Home | History | Annotate | Download | only in kernel_tests
      1 # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
      2 #
      3 # Licensed under the Apache License, Version 2.0 (the "License");
      4 # you may not use this file except in compliance with the License.
      5 # You may obtain a copy of the License at
      6 #
      7 #     http://www.apache.org/licenses/LICENSE-2.0
      8 #
      9 # Unless required by applicable law or agreed to in writing, software
     10 # distributed under the License is distributed on an "AS IS" BASIS,
     11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 # See the License for the specific language governing permissions and
     13 # limitations under the License.
     14 # ==============================================================================
     15 """Tests for convolution related functionality in tensorflow.ops.nn."""
     16 
     17 from __future__ import absolute_import
     18 from __future__ import division
     19 from __future__ import print_function
     20 
     21 import numpy as np
     22 from six.moves import xrange  # pylint: disable=redefined-builtin
     23 
     24 from tensorflow.python.framework import constant_op
     25 from tensorflow.python.framework import dtypes
     26 from tensorflow.python.ops import array_ops
     27 from tensorflow.python.ops import gradient_checker
     28 from tensorflow.python.ops import nn_ops
     29 from tensorflow.python.ops import random_ops
     30 from tensorflow.python.ops import variable_scope
     31 from tensorflow.python.ops import variables
     32 import tensorflow.python.ops.nn_grad  # pylint: disable=unused-import
     33 from tensorflow.python.platform import test
     34 
     35 
     36 class Conv2DTransposeTest(test.TestCase):
     37 
     38   def testConv2DTransposeSingleStride(self):
     39     with self.test_session():
     40       strides = [1, 1, 1, 1]
     41 
     42       # Input, output: [batch, height, width, depth]
     43       x_shape = [2, 6, 4, 3]
     44       y_shape = [2, 6, 4, 2]
     45 
     46       # Filter: [kernel_height, kernel_width, output_depth, input_depth]
     47       f_shape = [3, 3, 2, 3]
     48 
     49       x = constant_op.constant(
     50           1.0, shape=x_shape, name="x", dtype=dtypes.float32)
     51       f = constant_op.constant(
     52           1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
     53       output = nn_ops.conv2d_transpose(
     54           x, f, y_shape, strides=strides, padding="SAME")
     55       value = output.eval()
     56 
     57       # We count the number of cells being added at the locations in the output.
     58       # At the center, #cells=kernel_height * kernel_width
     59       # At the corners, #cells=ceil(kernel_height/2) * ceil(kernel_width/2)
     60       # At the borders, #cells=ceil(kernel_height/2)*kernel_width or
     61       #                        kernel_height * ceil(kernel_width/2)
     62 
     63       for n in xrange(x_shape[0]):
     64         for k in xrange(f_shape[2]):
     65           for w in xrange(y_shape[2]):
     66             for h in xrange(y_shape[1]):
     67               target = 4 * 3.0
     68               h_in = h > 0 and h < y_shape[1] - 1
     69               w_in = w > 0 and w < y_shape[2] - 1
     70               if h_in and w_in:
     71                 target += 5 * 3.0
     72               elif h_in or w_in:
     73                 target += 2 * 3.0
     74               self.assertAllClose(target, value[n, h, w, k])
     75 
     76   def testConv2DTransposeSame(self):
     77     with self.test_session():
     78       strides = [1, 2, 2, 1]
     79 
     80       # Input, output: [batch, height, width, depth]
     81       x_shape = [2, 6, 4, 3]
     82       y_shape = [2, 12, 8, 2]
     83 
     84       # Filter: [kernel_height, kernel_width, output_depth, input_depth]
     85       f_shape = [3, 3, 2, 3]
     86 
     87       x = constant_op.constant(
     88           1.0, shape=x_shape, name="x", dtype=dtypes.float32)
     89       f = constant_op.constant(
     90           1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
     91       output = nn_ops.conv2d_transpose(
     92           x, f, y_shape, strides=strides, padding="SAME")
     93       value = output.eval()
     94 
     95       for n in xrange(x_shape[0]):
     96         for k in xrange(f_shape[2]):
     97           for w in xrange(y_shape[2]):
     98             for h in xrange(y_shape[1]):
     99               target = 3.0
    100               # We add a case for locations divisible by the stride.
