 1008 1009 /* 1010 * Enable the PHY and wait until completion 1011 * This includes BaseBand and Synthesizer 1012 * activation. 1013 */ 1014 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); 1015 1016 /* 1017 * On 5211+ read activation -> rx delay 1018 * and use it. 1019 * 1020 * TODO: Half/quarter rate support 1021 */ 1022 if (ah->ah_version != AR5K_AR5210) { 1023 u32 delay; 1024 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) & 1025 AR5K_PHY_RX_DELAY_M; 1026 delay = (channel->hw_value & CHANNEL_CCK) ? 1027 ((delay << 2) / 22) : (delay / 10); 1028 1029 udelay(100 + (2 * delay)); 1030 } else { 1031 mdelay(1); 1032 } 1033 1034 /* 1035 * Perform ADC test to see if baseband is ready 1036 * Set tx hold and check adc test register 1037 */ 1038 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1); 1039 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1); 1040 for (i = 0; i <= 20; i++) { 1041 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10)) 1042 break; 1043 udelay(200); 1044 } 1045 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1); 1046 1047 /* 1048 * Start automatic gain control calibration 1049 * 1050 * During AGC calibration RX path is re-routed to 1051 * a power detector so we don't receive anything. 1052 * 1053 * This method is used to calibrate some static offsets 1054 * used together with on-the fly I/Q calibration (the 1055 * one performed via ath5k_hw_phy_calibrate), that doesn't 1056 * interrupt rx path. 1057 * 1058 * While rx path is re-routed to the power detector we also 1059 * start a noise floor calibration, to measure the 1060 * card's noise floor (the noise we measure when we are not 1061 * transmiting or receiving anything). 1062 * 1063 * If we are in a noisy environment AGC calibration may time 1064 * out and/or noise floor calibration might timeout. 1065 */ 1066 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 1067 AR5K_PHY_AGCCTL_CAL); 1068 1069 /* At the same time start I/Q calibration for QAM constellation 1070 * -no need for CCK- */ 1071 ah->ah_calibration = 0; 1072 if (!(mode == AR5K_MODE_11B)) { 1073 ah->ah_calibration = 1; 1074 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, 1075 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); 1076 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, 1077 AR5K_PHY_IQ_RUN); 1078 } 1079 1080 /* Wait for gain calibration to finish (we check for I/Q calibration 1081 * during ath5k_phy_calibrate) */ 1082 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, 1083 AR5K_PHY_AGCCTL_CAL, 0, 0)) { 1084 DBG("ath5k: gain calibration timeout (%d MHz)\n", 1085 channel->center_freq); 1086 } 1087 1088 /* 1089 * If we run NF calibration before AGC, it always times out. 1090 * Binary HAL starts NF and AGC calibration at the same time 1091 * and only waits for AGC to finish. Also if AGC or NF cal. 1092 * times out, reset doesn't fail on binary HAL. I believe 1093 * that's wrong because since rx path is routed to a detector, 1094 * if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211 1095 * enables noise floor calibration after offset calibration and if noise 1096 * floor calibration fails, reset fails. I believe that's 1097 * a better approach, we just need to find a polling interval 1098 * that suits best, even if reset continues we need to make 1099 * sure that rx path is ready. 1100 */ 1101 ath5k_hw_noise_floor_calibration(ah, channel->center_freq); 1102 1103 1104 /* 1105 * Configure QCUs/DCUs 1106 */ 1107 1108 /* TODO: HW Compression support for data queues */ 1109 /* TODO: Burst prefetch for data queues */ 1110 1111 /* 1112 * Reset queues and start beacon timers at the end of the reset routine 1113 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping 1114 * Note: If we want we can assign multiple qcus on one dcu. 1115 */ 1116 ret = ath5k_hw_reset_tx_queue(ah); 1117 if (ret) { 1118 DBG("ath5k: failed to reset TX queue\n"); 1119 return ret; 1120 } 1121 1122 /* 1123 * Configure DMA/Interrupts 1124 */ 1125 1126 /* 1127 * Set Rx/Tx DMA Configuration 1128 * 1129 * Set standard DMA size (128). Note that 1130 * a DMA size of 512 causes rx overruns and tx errors 1131 * on pci-e cards (tested on 5424 but since rx overruns 1132 * also occur on 5416/5418 with madwifi we set 128 1133 * for all PCI-E cards to be safe). 1134 * 1135 * XXX: need to check 5210 for this 1136 * TODO: Check out tx triger level, it's always 64 on dumps but I 1137 * guess we can tweak it and see how it goes ;-) 1138 */ 1139 if (ah->ah_version != AR5K_AR5210) { 1140 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG, 1141 AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B); 1142 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG, 1143 AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B); 1144 } 1145 1146 /* Pre-enable interrupts on 5211/5212*/ 1147 if (ah->ah_version != AR5K_AR5210) 1148 ath5k_hw_set_imr(ah, ah->ah_imr); 1149 1150 /* 1151 * Setup RFKill interrupt if rfkill flag is set on eeprom. 1152 * TODO: Use gpio pin and polarity infos from eeprom 1153 * TODO: Handle this in ath5k_intr because it'll result 1154 * a nasty interrupt storm. 1155 */ 1156 #if 0 1157 if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) { 1158 ath5k_hw_set_gpio_input(ah, 0); 1159 ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0); 1160 if (ah->ah_gpio[0] == 0) 1161 ath5k_hw_set_gpio_intr(ah, 0, 1); 1162 else 1163 ath5k_hw_set_gpio_intr(ah, 0, 0); 1164 } 1165 #endif 1166 1167 /* 1168 * Disable beacons and reset the register 1169 */ 1170 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE | 1171 AR5K_BEACON_RESET_TSF); 1172 1173 return 0; 1174 } 1175 1176 #undef _ATH5K_RESET 1177