1 /* rhine.c:Fast Ethernet driver for Linux. */ 2 /* 3 Adapted 09-jan-2000 by Paolo Marini (paolom (at) prisma-eng.it) 4 5 originally written by Donald Becker. 6 7 This software may be used and distributed according to the terms 8 of the GNU Public License (GPL), incorporated herein by reference. 9 Drivers derived from this code also fall under the GPL and must retain 10 this authorship and copyright notice. 11 12 Under no circumstances are the authors responsible for 13 the proper functioning of this software, nor do the authors assume any 14 responsibility for damages incurred with its use. 15 16 This driver is designed for the VIA VT86C100A Rhine-II PCI Fast Ethernet 17 controller. 18 19 */ 20 21 static const char *version = "rhine.c v1.0.2 2004-10-29\n"; 22 23 /* A few user-configurable values. */ 24 25 // max time out delay time 26 #define W_MAX_TIMEOUT 0x0FFFU 27 28 /* Size of the in-memory receive ring. */ 29 #define RX_BUF_LEN_IDX 3 /* 0==8K, 1==16K, 2==32K, 3==64K */ 30 #define RX_BUF_LEN (8192 << RX_BUF_LEN_IDX) 31 32 /* Size of the Tx bounce buffers -- must be at least (dev->mtu+14+4). */ 33 #define TX_BUF_SIZE 1536 34 #define RX_BUF_SIZE 1536 35 36 /* PCI Tuning Parameters 37 Threshold is bytes transferred to chip before transmission starts. */ 38 #define TX_FIFO_THRESH 256 /* In bytes, rounded down to 32 byte units. */ 39 40 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024. */ 41 #define RX_FIFO_THRESH 4 /* Rx buffer level before first PCI xfer. */ 42 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 bytes */ 43 #define TX_DMA_BURST 4 44 45 /* Operational parameters that usually are not changed. */ 46 /* Time in jiffies before concluding the transmitter is hung. */ 47 #define TX_TIMEOUT ((2000*HZ)/1000) 48 49 #include "etherboot.h" 50 #include "nic.h" 51 #include <gpxe/pci.h> 52 #include <gpxe/ethernet.h> 53 54 /* define all ioaddr */ 55 56 #define byPAR0 ioaddr 57 #define byRCR ioaddr + 6 58 #define byTCR ioaddr + 7 59 #define byCR0 ioaddr + 8 60 #define byCR1 ioaddr + 9 61 #define byISR0 ioaddr + 0x0c 62 #define byISR1 ioaddr + 0x0d 63 #define byIMR0 ioaddr + 0x0e 64 #define byIMR1 ioaddr + 0x0f 65 #define byMAR0 ioaddr + 0x10 66 #define byMAR1 ioaddr + 0x11 67 #define byMAR2 ioaddr + 0x12 68 #define byMAR3 ioaddr + 0x13 69 #define byMAR4 ioaddr + 0x14 70 #define byMAR5 ioaddr + 0x15 71 #define byMAR6 ioaddr + 0x16 72 #define byMAR7 ioaddr + 0x17 73 #define dwCurrentRxDescAddr ioaddr + 0x18 74 #define dwCurrentTxDescAddr ioaddr + 0x1c 75 #define dwCurrentRDSE0 ioaddr + 0x20 76 #define dwCurrentRDSE1 ioaddr + 0x24 77 #define dwCurrentRDSE2 ioaddr + 0x28 78 #define dwCurrentRDSE3 ioaddr + 0x2c 79 #define dwNextRDSE0 ioaddr + 0x30 80 #define dwNextRDSE1 ioaddr + 0x34 81 #define dwNextRDSE2 ioaddr + 0x38 82 #define dwNextRDSE3 ioaddr + 0x3c 83 #define dwCurrentTDSE0 ioaddr + 0x40 84 #define dwCurrentTDSE1 ioaddr + 0x44 85 #define dwCurrentTDSE2 ioaddr + 0x48 86 #define dwCurrentTDSE3 ioaddr + 0x4c 87 #define dwNextTDSE0 ioaddr + 0x50 88 #define dwNextTDSE1 ioaddr + 0x54 89 #define dwNextTDSE2 ioaddr + 0x58 90 #define dwNextTDSE3 ioaddr + 0x5c 91 #define dwCurrRxDMAPtr ioaddr + 0x60 92 #define dwCurrTxDMAPtr ioaddr + 0x64 93 #define byMPHY ioaddr + 0x6c 94 #define byMIISR ioaddr + 0x6d 95 #define byBCR0 ioaddr + 0x6e 96 #define byBCR1 ioaddr + 0x6f 97 #define byMIICR ioaddr + 0x70 98 #define byMIIAD ioaddr + 0x71 99 #define wMIIDATA ioaddr + 0x72 100 #define byEECSR ioaddr + 0x74 101 #define byTEST ioaddr + 0x75 102 #define byGPIO ioaddr + 0x76 103 #define byCFGA ioaddr + 0x78 104 #define byCFGB ioaddr + 0x79 105 #define byCFGC ioaddr + 0x7a 106 #define byCFGD ioaddr + 0x7b 107 #define wTallyCntMPA ioaddr + 0x7c 108 #define wTallyCntCRC ioaddr + 0x7d 109 #define bySTICKHW ioaddr + 0x83 110 #define byWOLcrClr ioaddr + 0xA4 111 #define byWOLcgClr ioaddr + 0xA7 112 #define byPwrcsrClr ioaddr + 0xAC 113 114 /*--------------------- Exioaddr Definitions -------------------------*/ 115 116 /* 117 * Bits in the RCR register 118 */ 119 120 #define RCR_RRFT2 0x80 121 #define RCR_RRFT1 0x40 122 #define RCR_RRFT0 0x20 123 #define RCR_PROM 0x10 124 #define RCR_AB 0x08 125 #define RCR_AM 0x04 126 #define RCR_AR 0x02 127 #define RCR_SEP 0x01 128 129 /* 130 * Bits in the TCR register 131 */ 132 133 #define TCR_RTSF 0x80 134 #define TCR_RTFT1 0x40 135 #define TCR_RTFT0 0x20 136 #define TCR_OFSET 0x08 137 #define TCR_LB1 0x04 /* loopback[1] */ 138 #define TCR_LB0 0x02 /* loopback[0] */ 139 140 /* 141 * Bits in the CR0 register 142 */ 143 144 #define CR0_RDMD 0x40 /* rx descriptor polling demand */ 145 #define CR0_TDMD 0x20 /* tx descriptor polling demand */ 146 #define CR0_TXON 0x10 147 #define CR0_RXON 0x08 148 #define CR0_STOP 0x04 /* stop NIC, default = 1 */ 149 #define CR0_STRT 0x02 /* start NIC */ 150 #define CR0_INIT 0x01 /* start init process */ 151 152 153 /* 154 * Bits in the CR1 register 155 */ 156 157 #define CR1_SFRST 0x80 /* software reset */ 158 #define CR1_RDMD1 0x40 /* RDMD1 */ 159 #define CR1_TDMD1 0x20 /* TDMD1 */ 160 #define CR1_KEYPAG 0x10 /* turn on par/key */ 161 #define CR1_DPOLL 0x08 /* disable rx/tx auto polling */ 162 #define CR1_FDX 0x04 /* full duplex mode */ 163 #define CR1_ETEN 0x02 /* early tx mode */ 164 #define CR1_EREN 0x01 /* early rx mode */ 165 166 /* 167 * Bits in the CR register 168 */ 169 170 #define CR_RDMD 0x0040 /* rx descriptor polling demand */ 171 #define CR_TDMD 0x0020 /* tx descriptor polling demand */ 172 #define CR_TXON 0x0010 173 #define CR_RXON 0x0008 174 #define CR_STOP 0x0004 /* stop NIC, default = 1 */ 175 #define CR_STRT 0x0002 /* start NIC */ 176 #define CR_INIT 0x0001 /* start init process */ 177 #define CR_SFRST 0x8000 /* software reset */ 178 #define CR_RDMD1 0x4000 /* RDMD1 */ 179 #define CR_TDMD1 0x2000 /* TDMD1 */ 180 #define CR_KEYPAG 0x1000 /* turn on par/key */ 181 #define CR_DPOLL 0x0800 /* disable rx/tx auto polling */ 182 #define CR_FDX 0x0400 /* full duplex mode */ 183 #define CR_ETEN 0x0200 /* early tx mode */ 184 #define CR_EREN 0x0100 /* early rx mode */ 185 186 /* 187 * Bits in the IMR0 register 188 */ 189 190 #define IMR0_CNTM 0x80 191 #define IMR0_BEM 0x40 192 #define IMR0_RUM 0x20 193 #define IMR0_TUM 0x10 194 #define IMR0_TXEM 0x08 195 #define IMR0_RXEM 0x04 196 #define IMR0_PTXM 0x02 197 #define IMR0_PRXM 0x01 198 199 /* define imrshadow */ 200 201 #define IMRShadow 0x5AFF 202 203 /* 204 * Bits in the IMR1 register 205 */ 206 207 #define IMR1_INITM 0x80 208 #define IMR1_SRCM 0x40 209 #define IMR1_NBFM 0x10 210 #define IMR1_PRAIM 0x08 211 #define IMR1_RES0M 0x04 212 #define IMR1_ETM 0x02 213 #define IMR1_ERM 0x01 214 215 /* 216 * Bits in the ISR register 217 */ 218 219 #define ISR_INITI 0x8000 220 #define ISR_SRCI 0x4000 221 #define ISR_ABTI 0x2000 222 #define ISR_NORBF 0x1000 223 #define ISR_PKTRA 0x0800 224 #define ISR_RES0 0x0400 225 #define ISR_ETI 0x0200 226 #define ISR_ERI 0x0100 227 #define ISR_CNT 0x0080 228 #define ISR_BE 0x0040 229 #define ISR_RU 0x0020 230 #define ISR_TU 0x0010 231 #define ISR_TXE 0x0008 232 #define ISR_RXE 0x0004 233 #define ISR_PTX 0x0002 234 #define ISR_PRX 0x0001 235 236 /* 237 * Bits in the ISR0 register 238 */ 239 240 #define ISR0_CNT 0x80 241 #define ISR0_BE 0x40 242 #define ISR0_RU 0x20 243 #define ISR0_TU 0x10 244 #define ISR0_TXE 0x08 245 #define ISR0_RXE 0x04 246 #define ISR0_PTX 0x02 247 #define ISR0_PRX 0x01 248 249 /* 250 * Bits in the ISR1 register 251 */ 252 253 #define ISR1_INITI 0x80 254 #define ISR1_SRCI 0x40 255 #define ISR1_NORBF 0x10 256 #define ISR1_PKTRA 0x08 257 #define ISR1_ETI 0x02 258 #define ISR1_ERI 0x01 259 260 /* ISR ABNORMAL CONDITION */ 261 262 #define ISR_ABNORMAL ISR_BE+ISR_RU+ISR_TU+ISR_CNT+ISR_NORBF+ISR_PKTRA 263 264 /* 265 * Bits in the MIISR register 266 */ 267 268 #define MIISR_MIIERR 0x08 269 #define MIISR_MRERR 0x04 270 #define MIISR_LNKFL 0x02 271 #define MIISR_SPEED 0x01 272 273 /* 274 * Bits in the MIICR register 275 */ 276 277 #define MIICR_MAUTO 0x80 278 #define MIICR_RCMD 0x40 279 #define MIICR_WCMD 0x20 280 #define MIICR_MDPM 0x10 281 #define MIICR_MOUT 0x08 282 #define MIICR_MDO 0x04 283 #define MIICR_MDI 0x02 284 #define MIICR_MDC 0x01 285 286 /* 287 * Bits in the EECSR register 288 */ 289 290 #define EECSR_EEPR 0x80 /* eeprom programed status, 73h means programed */ 291 #define EECSR_EMBP 0x40 /* eeprom embeded programming */ 292 #define EECSR_AUTOLD 0x20 /* eeprom content reload */ 293 #define EECSR_DPM 0x10 /* eeprom direct programming */ 294 #define EECSR_CS 0x08 /* eeprom CS pin */ 295 #define EECSR_SK 0x04 /* eeprom SK pin */ 296 #define EECSR_DI 0x02 /* eeprom DI pin */ 297 #define EECSR_DO 0x01 /* eeprom DO pin */ 298 299 /* 300 * Bits in the BCR0 register 301 */ 302 303 #define BCR0_CRFT2 0x20 304 #define BCR0_CRFT1 0x10 305 #define BCR0_CRFT0 0x08 306 #define BCR0_DMAL2 0x04 307 #define BCR0_DMAL1 0x02 308 #define BCR0_DMAL0 0x01 309 310 /* 311 * Bits in the BCR1 register 312 */ 313 314 #define BCR1_CTSF 0x20 315 #define BCR1_CTFT1 0x10 316 #define BCR1_CTFT0 0x08 317 #define BCR1_POT2 0x04 318 #define BCR1_POT1 0x02 319 #define BCR1_POT0 0x01 320 321 /* 322 * Bits in the CFGA register 323 */ 324 325 #define CFGA_EELOAD 0x80 /* enable eeprom embeded and direct programming */ 326 #define CFGA_JUMPER 0x40 327 #define CFGA_MTGPIO 0x08 328 #define CFGA_T10EN 0x02 329 #define CFGA_AUTO 0x01 330 331 /* 332 * Bits in the CFGB register 333 */ 334 335 #define CFGB_PD 0x80 336 #define CFGB_POLEN 0x02 337 #define CFGB_LNKEN 0x01 338 339 /* 340 * Bits in the CFGC register 341 */ 342 343 #define CFGC_M10TIO 0x80 344 #define CFGC_M10POL 0x40 345 #define CFGC_PHY1 0x20 346 #define CFGC_PHY0 0x10 347 #define CFGC_BTSEL 0x08 348 #define CFGC_BPS2 0x04 /* bootrom select[2] */ 349 #define CFGC_BPS1 0x02 /* bootrom select[1] */ 350 #define CFGC_BPS0 0x01 /* bootrom select[0] */ 351 352 /* 353 * Bits in the CFGD register 354 */ 355 356 #define CFGD_GPIOEN 0x80 357 #define CFGD_DIAG 0x40 358 #define CFGD_MAGIC 0x10 359 #define CFGD_RANDOM 0x08 360 #define CFGD_CFDX 0x04 361 #define CFGD_CEREN 0x02 362 #define CFGD_CETEN 0x01 363 364 /* Bits in RSR */ 365 #define RSR_RERR 0x00000001 366 #define RSR_CRC 0x00000002 367 #define RSR_FAE 0x00000004 368 #define RSR_FOV 0x00000008 369 #define RSR_LONG 0x00000010 370 #define RSR_RUNT 0x00000020 371 #define RSR_SERR 0x00000040 372 #define RSR_BUFF 0x00000080 373 #define RSR_EDP 0x00000100 374 #define RSR_STP 0x00000200 375 #define RSR_CHN 0x00000400 376 #define RSR_PHY 0x00000800 377 #define RSR_BAR 0x00001000 378 #define RSR_MAR 