    101               h_in = h % strides[1] == 0 and h > 0 and h < y_shape[1] - 1
    102               w_in = w % strides[2] == 0 and w > 0 and w < y_shape[2] - 1
    103               if h_in and w_in:
    104                 target += 9.0
    105               elif h_in or w_in:
    106                 target += 3.0
    107               self.assertAllClose(target, value[n, h, w, k])
    108 
    109   def testConv2DTransposeValid(self):
    110     with self.test_session():
    111       strides = [1, 2, 2, 1]
    112 
    113       # Input, output: [batch, height, width, depth]
    114       x_shape = [2, 6, 4, 3]
    115       y_shape = [2, 13, 9, 2]
    116 
    117       # Filter: [kernel_height, kernel_width, output_depth, input_depth]
    118       f_shape = [3, 3, 2, 3]
    119 
    120       x = constant_op.constant(
    121           1.0, shape=x_shape, name="x", dtype=dtypes.float32)
    122       f = constant_op.constant(
    123           1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
    124       output = nn_ops.conv2d_transpose(
    125           x, f, y_shape, strides=strides, padding="VALID")
    126       value = output.eval()
    127 
    128       cache_values = np.zeros(y_shape, dtype=np.float32)
    129 
    130       # The amount of padding added
    131       pad = 1
    132 
    133       for n in xrange(x_shape[0]):
    134         for k in xrange(f_shape[2]):
    135           for w in xrange(pad, y_shape[2] - pad):
    136             for h in xrange(pad, y_shape[1] - pad):
    137               target = 3.0
    138               # We add a case for locations divisible by the stride.
    139               h_in = h % strides[1] == 0 and h > pad and h < y_shape[
    140                   1] - 1 - pad
    141               w_in = w % strides[2] == 0 and w > pad and w < y_shape[
    142                   2] - 1 - pad
    143               if h_in and w_in:
    144                 target += 9.0
    145               elif h_in or w_in:
    146                 target += 3.0
    147               cache_values[n, h, w, k] = target
    148 
    149           # copy values in the border
    150           cache_values[n, :, 0, k] = cache_values[n, :, 1, k]
    151           cache_values[n, :, -1, k] = cache_values[n, :, -2, k]
    152           cache_values[n, 0, :, k] = cache_values[n, 1, :, k]
    153           cache_values[n, -1, :, k] = cache_values[n, -2, :, k]
    154 
    155     self.assertAllClose(cache_values, value)
    156 
    157   def testGradient(self):
    158     x_shape = [2, 6, 4, 3]
    159     f_shape = [3, 3, 2, 3]
    160     y_shape = [2, 12, 8, 2]
    161     strides = [1, 2, 2, 1]
    162     np.random.seed(1)  # Make it reproducible.
    163     x_val = np.random.random_sample(x_shape).astype(np.float64)
    164     f_val = np.random.random_sample(f_shape).astype(np.float64)
    165     with self.test_session():
    166       x = constant_op.constant(x_val, name="x", dtype=dtypes.float32)
    167       f = constant_op.constant(f_val, name="f", dtype=dtypes.float32)
    168       output = nn_ops.conv2d_transpose(
    169           x, f, y_shape, strides=strides, padding="SAME")
    170       err = gradient_checker.compute_gradient_error([x, f], [x_shape, f_shape],
    171                                                     output, y_shape)
    172     print("conv2d_transpose gradient err = %g " % err)
    173     err_tolerance = 0.0005
    174     self.assertLess(err, err_tolerance)
    175 
    176   def testConv2DTransposeSingleStrideNCHW(self):
    177     # `NCHW` data format is only supported for CUDA device.
    178     if test.is_gpu_available(cuda_only=True):
    179       with self.test_session(use_gpu=True):
    180         strides = [1, 1, 1, 1]
    181 
    182         # Input, output: [batch, depth, height, width, depth]
    183         x_shape = [2, 3, 6, 4]
    184         y_shape = [2, 2, 6, 4]
    185 
    186         # Filter: [kernel_height, kernel_width, output_depth, input_depth]
    187         f_shape = [3, 3, 2, 3]
    188 
    189         x = constant_op.constant(
    190             1.0, shape=x_shape, name="x", dtype=dtypes.float32)
    191         f = constant_op.constant(
    192             1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
    193 
    194         output = nn_ops.conv2d_transpose(
    195             x, f, y_shape, strides=strides, padding="SAME", data_format="NCHW")
    196 
    197         value = output.eval()
    198         for n in xrange(x_shape[0]):
    199           for k in xrange(f_shape[2]):
    200             for w in xrange(y_shape[3]):
    201               for h in xrange(y_shape[2]):
    202                 target = 4 * 3.0
    203                 h_in = h > 0 and h < y_shape[2] - 1
    204                 w_in = w > 0 and w < y_shape[3] - 1
    205                 if h_in and w_in:
    206                   target += 5 * 3.0
    207                 elif h_in or w_in:
    208                   target += 2 * 3.0
    209                 self.assertAllClose(target, value[n, k, h, w])
    210 
    211   def testConv2DTransposeSameNCHW(self):
    212     # `NCHW` data format is only supported for CUDA device.
