Home | History | Annotate | Download | only in pending
      1 /* mke2fs.c - Create an ext2 filesystem image.
      2  *
      3  * Copyright 2006, 2007 Rob Landley <rob (at) landley.net>
      4 
      5 // Still to go: "E:jJ:L:m:O:"
      6 USE_MKE2FS(NEWTOY(mke2fs, "<1>2g:Fnqm#N#i#b#", TOYFLAG_SBIN))
      7 
      8 config MKE2FS
      9   bool "mke2fs"
     10   default n
     11   help
     12     usage: mke2fs [-Fnq] [-b ###] [-N|i ###] [-m ###] device
     13 
     14     Create an ext2 filesystem on a block device or filesystem image.
     15 
     16     -F         Force to run on a mounted device
     17     -n         Don't write to device
     18     -q         Quiet (no output)
     19     -b size    Block size (1024, 2048, or 4096)
     20     -N inodes  Allocate this many inodes
     21     -i bytes   Allocate one inode for every XXX bytes of device
     22     -m percent Reserve this percent of filesystem space for root user
     23 
     24 config MKE2FS_JOURNAL
     25   bool "Journaling support (ext3)"
     26   default n
     27   depends on MKE2FS
     28   help
     29     usage: mke2fs [-j] [-J size=###,device=XXX]
     30 
     31     -j         Create journal (ext3)
     32     -J         Journal options
     33                size: Number of blocks (1024-102400)
     34                device: Specify an external journal
     35 
     36 config MKE2FS_GEN
     37   bool "Generate (gene2fs)"
     38   default n
     39   depends on MKE2FS
     40   help
     41     usage: gene2fs [options] device filename
     42 
     43     The [options] are the same as mke2fs.
     44 
     45 config MKE2FS_LABEL
     46   bool "Label support"
     47   default n
     48   depends on MKE2FS
     49   help
     50     usage: mke2fs [-L label] [-M path] [-o string]
     51 
     52     -L         Volume label
     53     -M         Path to mount point
     54     -o         Created by
     55 
     56 config MKE2FS_EXTENDED
     57   bool "Extended options"
     58   default n
     59   depends on MKE2FS
     60   help
     61     usage: mke2fs [-E stride=###] [-O option[,option]]
     62 
     63     -E stride= Set RAID stripe size (in blocks)
     64     -O [opts]  Specify fewer ext2 option flags (for old kernels)
     65                All of these are on by default (as appropriate)
     66        none         Clear default options (all but journaling)
     67        dir_index    Use htree indexes for large directories
     68        filetype     Store file type info in directory entry
     69        has_journal  Set by -j
     70        journal_dev  Set by -J device=XXX
     71        sparse_super Don't allocate huge numbers of redundant superblocks
     72 */
     73 
     74 #define FOR_mke2fs
     75 #include "toys.h"
     76 
     77 GLOBALS(
     78   // Command line arguments.
     79   long blocksize;
     80   long bytes_per_inode;
     81   long inodes;           // Total inodes in filesystem.
     82   long reserved_percent; // Integer precent of space to reserve for root.
     83   char *gendir;          // Where to read dirtree from.
     84 
     85   // Internal data.
     86   struct dirtree *dt;    // Tree of files to copy into the new filesystem.
     87   unsigned treeblocks;   // Blocks used by dt
     88   unsigned treeinodes;   // Inodes used by dt
     89 
     90   unsigned blocks;       // Total blocks in the filesystem.
     91   unsigned freeblocks;   // Free blocks in the filesystem.
     92   unsigned inodespg;     // Inodes per group
     93   unsigned groups;       // Total number of block groups.
     94   unsigned blockbits;    // Bits per block.  (Also blocks per group.)
     95 
     96   // For gene2fs
     97   unsigned nextblock;    // Next data block to allocate
     98   unsigned nextgroup;    // Next group we'll be allocating from
     99   int fsfd;              // File descriptor of filesystem (to output to).
    100 
    101   struct ext2_superblock sb;
    102 )
    103 
    104 #define INODES_RESERVED 10
    105 
    106 static uint32_t div_round_up(uint32_t a, uint32_t b)
    107 {
    108   uint32_t c = a/b;
    109 
    110   if (a%b) c++;
    111   return c;
    112 }
    113 
    114 // Calculate data blocks plus index blocks needed to hold a file.