0x00002000 379 #define RSR_RXOK 0x00008000 380 #define RSR_ABNORMAL RSR_RERR+RSR_LONG+RSR_RUNT 381 382 /* Bits in TSR */ 383 #define TSR_NCR0 0x00000001 384 #define TSR_NCR1 0x00000002 385 #define TSR_NCR2 0x00000004 386 #define TSR_NCR3 0x00000008 387 #define TSR_COLS 0x00000010 388 #define TSR_CDH 0x00000080 389 #define TSR_ABT 0x00000100 390 #define TSR_OWC 0x00000200 391 #define TSR_CRS 0x00000400 392 #define TSR_UDF 0x00000800 393 #define TSR_TBUFF 0x00001000 394 #define TSR_SERR 0x00002000 395 #define TSR_JAB 0x00004000 396 #define TSR_TERR 0x00008000 397 #define TSR_ABNORMAL TSR_TERR+TSR_OWC+TSR_ABT+TSR_JAB+TSR_CRS 398 #define TSR_OWN_BIT 0x80000000 399 400 #define CB_DELAY_LOOP_WAIT 10 /* 10ms */ 401 /* enabled mask value of irq */ 402 403 #define W_IMR_MASK_VALUE 0x1BFF /* initial value of IMR */ 404 405 /* Ethernet address filter type */ 406 #define PKT_TYPE_DIRECTED 0x0001 /* obsolete, directed address is always accepted */ 407 #define PKT_TYPE_MULTICAST 0x0002 408 #define PKT_TYPE_ALL_MULTICAST 0x0004 409 #define PKT_TYPE_BROADCAST 0x0008 410 #define PKT_TYPE_PROMISCUOUS 0x0020 411 #define PKT_TYPE_LONG 0x2000 412 #define PKT_TYPE_RUNT 0x4000 413 #define PKT_TYPE_ERROR 0x8000 /* accept error packets, e.g. CRC error */ 414 415 /* Loopback mode */ 416 417 #define NIC_LB_NONE 0x00 418 #define NIC_LB_INTERNAL 0x01 419 #define NIC_LB_PHY 0x02 /* MII or Internal-10BaseT loopback */ 420 421 #define TX_RING_SIZE 2 422 #define RX_RING_SIZE 2 423 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */ 424 425 #define PCI_REG_MODE3 0x53 426 #define MODE3_MIION 0x04 /* in PCI_REG_MOD3 OF PCI space */ 427 428 enum rhine_revs { 429 VT86C100A = 0x00, 430 VTunknown0 = 0x20, 431 VT6102 = 0x40, 432 VT8231 = 0x50, /* Integrated MAC */ 433 VT8233 = 0x60, /* Integrated MAC */ 434 VT8235 = 0x74, /* Integrated MAC */ 435 VT8237 = 0x78, /* Integrated MAC */ 436 VTunknown1 = 0x7C, 437 VT6105 = 0x80, 438 VT6105_B0 = 0x83, 439 VT6105L = 0x8A, 440 VT6107 = 0x8C, 441 VTunknown2 = 0x8E, 442 VT6105M = 0x90, 443 }; 444 445 /* Transmit and receive descriptors definition */ 446 447 struct rhine_tx_desc 448 { 449 union VTC_tx_status_tag 450 { 451 struct 452 { 453 unsigned long ncro:1; 454 unsigned long ncr1:1; 455 unsigned long ncr2:1; 456 unsigned long ncr3:1; 457 unsigned long cols:1; 458 unsigned long reserve_1:2; 459 unsigned long cdh:1; 460 unsigned long abt:1; 461 unsigned long owc:1; 462 unsigned long crs:1; 463 unsigned long udf:1; 464 unsigned long tbuff:1; 465 unsigned long serr:1; 466 unsigned long jab:1; 467 unsigned long terr:1; 468 unsigned long reserve_2:15; 469 unsigned long own_bit:1; 470 } 471 bits; 472 unsigned long lw; 473 } 474 tx_status; 475 476 union VTC_tx_ctrl_tag 477 { 478 struct 479 { 480 unsigned long tx_buf_size:11; 481 unsigned long extend_tx_buf_size:4; 482 unsigned long chn:1; 483 unsigned long crc:1; 484 unsigned long reserve_1:4; 485 unsigned long stp:1; 486 unsigned long edp:1; 487 unsigned long ic:1; 488 unsigned long reserve_2:8; 489 } 490 bits; 491 unsigned long lw; 492 } 493 tx_ctrl; 494 495 unsigned long buf_addr_1:32; 496 unsigned long buf_addr_2:32; 497 498 }; 499 500 struct rhine_rx_desc 501 { 502 union VTC_rx_status_tag 503 { 504 struct 505 { 506 unsigned long rerr:1; 507 unsigned long crc_error:1; 508 unsigned long fae:1; 509 unsigned long fov:1; 510 unsigned long toolong:1; 511 unsigned long runt:1; 512 unsigned long serr:1; 513 unsigned long buff:1; 514 unsigned long edp:1; 515 unsigned long stp:1; 516 unsigned long chn:1; 517 unsigned long phy:1; 518 unsigned long bar:1; 519 unsigned long mar:1; 520 unsigned long reserve_1:1; 521 unsigned long rxok:1; 522 unsigned long frame_length:11; 523 unsigned long reverve_2:4; 524 unsigned long own_bit:1; 525 } 526 bits; 527 unsigned long lw; 528 } 529 rx_status; 530 531 union VTC_rx_ctrl_tag 532 { 533 struct 534 { 535 unsigned long rx_buf_size:11; 536 unsigned long extend_rx_buf_size:4; 537 unsigned long reserved_1:17; 538 } 539 bits; 540 unsigned long lw; 541 } 542 rx_ctrl; 543 544 unsigned long buf_addr_1:32; 545 unsigned long buf_addr_2:32; 546 547 }; 548 549 struct { 550 char txbuf[TX_RING_SIZE * PKT_BUF_SZ + 32]; 551 char rxbuf[RX_RING_SIZE * PKT_BUF_SZ + 32]; 552 char txdesc[TX_RING_SIZE * sizeof (struct rhine_tx_desc) + 32]; 553 char rxdesc[RX_RING_SIZE * sizeof (struct rhine_rx_desc) + 32]; 554 } rhine_buffers __shared; 555 556 /* The I/O extent. */ 557 #define rhine_TOTAL_SIZE 0x80 558 559 #ifdef HAVE_DEVLIST 560 struct netdev_entry rhine_drv = 561 { "rhine", rhine_probe, rhine_TOTAL_SIZE, NULL }; 562 #endif 563 564 static int rhine_debug = 1; 565 566 /* 567 Theory of Operation 568 569 I. Board Compatibility 570 571 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet 572 controller. 573 574 II. Board-specific settings 575 576 Boards with this chip are functional only in a bus-master PCI slot. 577 578 Many operational settings are loaded from the EEPROM to the Config word at 579 offset 0x78. This driver assumes that they are correct. 