Home | History | Annotate | Download | only in kernels
      1 /* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
      2 
      3 Licensed under the Apache License, Version 2.0 (the "License");
      4 you may not use this file except in compliance with the License.
      5 You may obtain a copy of the License at
      6 
      7     http://www.apache.org/licenses/LICENSE-2.0
      8 
      9 Unless required by applicable law or agreed to in writing, software
     10 distributed under the License is distributed on an "AS IS" BASIS,
     11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 See the License for the specific language governing permissions and
     13 limitations under the License.
     14 ==============================================================================*/
     15 
     16 #ifndef TENSORFLOW_KERNELS_LOGISTIC_LOSS_H_
     17 #define TENSORFLOW_KERNELS_LOGISTIC_LOSS_H_
     18 
     19 #include <cmath>
     20 
     21 #include "tensorflow/core/kernels/loss.h"
     22 #include "tensorflow/core/lib/core/errors.h"
     23 
     24 namespace tensorflow {
     25 
     26 class LogisticLossUpdater : public DualLossUpdater {
     27  public:
     28   // Adding vs. Averaging in Distributed Primal-Dual Optimization.
     29   // Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter
     30   // Richtarik, Martin Takac http://arxiv.org/abs/1502.03508
     31   double ComputeUpdatedDual(const int num_loss_partitions, const double label,
     32                             const double example_weight,
     33                             const double current_dual, const double wx,
     34                             const double weighted_example_norm) const final {
     35     // Newton algorithm converges quadratically so 10 steps will be largely
     36     // enough to achieve a very good precision
     37     static const int newton_total_steps = 10;
     38     double x = 0;
     39     for (int i = 0; i < newton_total_steps; ++i) {
     40       x = NewtonStep(x, num_loss_partitions, label, wx, example_weight,
     41                      weighted_example_norm, current_dual);
     42     }
     43     return 0.5 * (1 + tanh(x)) / label;
     44   }
     45 
     46   // Dual of logisitic loss function.
     47   // https://en.wikipedia.org/wiki/Convex_conjugate
     48   double ComputeDualLoss(const double current_dual, const double example_label,
     49                          const double example_weight) const final {
     50     // Dual of the logistic loss function is
     51     // ay * log(ay) + (1-ay) * log (1-ay), where a is the dual variable.
     52     const double ay = current_dual * example_label;
     53     const double log_ay = (ay > 0) ? log(ay) : 0;
     54     const double one_minus_ay = 1 - ay;
     55     const double log_one_minus_ay = (one_minus_ay > 0) ? log(one_minus_ay) : 0;
     56     return ((ay * log_ay) + (one_minus_ay * log_one_minus_ay)) * example_weight;
     57   }
     58 
     59   // Logistic loss for binary classification.
     60   // https://en.wikipedia.org/wiki/Loss_functions_for_classification
     61   double ComputePrimalLoss(const double wx, const double example_label,
     62                            const double example_weight) const final {
     63     // Logistic loss:
     64     //   log(1 + e^(-ywx))
     65     //   log(e^0 + e^(-ywx))
     66     //   a + log(e^(0-a) + e^(-ywx - a)),  where a is max(0, -ywx)
     67     // https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
     68     const double y_wx = example_label * wx;
     69     if (y_wx > 0) {
     70       // 0 + log(e^(0) + e^(-ywx - 0))
     71       // log(1 + e^(-ywx))
     72       return log(1 + exp(-y_wx)) * example_weight;
     73     }
     74     // -ywx + log(e^(ywx) + e^(-ywx + ywx))
     75     // log(e^(ywx) + e^(0)) - ywx
     76     // log(1 + e^(ywx)) - ywx
     77     return (log(1 + exp(y_wx)) - y_wx) * example_weight;
     78   }
     79 
     80   // Derivative of logistic loss
     81   double PrimalLossDerivative(const double wx, const double label,
     82                               const double example_weight) const final {
     83     double inverse_exp_term = 0;
     84     if (label * wx > 0) {
     85       inverse_exp_term = exp(-label * wx) / (1 + exp(-label * wx));
     86     } else {
     87       inverse_exp_term = 1 / (1 + exp(label * wx));
     88     }
     89     return inverse_exp_term * label * example_weight;
     90   }
     91 
     92   // The smoothness constant is 4 since the derivative of logistic loss, which
     93   // is exp(-x) / (1 + exp(-x)) can be shown to 0.25-Lipschitz (its derivative
     94   // is bounded by 0.25)
     95   double SmoothnessConstant() const final { return 4; }
     96 
     97   // Converts binary example labels from 0.0 or 1.0 to -1.0 or 1.0 respectively
     98   // as expected by logistic regression.
     99   Status ConvertLabel(float* const example_label) const final {
    100     if (*example_label == 0.0) {
    101       *example_label = -1;
    102       return Status::OK();
    103     }
    104     if (*example_label == 1.0) {
    105       return Status::OK();
    106     }
    107     return errors::InvalidArgument(
    108         "Only labels of 0.0 or 1.0 are supported right now. "
    109         "Found example with label: ",
    110         *example_label);
    111   }
    112 
    113  private:
    114   // We use Newton algorithm on a modified function (see readme.md).
    115   double NewtonStep(const double x, const int num_loss_partitions,
    116                     const double label, const double wx,
    117                     const double example_weight,
    118                     const double weighted_example_norm,
    119                     const double current_dual) const {
    120     const double tanhx = tanh(x);
    121     const double numerator = -2 * label * x - wx -
    122                              num_loss_partitions * weighted_example_norm *
    123                                  example_weight *
    124                                  (0.5 * (1 + tanhx) / label - current_dual);
    125     const double denominator =
    126         -2 * label - num_loss_partitions * weighted_example_norm *
    127                          example_weight * (1 - tanhx * tanhx) * 0.5 / label;
    128     return x - numerator / denominator;
    129   }
    130 };
    131 
    132 }  // namespace tensorflow
    133 
    134 #endif  // TENSORFLOW_KERNELS_LOGISTIC_LOSS_H_
    135