Up to higher level directory | |||
Name | Date | Size | |
---|---|---|---|
boston.py | 21-Aug-2018 | 2.5K | |
BUILD | 21-Aug-2018 | 3.4K | |
examples_test.sh | 21-Aug-2018 | 1.5K | |
hdf5_classification.py | 21-Aug-2018 | 2.8K | |
iris.py | 21-Aug-2018 | 3.9K | |
iris_custom_decay_dnn.py | 21-Aug-2018 | 3.5K | |
iris_custom_model.py | 21-Aug-2018 | 3.4K | |
iris_run_config.py | 21-Aug-2018 | 2.5K | |
mnist.py | 21-Aug-2018 | 4.6K | |
multiple_gpu.py | 21-Aug-2018 | 3.9K | |
random_forest_mnist.py | 21-Aug-2018 | 4K | |
README.md | 21-Aug-2018 | 2.1K | |
resnet.py | 21-Aug-2018 | 6.2K | |
text_classification.py | 21-Aug-2018 | 6.4K | |
text_classification_character_cnn.py | 21-Aug-2018 | 5.3K | |
text_classification_character_rnn.py | 21-Aug-2018 | 3.9K | |
text_classification_cnn.py | 21-Aug-2018 | 5.1K |
1 # Estimator Examples 2 3 TensorFlow Estimators are a high-level API for TensorFlow that allows you to 4 create, train, and use deep learning models easily. 5 6 See the [Quickstart tutorial](https://www.tensorflow.org/get_started/estimator) 7 for an introduction to the API. 8 9 To run most of these examples, you need to install the `scikit learn` library 10 (`pip install -U scikit-learn`). Some examples use the `pandas` library for data 11 processing (`pip install -U pandas`). 12 13 ## Basics 14 15 * [Deep Neural Network Regression with Boston Data](https://www.tensorflow.org/code/tensorflow/examples/learn/boston.py) 16 * [Deep Neural Network Classification with Iris Data](https://www.tensorflow.org/code/tensorflow/examples/learn/iris.py) 17 * [Building a Custom Model](https://www.tensorflow.org/code/tensorflow/examples/learn/iris_custom_model.py) 18 * [Building a Model Using Different GPU Configurations](https://www.tensorflow.org/code/tensorflow/examples/learn/iris_run_config.py) 19 20 ## Techniques 21 22 * [Deep Neural Network with Customized Decay Function](https://www.tensorflow.org/code/tensorflow/examples/learn/iris_custom_decay_dnn.py) 23 24 ## Specialized Models 25 * [Building a Random Forest Model](https://www.tensorflow.org/code/tensorflow/examples/learn/random_forest_mnist.py) 26 * [Building a Wide & Deep Model](https://github.com/tensorflow/models/tree/master/official/wide_deep/wide_deep.py) 27 * [Building a Residual Network Model](https://www.tensorflow.org/code/tensorflow/examples/learn/resnet.py) 28 29 ## Text classification 30 31 * [Text Classification Using Recurrent Neural Networks on Words](https://www.tensorflow.org/code/tensorflow/examples/learn/text_classification.py) 32 * [Text Classification Using Convolutional Neural Networks on Words](https://www.tensorflow.org/code/tensorflow/examples/learn/text_classification_cnn.py) 33 * [Text Classification Using Recurrent Neural Networks on Characters](https://www.tensorflow.org/code/tensorflow/examples/learn/text_classification_character_rnn.py) 34 * [Text Classification Using Convolutional Neural Networks on Characters](https://www.tensorflow.org/code/tensorflow/examples/learn/text_classification_character_cnn.py) 35