580 If this driver is compiled to use PCI memory space operations the EEPROM 581 must be configured to enable memory ops. 582 583 III. Driver operation 584 585 IIIa. Ring buffers 586 587 This driver uses two statically allocated fixed-size descriptor lists 588 formed into rings by a branch from the final descriptor to the beginning of 589 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 590 591 IIIb/c. Transmit/Receive Structure 592 593 This driver attempts to use a zero-copy receive and transmit scheme. 594 595 Alas, all data buffers are required to start on a 32 bit boundary, so 596 the driver must often copy transmit packets into bounce buffers. 597 598 The driver allocates full frame size skbuffs for the Rx ring buffers at 599 open() time and passes the skb->data field to the chip as receive data 600 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 601 a fresh skbuff is allocated and the frame is copied to the new skbuff. 602 When the incoming frame is larger, the skbuff is passed directly up the 603 protocol stack. Buffers consumed this way are replaced by newly allocated 604 skbuffs in the last phase of netdev_rx(). 605 606 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 607 using a full-sized skbuff for small frames vs. the copying costs of larger 608 frames. New boards are typically used in generously configured machines 609 and the underfilled buffers have negligible impact compared to the benefit of 610 a single allocation size, so the default value of zero results in never 611 copying packets. When copying is done, the cost is usually mitigated by using 612 a combined copy/checksum routine. Copying also preloads the cache, which is 613 most useful with small frames. 614 615 Since the VIA chips are only able to transfer data to buffers on 32 bit 616 boundaries, the the IP header at offset 14 in an ethernet frame isn't 617 longword aligned for further processing. Copying these unaligned buffers 618 has the beneficial effect of 16-byte aligning the IP header. 619 620 IIId. Synchronization 621 622 The driver runs as two independent, single-threaded flows of control. One 623 is the send-packet routine, which enforces single-threaded use by the 624 dev->tbusy flag. The other thread is the interrupt handler, which is single 625 threaded by the hardware and interrupt handling software. 626 627 The send packet thread has partial control over the Tx ring and 'dev->tbusy' 628 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next 629 queue slot is empty, it clears the tbusy flag when finished otherwise it sets 630 the 'lp->tx_full' flag. 631 632 The interrupt handler has exclusive control over the Rx ring and records stats 633 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 634 empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it 635 clears both the tx_full and tbusy flags. 636 637 IV. Notes 638 639 IVb. References 640 641 Preliminary VT86C100A manual from http://www.via.com.tw/ 642 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html 643 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html 644 645 IVc. Errata 646 647 The VT86C100A manual is not reliable information. 648 The chip does not handle unaligned transmit or receive buffers, resulting 649 in significant performance degradation for bounce buffer copies on transmit 650 and unaligned IP headers on receive. 651 The chip does not pad to minimum transmit length. 652 653 */ 654 655 /* The rest of these values should never change. */ 656 #define NUM_TX_DESC 2 /* Number of Tx descriptor registers. */ 657 658 static struct rhine_private 659 { 660 char devname[8]; /* Used only for kernel debugging. */ 661 const char *product_name; 662 struct rhine_rx_desc *rx_ring; 663 struct rhine_tx_desc *tx_ring; 664 char *rx_buffs[RX_RING_SIZE]; 665 char *tx_buffs[TX_RING_SIZE]; 666 667 /* temporary Rx buffers. */ 668 669 int chip_id; 670 int chip_revision; 671 unsigned short ioaddr; 672 unsigned int cur_rx, cur_tx; /* The next free and used entries */ 673 unsigned int dirty_rx, dirty_tx; 674 /* The saved address of a sent-in-place packet/buffer, for skfree(). */ 675 struct sk_buff *tx_skbuff[TX_RING_SIZE]; 676 unsigned char mc_filter[8]; /* Current multicast filter. */ 677 char phys[4]; /* MII device addresses. */ 678 unsigned int tx_full:1; /* The Tx queue is full. */ 679 unsigned int full_duplex:1; /* Full-duplex operation requested. */ 680 unsigned int default_port:4; /* Last dev->if_port value. */ 681 unsigned int media2:4; /* Secondary monitored media port. */ 682 unsigned int medialock:1; /* Don't sense media type. */ 683 unsigned int mediasense:1; /* Media sensing in progress. */ 684 } 685 rhine; 686 687 static void rhine_probe1 (struct nic *nic, struct pci_device *pci, int ioaddr, 688 int chip_id, int options); 689 static int QueryAuto (int); 690 static int ReadMII (int byMIIIndex, int); 691 static void WriteMII (char, char, char, int); 692 static void MIIDelay (void); 693 static void rhine_init_ring (struct nic *dev); 694 static void rhine_disable (struct nic *nic); 695 static void rhine_reset (struct nic *nic); 696 static int rhine_poll (struct nic *nic, int retreive); 697 static void rhine_transmit (struct nic *nic, const char *d, unsigned int t, 698 unsigned int s, const char *p); 699 static void reload_eeprom(int ioaddr); 700 701 702 static void reload_eeprom(int ioaddr) 703 { 704 int i; 705 outb(0x20, byEECSR); 706 /* Typically 2 cycles to reload. */ 707 for (i = 0; i < 150; i++) 708 if (! (inb(byEECSR) & 0x20)) 709 