    213     if test.is_gpu_available(cuda_only=True):
    214       with self.test_session(use_gpu=True):
    215         strides = [1, 1, 2, 2]
    216 
    217         # Input, output: [batch, depth, height, width]
    218         x_shape = [2, 3, 6, 4]
    219         y_shape = [2, 2, 12, 8]
    220 
    221         # Filter: [kernel_height, kernel_width, output_depth, input_depth]
    222         f_shape = [3, 3, 2, 3]
    223 
    224         x = constant_op.constant(
    225             1.0, shape=x_shape, name="x", dtype=dtypes.float32)
    226         f = constant_op.constant(
    227             1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
    228 
    229         output = nn_ops.conv2d_transpose(
    230             x, f, y_shape, strides=strides, padding="SAME", data_format="NCHW")
    231 
    232         value = output.eval()
    233         for n in xrange(x_shape[0]):
    234           for k in xrange(f_shape[2]):
    235             for w in xrange(y_shape[3]):
    236               for h in xrange(y_shape[2]):
    237                 target = 3.0
    238                 # We add a case for locations divisible by the stride.
    239                 h_in = h % strides[2] == 0 and h > 0 and h < y_shape[2] - 1
    240                 w_in = w % strides[3] == 0 and w > 0 and w < y_shape[3] - 1
    241                 if h_in and w_in:
    242                   target += 9.0
    243                 elif h_in or w_in:
    244                   target += 3.0
    245                 self.assertAllClose(target, value[n, k, h, w])
    246 
    247   def testConv2DTransposeValidNCHW(self):
    248     # `NCHW` data format is only supported for CUDA device.
    249     if test.is_gpu_available(cuda_only=True):
    250       with self.test_session(use_gpu=True):
    251         strides = [1, 1, 2, 2]
    252 
    253         # Input, output: [batch, depth, height, width]
    254         x_shape = [2, 3, 6, 4]
    255         y_shape = [2, 2, 13, 9]
    256 
    257         # Filter: [kernel_height, kernel_width, output_depth, input_depth]
    258         f_shape = [3, 3, 2, 3]
    259 
    260         x = constant_op.constant(
    261             1.0, shape=x_shape, name="x", dtype=dtypes.float32)
    262         f = constant_op.constant(
    263             1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
    264         output = nn_ops.conv2d_transpose(
    265             x, f, y_shape, strides=strides, padding="VALID", data_format="NCHW")
    266 
    267         value = output.eval()
    268         cache_values = np.zeros(y_shape, dtype=np.float32)
    269         # The amount of padding added
    270         pad = 1
    271         for n in xrange(x_shape[0]):
    272           for k in xrange(f_shape[2]):
    273             for w in xrange(pad, y_shape[3] - pad):
    274               for h in xrange(pad, y_shape[2] - pad):
    275                 target = 3.0
    276                 # We add a case for locations divisible by the stride.
    277                 h_in = h % strides[2] == 0 and h > pad and h < y_shape[
    278                     2] - 1 - pad
    279                 w_in = w % strides[3] == 0 and w > pad and w < y_shape[
    280                     3] - 1 - pad
    281                 if h_in and w_in:
    282                   target += 9.0
    283                 elif h_in or w_in:
    284                   target += 3.0
    285                 cache_values[n, k, h, w] = target
    286 
    287             # copy values in the border
    288             cache_values[n, k, :, 0] = cache_values[n, k, :, 1]
    289             cache_values[n, k, :, -1] = cache_values[n, k, :, -2]
    290             cache_values[n, k, 0, :] = cache_values[n, k, 1, :]
    291             cache_values[n, k, -1, :] = cache_values[n, k, -2, :]
    292 
    293         self.assertAllClose(cache_values, value)
    294 
    295   def testConv2DTransposeShapeInference(self):
    296     # Test case for 8972
    297     initializer = random_ops.truncated_normal(
    298         [3, 3, 5, 1], mean=0.0, stddev=0.01, dtype=dtypes.float32)
    299     x = variables.Variable(random_ops.random_normal([3, 10, 5, 1]))
    300     f = variable_scope.get_variable("f", initializer=initializer)
    301     f_shape = array_ops.stack([array_ops.shape(x)[0], 10, 5, 5])
    302     output = nn_ops.conv2d_transpose(
    303         x, f, f_shape, strides=[1, 1, 1, 1], padding="SAME")
    304     self.assertEqual(output.get_shape().as_list(), [None, 10, 5, 5])
    305 
    306 if __name__ == "__main__":
    307   test.main()
    308