    115 
    116 static uint32_t file_blocks_used(uint64_t size, uint32_t *blocklist)
    117 {
    118   uint32_t dblocks = (uint32_t)((size+(TT.blocksize-1))/TT.blocksize);
    119   uint32_t idx=TT.blocksize/4, iblocks=0, diblocks=0, tiblocks=0;
    120 
    121   // Fill out index blocks in inode.
    122 
    123   if (blocklist) {
    124     int i;
    125 
    126     // Direct index blocks
    127     for (i=0; i<13 && i<dblocks; i++) blocklist[i] = i;
    128     // Singly indirect index blocks
    129     if (dblocks > 13+idx) blocklist[13] = 13+idx;
    130     // Doubly indirect index blocks
    131     idx = 13 + idx + (idx*idx);
    132     if (dblocks > idx) blocklist[14] = idx;
    133 
    134     return 0;
    135   }
    136 
    137   // Account for direct, singly, doubly, and triply indirect index blocks
    138 
    139   if (dblocks > 12) {
    140     iblocks = ((dblocks-13)/idx)+1;
    141     if (iblocks > 1) {
    142       diblocks = ((iblocks-2)/idx)+1;
    143       if (diblocks > 1)
    144         tiblocks = ((diblocks-2)/idx)+1;
    145     }
    146   }
    147 
    148   return dblocks + iblocks + diblocks + tiblocks;
    149 }
    150 
    151 // Use the parent pointer to iterate through the tree non-recursively.
    152 static struct dirtree *treenext(struct dirtree *this)
    153 {
    154   while (this && !this->next) this = this->parent;
    155   if (this) this = this->next;
    156 
    157   return this;
    158 }
    159 
    160 // Recursively calculate the number of blocks used by each inode in the tree.
    161 // Returns blocks used by this directory, assigns bytes used to *size.
    162 // Writes total block count to TT.treeblocks and inode count to TT.treeinodes.
    163 
    164 static long check_treesize(struct dirtree *that, off_t *size)
    165 {
    166   long blocks;
    167 
    168   while (that) {
    169     *size += sizeof(struct ext2_dentry) + strlen(that->name);
    170 
    171     if (that->child)
    172       that->st.st_blocks = check_treesize(that->child, &that->st.st_size);
    173     else if (S_ISREG(that->st.st_mode)) {
    174        that->st.st_blocks = file_blocks_used(that->st.st_size, 0);
    175        TT.treeblocks += that->st.st_blocks;
    176     }
    177     that = that->next;
    178   }
    179   TT.treeblocks += blocks = file_blocks_used(*size, 0);
    180   TT.treeinodes++;
    181 
    182   return blocks;
    183 }
    184 
    185 // Calculate inode numbers and link counts.
    186 //
    187 // To do this right I need to copy the tree and sort it, but here's a really
    188 // ugly n^2 way of dealing with the problem that doesn't scale well to large
    189 // numbers of files (> 100,000) but can be done in very little code.
    190 // This rewrites inode numbers to their final values, allocating depth first.
    191 
    192 static void check_treelinks(struct dirtree *tree)
    193 {
    194   struct dirtree *current=tree, *that;
    195   long inode = INODES_RESERVED;
    196 
    197   while (current) {
    198     ++inode;
    199     // Since we can't hardlink to directories, we know their link count.
    200     if (S_ISDIR(current->st.st_mode)) current->st.st_nlink = 2;
    201     else {
    202       dev_t new = current->st.st_dev;
    203 
    204       if (!new) continue;
    205 
    206       // Look for other copies of current node
    207       current->st.st_nlink = 0;
    208       for (that = tree; that; that = treenext(that)) {
    209         if (current->st.st_ino == that->st.st_ino &&
    210           current->st.st_dev == that->st.st_dev)
    211         {
    212           current->st.st_nlink++;
    213           current->st.st_ino = inode;
    214         }
    215       }
    216     }
    217     current->st.st_ino = inode;
    218     current = treenext(current);
    219   }
    220 }
    221 
    222 // Calculate inodes per group from total inodes.
    223 static uint32_t get_inodespg(uint32_t inodes)
    224 {
    225   uint32_t temp;
    226 
    227   // Round up to fill complete inode blocks.
    228   temp = (inodes + TT.groups - 1) / TT.groups;
    229   inodes = TT.blocksize/sizeof(struct ext2_inode);
    230   return ((temp + inodes - 1)/inodes)*inodes;
    231 }
    232 
    233 // Fill out superblock and TT structures.