break; 710 } 711 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 712 static void 713 rhine_init_ring (struct nic *nic) 714 { 715 struct rhine_private *tp = (struct rhine_private *) nic->priv_data; 716 int i; 717 718 tp->tx_full = 0; 719 tp->cur_rx = tp->cur_tx = 0; 720 tp->dirty_rx = tp->dirty_tx = 0; 721 722 for (i = 0; i < RX_RING_SIZE; i++) 723 { 724 725 tp->rx_ring[i].rx_status.bits.own_bit = 1; 726 tp->rx_ring[i].rx_ctrl.bits.rx_buf_size = 1536; 727 728 tp->rx_ring[i].buf_addr_1 = virt_to_bus (tp->rx_buffs[i]); 729 tp->rx_ring[i].buf_addr_2 = virt_to_bus (&tp->rx_ring[i + 1]); 730 /* printf("[%d]buf1=%hX,buf2=%hX",i,tp->rx_ring[i].buf_addr_1,tp->rx_ring[i].buf_addr_2); */ 731 } 732 /* Mark the last entry as wrapping the ring. */ 733 /* tp->rx_ring[i-1].rx_ctrl.bits.rx_buf_size =1518; */ 734 tp->rx_ring[i - 1].buf_addr_2 = virt_to_bus (&tp->rx_ring[0]); 735 /*printf("[%d]buf1=%hX,buf2=%hX",i-1,tp->rx_ring[i-1].buf_addr_1,tp->rx_ring[i-1].buf_addr_2); */ 736 737 /* The Tx buffer descriptor is filled in as needed, but we 738 do need to clear the ownership bit. */ 739 740 for (i = 0; i < TX_RING_SIZE; i++) 741 { 742 743 tp->tx_ring[i].tx_status.lw = 0; 744 tp->tx_ring[i].tx_ctrl.lw = 0x00e08000; 745 tp->tx_ring[i].buf_addr_1 = virt_to_bus (tp->tx_buffs[i]); 746 tp->tx_ring[i].buf_addr_2 = virt_to_bus (&tp->tx_ring[i + 1]); 747 /* printf("[%d]buf1=%hX,buf2=%hX",i,tp->tx_ring[i].buf_addr_1,tp->tx_ring[i].buf_addr_2); */ 748 } 749 750 tp->tx_ring[i - 1].buf_addr_2 = virt_to_bus (&tp->tx_ring[0]); 751 /* printf("[%d]buf1=%hX,buf2=%hX",i,tp->tx_ring[i-1].buf_addr_1,tp->tx_ring[i-1].buf_addr_2); */ 752 } 753 754 int 755 QueryAuto (int ioaddr) 756 { 757 int byMIIIndex; 758 int MIIReturn; 759 760 int advertising,mii_reg5; 761 int negociated; 762 763 byMIIIndex = 0x04; 764 MIIReturn = ReadMII (byMIIIndex, ioaddr); 765 advertising=MIIReturn; 766 767 byMIIIndex = 0x05; 768 MIIReturn = ReadMII (byMIIIndex, ioaddr); 769 mii_reg5=MIIReturn; 770 771 negociated=mii_reg5 & advertising; 772 773 if ( (negociated & 0x100) || (negociated & 0x1C0) == 0x40 ) 774 return 1; 775 else 776 return 0; 777 778 } 779 780 int 781 ReadMII (int byMIIIndex, int ioaddr) 782 { 783 int ReturnMII; 784 char byMIIAdrbak; 785 char byMIICRbak; 786 char byMIItemp; 787 unsigned long ct; 788 789 byMIIAdrbak = inb (byMIIAD); 790 byMIICRbak = inb (byMIICR); 791 outb (byMIICRbak & 0x7f, byMIICR); 792 MIIDelay (); 793 794 outb (byMIIIndex, byMIIAD); 795 MIIDelay (); 796 797 outb (inb (byMIICR) | 0x40, byMIICR); 798 799 byMIItemp = inb (byMIICR); 800 byMIItemp = byMIItemp & 0x40; 801 802 ct = currticks(); 803 while (byMIItemp != 0 && ct + 2*1000 < currticks()) 804 { 805 byMIItemp = inb (byMIICR); 806 byMIItemp = byMIItemp & 0x40; 807 } 808 MIIDelay (); 809 810 ReturnMII = inw (wMIIDATA); 811 812 outb (byMIIAdrbak, byMIIAD); 813 outb (byMIICRbak, byMIICR); 814 MIIDelay (); 815 816 return (ReturnMII); 817 818 } 819 820 void 821 WriteMII (char byMIISetByte, char byMIISetBit, char byMIIOP, int ioaddr) 822 { 823 int ReadMIItmp; 824 int MIIMask; 825 char byMIIAdrbak; 826 char byMIICRbak; 827 char byMIItemp; 828 unsigned long ct; 829 830 831 byMIIAdrbak = inb (byMIIAD); 832 833 byMIICRbak = inb (byMIICR); 834 outb (byMIICRbak & 0x7f, byMIICR); 835 MIIDelay (); 836 outb (byMIISetByte, byMIIAD); 837 MIIDelay (); 838 839 outb (inb (byMIICR) | 0x40, byMIICR); 840 841 byMIItemp = inb (byMIICR); 842 byMIItemp = byMIItemp & 0x40; 843 844 ct = currticks(); 845 while (byMIItemp != 0 && ct + 2*1000 < currticks()) 846 { 847 byMIItemp = inb (byMIICR); 848 byMIItemp = byMIItemp & 0x40; 849 } 850 MIIDelay (); 851 852 ReadMIItmp = inw (wMIIDATA); 853 MIIMask = 0x0001; 854 MIIMask = MIIMask << byMIISetBit; 855 856 857 if (byMIIOP == 0) 858 { 859 MIIMask = ~MIIMask; 860 ReadMIItmp = ReadMIItmp & MIIMask; 861 } 862 else 863 { 864 ReadMIItmp = ReadMIItmp | MIIMask; 865 866 } 867 outw (ReadMIItmp, wMIIDATA); 868 MIIDelay (); 869 870 outb (inb (byMIICR) | 0x20, byMIICR); 871 byMIItemp = inb (byMIICR); 872 byMIItemp = byMIItemp & 0x20; 873 874 ct = currticks(); 875 while (byMIItemp != 0 && ct + 2*1000 < currticks()) 876 { 877 byMIItemp = inb (byMIICR); 878 byMIItemp = byMIItemp & 0x20; 879 } 880 MIIDelay (); 881 882 outb (byMIIAdrbak & 0x7f, byMIIAD); 883 outb (byMIICRbak, byMIICR); 884 MIIDelay (); 885 886 } 887 888 void 889 MIIDelay (void) 890 { 891 int i; 892 for (i = 0; i < 0x7fff; i++) 893 { 894 ( void ) inb (0x61); 895 ( void ) inb (0x61); 896 ( void ) inb (0x61); 897 ( void ) inb (0x61); 898 } 899 } 900 901 /* Offsets to the device registers. */ 902 enum register_offsets { 903 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08, 904 IntrStatus=0x0C, IntrEnable=0x0E, 905 MulticastFilter0=0x10, MulticastFilter1=0x14, 906 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54, 907 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, 908 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74, 909 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B, 910 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81, 911 StickyHW=0x83, IntrStatus2=0x84, WOLcrClr=0xA4, WOLcgClr=0xA7, 912 PwrcsrClr=0xAC, 913 }; 914 915 /* Bits in the interrupt status/mask registers. */ 916 enum intr_status_bits { 917 