Home | History | Annotate | only in /external/tensorflow/tensorflow/examples/learn
Up to higher level directory
NameDateSize
boston.py21-Aug-20182.5K
BUILD21-Aug-20183.4K
examples_test.sh21-Aug-20181.5K
hdf5_classification.py21-Aug-20182.8K
iris.py21-Aug-20183.9K
iris_custom_decay_dnn.py21-Aug-20183.5K
iris_custom_model.py21-Aug-20183.4K
iris_run_config.py21-Aug-20182.5K
mnist.py21-Aug-20184.6K
multiple_gpu.py21-Aug-20183.9K
random_forest_mnist.py21-Aug-20184K
README.md21-Aug-20182.1K
resnet.py21-Aug-20186.2K
text_classification.py21-Aug-20186.4K
text_classification_character_cnn.py21-Aug-20185.3K
text_classification_character_rnn.py21-Aug-20183.9K
text_classification_cnn.py21-Aug-20185.1K

README.md

      1 # Estimator Examples
      2 
      3 TensorFlow Estimators are a high-level API for TensorFlow that allows you to
      4 create, train, and use deep learning models easily.
      5 
      6 See the [Quickstart tutorial](https://www.tensorflow.org/get_started/estimator)
      7 for an introduction to the API.
      8 
      9 To run most of these examples, you need to install the `scikit learn` library
     10 (`pip install -U scikit-learn`). Some examples use the `pandas` library for data
     11 processing (`pip install -U pandas`).
     12 
     13 ## Basics
     14 
     15 * [Deep Neural Network Regression with Boston Data](https://www.tensorflow.org/code/tensorflow/examples/learn/boston.py)
     16 * [Deep Neural Network Classification with Iris Data](https://www.tensorflow.org/code/tensorflow/examples/learn/iris.py)
     17 * [Building a Custom Model](https://www.tensorflow.org/code/tensorflow/examples/learn/iris_custom_model.py)
     18 * [Building a Model Using Different GPU Configurations](https://www.tensorflow.org/code/tensorflow/examples/learn/iris_run_config.py)
     19 
     20 ## Techniques
     21 
     22 * [Deep Neural Network with Customized Decay Function](https://www.tensorflow.org/code/tensorflow/examples/learn/iris_custom_decay_dnn.py)
     23 
     24 ## Specialized Models
     25 * [Building a Random Forest Model](https://www.tensorflow.org/code/tensorflow/examples/learn/random_forest_mnist.py)
     26 * [Building a Wide & Deep Model](https://github.com/tensorflow/models/tree/master/official/wide_deep/wide_deep.py)
     27 * [Building a Residual Network Model](https://www.tensorflow.org/code/tensorflow/examples/learn/resnet.py)
     28 
     29 ## Text classification
     30 
     31 * [Text Classification Using Recurrent Neural Networks on Words](https://www.tensorflow.org/code/tensorflow/examples/learn/text_classification.py)
     32 * [Text Classification Using Convolutional Neural Networks on Words](https://www.tensorflow.org/code/tensorflow/examples/learn/text_classification_cnn.py)
     33 * [Text Classification Using Recurrent Neural Networks on Characters](https://www.tensorflow.org/code/tensorflow/examples/learn/text_classification_character_rnn.py)
     34 * [Text Classification Using Convolutional Neural Networks on Characters](https://www.tensorflow.org/code/tensorflow/examples/learn/text_classification_character_cnn.py)
     35