    234 
    235 static void init_superblock(struct ext2_superblock *sb)
    236 {
    237   uint32_t temp;
    238 
    239   // Set log_block_size and log_frag_size.
    240 
    241   for (temp = 0; temp < 4; temp++) if (TT.blocksize == 1024<<temp) break;
    242   if (temp==4) error_exit("bad blocksize");
    243   sb->log_block_size = sb->log_frag_size = SWAP_LE32(temp);
    244 
    245   // Fill out blocks_count, r_blocks_count, first_data_block
    246 
    247   sb->blocks_count = SWAP_LE32(TT.blocks);
    248   sb->free_blocks_count = SWAP_LE32(TT.freeblocks);
    249   temp = (TT.blocks * (uint64_t)TT.reserved_percent) / 100;
    250   sb->r_blocks_count = SWAP_LE32(temp);
    251 
    252   sb->first_data_block = SWAP_LE32(TT.blocksize == 1024 ? 1 : 0);
    253 
    254   // Set blocks_per_group and frags_per_group, which is the size of an
    255   // allocation bitmap that fits in one block (I.E. how many bits per block)?
    256 
    257   sb->blocks_per_group = sb->frags_per_group = SWAP_LE32(TT.blockbits);
    258 
    259   // Set inodes_per_group and total inodes_count
    260   sb->inodes_per_group = SWAP_LE32(TT.inodespg);
    261   sb->inodes_count = SWAP_LE32(TT.inodespg * TT.groups);
    262 
    263   // Determine free inodes.
    264   temp = TT.inodespg*TT.groups - INODES_RESERVED;
    265   if (temp < TT.treeinodes) error_exit("Not enough inodes.\n");
    266   sb->free_inodes_count = SWAP_LE32(temp - TT.treeinodes);
    267 
    268   // Fill out the rest of the superblock.
    269   sb->max_mnt_count=0xFFFF;
    270   sb->wtime = sb->lastcheck = sb->mkfs_time = SWAP_LE32(time(NULL));
    271   sb->magic = SWAP_LE32(0xEF53);
    272   sb->state = sb->errors = SWAP_LE16(1);
    273 
    274   sb->rev_level = SWAP_LE32(1);
    275   sb->first_ino = SWAP_LE32(INODES_RESERVED+1);
    276   sb->inode_size = SWAP_LE16(sizeof(struct ext2_inode));
    277   sb->feature_incompat = SWAP_LE32(EXT2_FEATURE_INCOMPAT_FILETYPE);
    278   sb->feature_ro_compat = SWAP_LE32(EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER);
    279 
    280   create_uuid(sb->uuid);
    281 
    282   // TODO If we're called as mke3fs or mkfs.ext3, do a journal.
    283 
    284   //if (strchr(toys.which->name,'3'))
    285   //	sb->feature_compat |= SWAP_LE32(EXT3_FEATURE_COMPAT_HAS_JOURNAL);
    286 }
    287 
    288 // Does this group contain a superblock backup (and group descriptor table)?
    289 static int is_sb_group(uint32_t group)
    290 {
    291   int i;
    292 
    293   // Superblock backups are on groups 0, 1, and powers of 3, 5, and 7.
    294   if(!group || group==1) return 1;
    295   for (i=3; i<9; i+=2) {
    296     int j = i;
    297     while (j<group) j*=i;
    298     if (j==group) return 1;
    299   }
    300   return 0;
    301 }
    302 
    303 
    304 // Number of blocks used in group by optional superblock/group list backup.
    305 static int group_superblock_overhead(uint32_t group)
    306 {
    307   int used;
    308 
    309   if (!is_sb_group(group)) return 0;
    310 
    311   // How many blocks does the group descriptor table take up?
    312   used = TT.groups * sizeof(struct ext2_group);
    313   used += TT.blocksize - 1;
    314   used /= TT.blocksize;
    315   // Plus the superblock itself.
    316   used++;
    317   // And a corner case.
    318   if (!group && TT.blocksize == 1024) used++;
    319 
    320   return used;
    321 }
    322 
    323 // Number of blocks used in group to store superblock/group/inode list
    324 static int group_overhead(uint32_t group)
    325 {
    326   // Return superblock backup overhead (if any), plus block/inode
    327   // allocation bitmaps, plus inode tables.
    328   return group_superblock_overhead(group) + 2 + get_inodespg(TT.inodespg)
    329         / (TT.blocksize/sizeof(struct ext2_inode));
    330 }
    331 
    332 // In bitmap "array" set "len" bits starting at position "start" (from 0).