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020, 918 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210, 919 IntrPCIErr=0x0040, 920 IntrStatsMax=0x0080, IntrRxEarly=0x0100, 921 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000, 922 IntrTxAborted=0x2000, IntrLinkChange=0x4000, 923 IntrRxWakeUp=0x8000, 924 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260, 925 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */ 926 IntrTxErrSummary=0x082218, 927 }; 928 #define DEFAULT_INTR (IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow | \ 929 IntrRxDropped | IntrRxNoBuf) 930 931 /*************************************************************************** 932 IRQ - PXE IRQ Handler 933 ***************************************************************************/ 934 void rhine_irq ( struct nic *nic, irq_action_t action ) { 935 struct rhine_private *tp = (struct rhine_private *) nic->priv_data; 936 /* Enable interrupts by setting the interrupt mask. */ 937 unsigned int intr_status; 938 939 switch ( action ) { 940 case DISABLE : 941 case ENABLE : 942 intr_status = inw(nic->ioaddr + IntrStatus); 943 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */ 944 945 /* added comment by guard */ 946 /* For supporting VT6107, please use revision id to recognize different chips in driver */ 947 // if (tp->chip_id == 0x3065) 948 if( tp->chip_revision < 0x80 && tp->chip_revision >=0x40 ) 949 intr_status |= inb(nic->ioaddr + IntrStatus2) << 16; 950 intr_status = (intr_status & ~DEFAULT_INTR); 951 if ( action == ENABLE ) 952 intr_status = intr_status | DEFAULT_INTR; 953 outw(intr_status, nic->ioaddr + IntrEnable); 954 break; 955 case FORCE : 956 outw(0x0010, nic->ioaddr + 0x84); 957 break; 958 } 959 } 960 961 static struct nic_operations rhine_operations; 962 963 static int 964 rhine_probe ( struct nic *nic, struct pci_device *pci ) { 965 966 struct rhine_private *tp = (struct rhine_private *) nic->priv_data; 967 968 if (!pci->ioaddr) 969 return 0; 970 971 rhine_probe1 (nic, pci, pci->ioaddr, pci->device, -1); 972 973 adjust_pci_device ( pci ); 974 975 rhine_reset (nic); 976 977 nic->nic_op = &rhine_operations; 978 979 nic->irqno = pci->irq; 980 nic->ioaddr = tp->ioaddr; 981 982 return 1; 983 } 984 985 static void set_rx_mode(struct nic *nic __unused) { 986 struct rhine_private *tp = (struct rhine_private *) nic->priv_data; 987 unsigned char rx_mode; 988 int ioaddr = tp->ioaddr; 989 990 /* ! IFF_PROMISC */ 991 outl(0xffffffff, byMAR0); 992 outl(0xffffffff, byMAR4); 993 rx_mode = 0x0C; 994 995 outb(0x60 /* thresh */ | rx_mode, byRCR ); 996 } 997 998 static void 999 rhine_probe1 (struct nic *nic, struct pci_device *pci, int ioaddr, int chip_id, int options) 1000 { 1001 struct rhine_private *tp; 1002 static int did_version = 0; /* Already printed version info. */ 1003 unsigned int i, ww; 1004 unsigned int timeout; 1005 int FDXFlag; 1006 int byMIIvalue, LineSpeed, MIICRbak; 1007 uint8_t revision_id; 1008 unsigned char mode3_reg; 1009 1010 if (rhine_debug > 0 && did_version++ == 0) 1011 printf ("%s",version); 1012 1013 // get revision id. 1014 pci_read_config_byte(pci, PCI_REVISION, &revision_id); 1015 1016 /* D-Link provided reset code (with comment additions) */ 1017 if (revision_id >= 0x40) { 1018 unsigned char byOrgValue; 1019 1020 if(rhine_debug > 0) 1021 printf("Enabling Sticky Bit Workaround for Chip_id: 0x%hX\n" 1022 , chip_id); 1023 /* clear sticky bit before reset & read ethernet address */ 1024 byOrgValue = inb(bySTICKHW); 1025 byOrgValue = byOrgValue & 0xFC; 1026 outb(byOrgValue, bySTICKHW); 1027 1028 /* (bits written are cleared?) */ 1029 /* disable force PME-enable */ 1030 outb(0x80, byWOLcgClr); 1031 /* disable power-event config bit */ 1032 outb(0xFF, byWOLcrClr); 1033 /* clear power status (undocumented in vt6102 docs?) */ 1034 outb(0xFF, byPwrcsrClr); 1035 1036 } 1037 1038 /* Reset the chip to erase previous misconfiguration. */ 1039 outw(CR_SFRST, byCR0); 1040 // if vt3043 delay after reset 1041 if (revision_id <0x40) { 1042 udelay(10000); 1043 } 1044 // polling till software reset complete 1045 // W_MAX_TIMEOUT is the timeout period 1046 for(ww = 0; ww < W_MAX_TIMEOUT; ww++) { 1047 if ((inw(byCR0) & CR_SFRST) == 0) 1048 break; 1049 } 1050 1051 // issue AUTOLoad in EECSR to reload eeprom 1052 outb(0x20, byEECSR ); 1053 1054 // if vt3065 delay after reset 1055 if (revision_id >=0x40) { 1056 // delay 8ms to let MAC stable 1057 mdelay(8); 1058 /* 1059 * for 3065D, EEPROM reloaded will cause bit 0 in MAC_REG_CFGA 1060 * turned on. it makes MAC receive magic packet 1061 * automatically. So, we turn it off. (D-Link) 1062 */ 1063 outb(inb(byCFGA) & 0xFE, byCFGA); 1064 } 1065 1066 /* turn on bit2 in PCI configuration register 0x53 , only for 3065*/ 1067 if (revision_id >= 0x40) { 1068 pci_read_config_byte(pci, PCI_REG_MODE3, &mode3_reg); 1069 pci_write_config_byte(pci, PCI_REG_MODE3, mode3_reg|MODE3_MIION); 1070 } 1071 1072 1073 /* back off algorithm ,disable the right-most 4-bit off CFGD*/ 1074 outb(inb(byCFGD) & (~(CFGD_RANDOM | CFGD_CFDX | CFGD_CEREN | CFGD_CETEN)), byCFGD); 1075 1076 /* reload eeprom */ 1077 reload_eeprom(ioaddr); 1078 1079 /* Perhaps this should be read from the EEPROM? */ 1080 for (i = 0; i < ETH_ALEN; i++) 1081 nic->node_addr[i] = inb (byPAR0 + i); 1082 1083 DBG ( "IO address %#hX Ethernet Address: %s\n", ioaddr, eth_ntoa ( nic->node_addr ) ); 1084 1085 /* restart MII auto-negotiation */ 1086 WriteMII (0, 9, 1, ioaddr); 1087 printf ("Analyzing Media type,this may take several seconds... "); 1088 for (i = 0; i < 5; i++) 1089 { 1090 /* need to wait 1 millisecond - we will round it up to 50-100ms */ 1091 timeout = currticks() + 2; 1092 for (timeout = currticks() + 2; currticks() < timeout;) 1093 /* nothing */; 1094 if (ReadMII (1, ioaddr) & 0x0020) 1095 break; 1096 } 1097 printf ("OK.\n"); 1098 1099 #if 0 1100 /* JJM : for Debug */ 1101 printf("MII : Address %hhX ",inb(ioaddr+0x6c)); 1102 { 1103 unsigned char st1,st2,adv1,adv2,l1,l2; 1104 1105 st1=ReadMII(1,ioaddr)>>8; 1106 st2=ReadMII(1,ioaddr)&0xFF; 1107 adv1=ReadMII(4,ioaddr)>>8; 1108 adv2=ReadMII(4,ioaddr)&0xFF; 1109 l1=ReadMII(5,ioaddr)>>8; 1110 l2=ReadMII(5,ioaddr)&0xFF; 1111 printf(" status 0x%hhX%hhX, advertising 0x%hhX%hhX, link 0x%hhX%hhX\n", st1,st2,adv1,adv2,l1,l2); 1112 } 1113 #endif 1114 1115 1116 /* query MII to know LineSpeed,duplex mode */ 1117 byMIIvalue = inb (ioaddr + 0x6d); 1118 LineSpeed = byMIIvalue & MIISR_SPEED; 1119 if (LineSpeed != 0) //JJM 1120 { 1121 printf ("Linespeed=10Mbs"); 1122 } 1123 else 1124 { 1125 printf ("Linespeed=100Mbs"); 1126 } 1127 1128 FDXFlag = QueryAuto (ioaddr); 1129 if (FDXFlag == 1) 1130 { 1131 printf (" Fullduplex\n"); 1132 outw (CR_FDX, byCR0); 1133 } 1134 else 1135 { 1136 printf (" Halfduplex\n"); 1137 } 1138 1139 1140 /* set MII 10 FULL ON, only apply in vt3043 */ 1141 if(chip_id == 0x3043) 1142 WriteMII (0x17, 1, 1, ioaddr); 1143 1144 /* turn on MII link change */ 1145 MIICRbak = inb (byMIICR); 1146 outb (MIICRbak & 0x7F, byMIICR); 1147 MIIDelay (); 1148 outb (0x41, byMIIAD); 1149 MIIDelay (); 1150 1151 /* while((inb(byMIIAD)&0x20)==0) ; */ 1152 outb (MIICRbak | 0x80, byMIICR); 1153 1154 nic->priv_data = &rhine; 1155 tp = &rhine; 1156 tp->chip_id = chip_id; 1157 tp->ioaddr = ioaddr; 1158 tp->phys[0] = -1; 1159 tp->chip_revision = revision_id; 1160 1161 /* The lower four bits are the media type. */ 1162 if (options > 0) 1163 { 1164 tp->full_duplex = (options & 16) ? 1 : 0; 1165 tp->default_port = options & 15; 1166 if (tp->default_port) 1167 tp->medialock = 1; 1168 } 1169 return; 1170 } 1171 1172 static void 1173 rhine_disable ( struct nic *nic ) { 1174 1175 struct rhine_private *tp = (struct rhine_private *) nic->priv_data; 1176 int ioaddr = tp->ioaddr; 1177 1178 rhine_reset(nic); 1179 1180 printf ("rhine disable\n"); 1181 /* Switch to loopback mode to avoid hardware races. */ 1182 outb(0x60 | 0x01, byTCR); 1183 /* Stop the chip's Tx and Rx processes. */ 1184 outw(CR_STOP, byCR0); 1185 } 1186 1187 /************************************************************************** 1188 ETH_RESET - Reset adapter 1189 ***************************************************************************/ 1190 static void 1191 rhine_reset (struct nic *nic) 1192 { 1193 struct rhine_private *tp = (struct rhine_private *) nic->priv_data; 1194 int ioaddr = tp->ioaddr; 1195 int i, j; 1196 int FDXFlag, CRbak; 1197 void *rx_ring_tmp; 1198 void *tx_ring_tmp; 1199 void *rx_bufs_tmp; 1200 void *tx_bufs_tmp; 1201 unsigned long rx_ring_tmp1; 1202 unsigned long tx_ring_tmp1; 1203 unsigned long rx_bufs_tmp1; 1204 unsigned long tx_bufs_tmp1; 1205 1206 /* printf ("rhine_reset\n"); */ 1207 /* Soft reset the chip. */ 1208 /*outb(CmdReset, ioaddr + ChipCmd); */ 1209 1210 tx_bufs_tmp = rhine_buffers.txbuf; 1211 tx_ring_tmp = rhine_buffers.txdesc; 1212 rx_bufs_tmp = rhine_buffers.rxbuf; 1213 rx_ring_tmp = rhine_buffers.rxdesc; 1214 1215 /* tune RD TD 32 byte alignment */ 1216 rx_ring_tmp1 = virt_to_bus ( rx_ring_tmp ); 1217 j = (rx_ring_tmp1 + 32) & (~0x1f); 1218 /* printf ("txring[%d]", j); */ 1219 tp->rx_ring = (struct rhine_rx_desc *) bus_to_virt (j); 1220 1221 tx_ring_tmp1 = virt_to_bus ( tx_ring_tmp ); 1222 j = (tx_ring_tmp1 + 32) & (~0x1f); 1223 tp->tx_ring = (struct rhine_tx_desc *) bus_to_virt (j); 1224 /* printf ("rxring[%X]", j); */ 1225 1226 1227 tx_bufs_tmp1 = virt_to_bus ( tx_bufs_tmp ); 1228 j = (int) (tx_bufs_tmp1 + 32) & (~0x1f); 1229 tx_bufs_tmp = bus_to_virt (j); 1230 /* printf ("txb[%X]", j); */ 1231 1232 rx_bufs_tmp1 = virt_to_bus ( rx_bufs_tmp ); 1233 j = (int) (rx_bufs_tmp1 + 32) & (~0x1f); 1234 rx_bufs_tmp = bus_to_virt (j); 1235 /* printf ("rxb[%X][%X]", rx_bufs_tmp1, j); */ 1236 1237 for (i = 0; i < RX_RING_SIZE; i++) 1238 { 1239 tp->rx_buffs[i] = (char *) rx_bufs_tmp; 1240 /* printf("r[%X]",tp->rx_buffs[i]); */ 1241 rx_bufs_tmp += 1536; 1242 } 1243 1244 for (i = 0; i < TX_RING_SIZE; i++) 1245 { 1246 tp->tx_buffs[i] = (char *) tx_bufs_tmp; 1247 /* printf("t[%X]",tp->tx_buffs[i]); */ 1248 tx_bufs_tmp += 1536; 1249 } 1250 1251 /* software reset */ 1252 outb (CR1_SFRST, byCR1); 1253 MIIDelay (); 1254 1255 /* printf ("init ring"); */ 1256 rhine_init_ring (nic); 1257 /*write TD RD Descriptor to MAC */ 1258 outl (virt_to_bus (tp->rx_ring), dwCurrentRxDescAddr); 1259 outl (virt_to_bus (tp->tx_ring), dwCurrentTxDescAddr); 1260 1261 /* Setup Multicast */ 1262 set_rx_mode(nic); 1263 1264 /* set TCR RCR threshold to store and forward*/ 1265 outb (0x3e, byBCR0); 1266 outb (0x38, byBCR1); 1267 outb (0x2c, byRCR); 1268 outb (0x60, byTCR); 