    333 static void bits_set(char *array, int start, int len)
    334 {
    335   while(len) {
    336     if ((start&7) || len<8) {
    337       array[start/8]|=(1<<(start&7));
    338       start++;
    339       len--;
    340     } else {
    341       array[start/8]=255;
    342       start+=8;
    343       len-=8;
    344     }
    345   }
    346 }
    347 
    348 // Seek past len bytes (to maintain sparse file), or write zeroes if output
    349 // not seekable
    350 static void put_zeroes(int len)
    351 {
    352   if(-1 == lseek(TT.fsfd, len, SEEK_SET)) {
    353     memset(toybuf, 0, sizeof(toybuf));
    354     while (len) {
    355       int out = len > sizeof(toybuf) ? sizeof(toybuf) : len;
    356       xwrite(TT.fsfd, toybuf, out);
    357       len -= out;
    358     }
    359   }
    360 }
    361 
    362 // Fill out an inode structure from struct stat info in dirtree.
    363 static void fill_inode(struct ext2_inode *in, struct dirtree *that)
    364 {
    365   uint32_t fbu[15];
    366   int temp;
    367 
    368   file_blocks_used(that->st.st_size, fbu);
    369 
    370   // If that inode needs data blocks allocated to it.
    371   if (that->st.st_size) {
    372     int i, group = TT.nextblock/TT.blockbits;
    373 
    374     // TODO: teach this about indirect blocks.
    375     for (i=0; i<15; i++) {
    376       // If we just jumped into a new group, skip group overhead blocks.
    377       while (group >= TT.nextgroup)
    378         TT.nextblock += group_overhead(TT.nextgroup++);
    379     }
    380   }
    381   // TODO :  S_ISREG/DIR/CHR/BLK/FIFO/LNK/SOCK(m)
    382   in->mode = SWAP_LE32(that->st.st_mode);
    383 
    384   in->uid = SWAP_LE16(that->st.st_uid & 0xFFFF);
    385   in->uid_high = SWAP_LE16(that->st.st_uid >> 16);
    386   in->gid = SWAP_LE16(that->st.st_gid & 0xFFFF);
    387   in->gid_high = SWAP_LE16(that->st.st_gid >> 16);
    388   in->size = SWAP_LE32(that->st.st_size & 0xFFFFFFFF);
    389 
    390   // Contortions to make the compiler not generate a warning for x>>32
    391   // when x is 32 bits.  The optimizer should clean this up.
    392   if (sizeof(that->st.st_size) > 4) temp = 32;
    393   else temp = 0;
    394   if (temp) in->dir_acl = SWAP_LE32(that->st.st_size >> temp);
    395 
    396   in->atime = SWAP_LE32(that->st.st_atime);
    397   in->ctime = SWAP_LE32(that->st.st_ctime);
    398   in->mtime = SWAP_LE32(that->st.st_mtime);
    399 
    400   in->links_count = SWAP_LE16(that->st.st_nlink);
    401   in->blocks = SWAP_LE32(that->st.st_blocks);
    402   // in->faddr
    403 }
    404 
    405 // Works like an archiver.
    406 // The first argument is the name of the file to create.  If it already
    407 // exists, that size will be used.
    408 
    409 void mke2fs_main(void)
    410 {
    411   int i, temp;
    412   off_t length;
    413   uint32_t usedblocks, usedinodes, dtiblk, dtbblk;
    414   struct dirtree *dti, *dtb;
    415 
    416   // Handle command line arguments.
    417 
    418   if (toys.optargs[1]) {
    419     sscanf(toys.optargs[1], "%u", &TT.blocks);
    420     temp = O_RDWR|O_CREAT;
    421   } else temp = O_RDWR;
    422   if (!TT.reserved_percent) TT.reserved_percent = 5;
    423 
    424   // TODO: Check if filesystem is mounted here
    425 
    426   // For mke?fs, open file.  For gene?fs, create file.
    427   TT.fsfd = xcreate(*toys.optargs, temp, 0777);
    428 
    429   // Determine appropriate block size and block count from file length.
    430   // (If no length, default to 4k.  They can override it on the cmdline.)
    431 
    432   length = fdlength(TT.fsfd);
    433   if (!TT.blocksize) TT.blocksize = (length && length < 1<<29) ? 1024 : 4096;
    434   TT.blockbits = 8*TT.blocksize;
    435   if (!TT.blocks) TT.blocks = length/TT.blocksize;
    436 
    437   // Collect gene2fs list or lost+found, calculate requirements.