1269 /* Set Fulldupex */ 1270 FDXFlag = QueryAuto (ioaddr); 1271 if (FDXFlag == 1) 1272 { 1273 outb (CFGD_CFDX, byCFGD); 1274 outw (CR_FDX, byCR0); 1275 } 1276 1277 /* KICK NIC to WORK */ 1278 CRbak = inw (byCR0); 1279 CRbak = CRbak & 0xFFFB; /* not CR_STOP */ 1280 outw ((CRbak | CR_STRT | CR_TXON | CR_RXON | CR_DPOLL), byCR0); 1281 1282 /* disable all known interrupt */ 1283 outw (0, byIMR0); 1284 } 1285 /* Beware of PCI posted writes */ 1286 #define IOSYNC do { inb(nic->ioaddr + StationAddr); } while (0) 1287 1288 static int 1289 rhine_poll (struct nic *nic, int retreive) 1290 { 1291 struct rhine_private *tp = (struct rhine_private *) nic->priv_data; 1292 int rxstatus, good = 0;; 1293 1294 if (tp->rx_ring[tp->cur_rx].rx_status.bits.own_bit == 0) 1295 { 1296 unsigned int intr_status; 1297 /* There is a packet ready */ 1298 if(!retreive) 1299 return 1; 1300 1301 intr_status = inw(nic->ioaddr + IntrStatus); 1302 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */ 1303 #if 0 1304 if (tp->chip_id == 0x3065) 1305 intr_status |= inb(nic->ioaddr + IntrStatus2) << 16; 1306 #endif 1307 /* Acknowledge all of the current interrupt sources ASAP. */ 1308 if (intr_status & IntrTxDescRace) 1309 outb(0x08, nic->ioaddr + IntrStatus2); 1310 outw(intr_status & 0xffff, nic->ioaddr + IntrStatus); 1311 IOSYNC; 1312 1313 rxstatus = tp->rx_ring[tp->cur_rx].rx_status.lw; 1314 if ((rxstatus & 0x0300) != 0x0300) 1315 { 1316 printf("rhine_poll: bad status\n"); 1317 } 1318 else if (rxstatus & (RSR_ABNORMAL)) 1319 { 1320 printf ("rxerr[%X]\n", rxstatus); 1321 } 1322 else 1323 good = 1; 1324 1325 if (good) 1326 { 1327 nic->packetlen = tp->rx_ring[tp->cur_rx].rx_status.bits.frame_length; 1328 memcpy (nic->packet, tp->rx_buffs[tp->cur_rx], nic->packetlen); 1329 /* printf ("Packet RXed\n"); */ 1330 } 1331 tp->rx_ring[tp->cur_rx].rx_status.bits.own_bit = 1; 1332 tp->cur_rx++; 1333 tp->cur_rx = tp->cur_rx % RX_RING_SIZE; 1334 } 1335 /* Acknowledge all of the current interrupt sources ASAP. */ 1336 outw(DEFAULT_INTR & ~IntrRxDone, nic->ioaddr + IntrStatus); 1337 1338 IOSYNC; 1339 1340 return good; 1341 } 1342 1343 static void 1344 rhine_transmit (struct nic *nic, 1345 const char *d, unsigned int t, unsigned int s, const char *p) 1346 { 1347 struct rhine_private *tp = (struct rhine_private *) nic->priv_data; 1348 int ioaddr = tp->ioaddr; 1349 int entry; 1350 unsigned char CR1bak; 1351 unsigned char CR0bak; 1352 unsigned int nstype; 1353 unsigned long ct; 1354 1355 1356 /*printf ("rhine_transmit\n"); */ 1357 /* setup ethernet header */ 1358 1359 1360 /* Calculate the next Tx descriptor entry. */ 1361 entry = tp->cur_tx % TX_RING_SIZE; 1362 1363 memcpy (tp->tx_buffs[entry], d, ETH_ALEN); /* dst */ 1364 memcpy (tp->tx_buffs[entry] + ETH_ALEN, nic->node_addr, ETH_ALEN); /* src */ 1365 1366 nstype=htons(t); 1367 memcpy(tp->tx_buffs[entry] + 2 * ETH_ALEN, (char*)&nstype, 2); 1368 1369 memcpy (tp->tx_buffs[entry] + ETH_HLEN, p, s); 1370 s += ETH_HLEN; 1371 while (s < ETH_ZLEN) 1372 *((char *) tp->tx_buffs[entry] + (s++)) = 0; 1373 1374 tp->tx_ring[entry].tx_ctrl.bits.tx_buf_size = s; 1375 1376 tp->tx_ring[entry].tx_status.bits.own_bit = 1; 1377 1378 1379 CR1bak = inb (byCR1); 1380 1381 CR1bak = CR1bak | CR1_TDMD1; 1382 /*printf("tdsw=[%X]",tp->tx_ring[entry].tx_status.lw); */ 1383 /*printf("tdcw=[%X]",tp->tx_ring[entry].tx_ctrl.lw); */ 1384 /*printf("tdbuf1=[%X]",tp->tx_ring[entry].buf_addr_1); */ 1385 /*printf("tdbuf2=[%X]",tp->tx_ring[entry].buf_addr_2); */ 1386 /*printf("td1=[%X]",inl(dwCurrentTDSE0)); */ 1387 /*printf("td2=[%X]",inl(dwCurrentTDSE1)); */ 1388 /*printf("td3=[%X]",inl(dwCurrentTDSE2)); */ 1389 /*printf("td4=[%X]",inl(dwCurrentTDSE3)); */ 1390 1391 outb (CR1bak, byCR1); 1392 do 1393 { 1394 ct = currticks(); 1395 /* Wait until transmit is finished or timeout*/ 1396 while((tp->tx_ring[entry].tx_status.bits.own_bit !=0) && 1397 ct + 10*1000 < currticks()) 1398 ; 1399 1400 if(tp->tx_ring[entry].tx_status.bits.terr == 0) 1401 break; 1402 1403 if(tp->tx_ring[entry].tx_status.bits.abt == 1) 1404 { 1405 // turn on TX 1406 CR0bak = inb(byCR0); 1407 CR0bak = CR0bak|CR_TXON; 1408 outb(CR0bak,byCR0); 1409 } 1410 }while(0); 1411 tp->cur_tx++; 1412 1413 /*outw(IMRShadow,byIMR0); */ 1414 /*dev_kfree_skb(tp->tx_skbuff[entry], FREE_WRITE); */ 1415 /*tp->tx_skbuff[entry] = 0; */ 1416 } 1417 1418 static struct nic_operations rhine_operations = { 1419 .connect = dummy_connect, 1420 .poll = rhine_poll, 1421 .transmit = rhine_transmit, 1422 .irq = rhine_irq, 1423 1424 }; 1425 1426 static struct pci_device_id rhine_nics[] = { 1427 PCI_ROM(0x1106, 0x3065, "dlink-530tx", "VIA 6102", 0), 1428 PCI_ROM(0x1106, 0x3106, "via-rhine-6105", "VIA 6105", 0), 1429 PCI_ROM(0x1106, 0x3043, "dlink-530tx-old", "VIA 3043", 0), /* Rhine-I 86c100a */ 1430 PCI_ROM(0x1106, 0x3053, "via6105m", "VIA 6105M", 0), 1431 PCI_ROM(0x1106, 0x6100, "via-rhine-old", "VIA 86C100A", 0), /* Rhine-II */ 1432 }; 1433 1434 PCI_DRIVER ( rhine_driver, rhine_nics, PCI_NO_CLASS ); 1435 1436 DRIVER ( "VIA 86C100", nic_driver, pci_driver, rhine_driver, 1437 rhine_probe, rhine_disable ); 1438 1439 /* EOF via-rhine.c */ 1440 1441 /* 1442 * Local variables: 1443 * c-basic-offset: 8 1444 * c-indent-level: 8 1445 * tab-width: 8 1446 * End: 1447 */ 1448