    438 
    439   if (TT.gendir) {
    440     strncpy(toybuf, TT.gendir, sizeof(toybuf));
    441     dti = dirtree_read(toybuf, dirtree_notdotdot);
    442   } else {
    443     dti = xzalloc(sizeof(struct dirtree)+11);
    444     strcpy(dti->name, "lost+found");
    445     dti->st.st_mode = S_IFDIR|0755;
    446     dti->st.st_ctime = dti->st.st_mtime = time(NULL);
    447   }
    448 
    449   // Add root directory inode.  This is iterated through for when finding
    450   // blocks, but not when finding inodes.  The tree's parent pointers don't
    451   // point back into this.
    452 
    453   dtb = xzalloc(sizeof(struct dirtree)+1);
    454   dtb->st.st_mode = S_IFDIR|0755;
    455   dtb->st.st_ctime = dtb->st.st_mtime = time(NULL);
    456   dtb->child = dti;
    457 
    458   // Figure out how much space is used by preset files
    459   length = check_treesize(dtb, &(dtb->st.st_size));
    460   check_treelinks(dtb);
    461 
    462   // Figure out how many total inodes we need.
    463 
    464   if (!TT.inodes) {
    465     if (!TT.bytes_per_inode) TT.bytes_per_inode = 8192;
    466     TT.inodes = (TT.blocks * (uint64_t)TT.blocksize) / TT.bytes_per_inode;
    467   }
    468 
    469   // If we're generating a filesystem and have no idea how many blocks it
    470   // needs, start with a minimal guess, find the overhead of that many
    471   // groups, and loop until this is enough groups to store this many blocks.
    472   if (!TT.blocks) TT.groups = (TT.treeblocks/TT.blockbits)+1;
    473   else TT.groups = div_round_up(TT.blocks, TT.blockbits);
    474 
    475   for (;;) {
    476     temp = TT.treeblocks;
    477 
    478     for (i = 0; i<TT.groups; i++) temp += group_overhead(i);
    479 
    480     if (TT.blocks) {
    481       if (TT.blocks < temp) error_exit("Not enough space.\n");
    482       break;
    483     }
    484     if (temp <= TT.groups * TT.blockbits) {
    485       TT.blocks = temp;
    486       break;
    487     }
    488     TT.groups++;
    489   }
    490   TT.freeblocks = TT.blocks - temp;
    491 
    492   // Now we know all the TT data, initialize superblock structure.
    493 
    494   init_superblock(&TT.sb);
    495 
    496   // Start writing.  Skip the first 1k to avoid the boot sector (if any).
    497   put_zeroes(1024);
    498 
    499   // Loop through block groups, write out each one.
    500   dtiblk = dtbblk = usedblocks = usedinodes = 0;
    501   for (i=0; i<TT.groups; i++) {
    502     struct ext2_inode *in = (struct ext2_inode *)toybuf;
    503     uint32_t start, itable, used, end;
    504     int j, slot;
    505 
    506     // Where does this group end?
    507     end = TT.blockbits;
    508     if ((i+1)*TT.blockbits > TT.blocks) end = TT.blocks & (TT.blockbits-1);
    509 
    510     // Blocks used by inode table
    511     itable = (TT.inodespg*sizeof(struct ext2_inode))/TT.blocksize;
    512 
    513     // If a superblock goes here, write it out.
    514     start = group_superblock_overhead(i);
    515     if (start) {
    516       struct ext2_group *bg = (struct ext2_group *)toybuf;
    517       int treeblocks = TT.treeblocks, treeinodes = TT.treeinodes;
    518 
    519       TT.sb.block_group_nr = SWAP_LE16(i);
    520 
    521       // Write superblock and pad it up to block size
    522       xwrite(TT.fsfd, &TT.sb, sizeof(struct ext2_superblock));
    523       temp = TT.blocksize - sizeof(struct ext2_superblock);
    524       if (!i && TT.blocksize > 1024) temp -= 1024;
    525       memset(toybuf, 0, TT.blocksize);
    526       xwrite(TT.fsfd, toybuf, temp);
    527 
    528       // Loop through groups to write group descriptor table.
    529       for(j=0; j<TT.groups; j++) {
    530 
    531         // Figure out what sector this group starts in.
    532         used = group_superblock_overhead(j);
    533 
    534         // Find next array slot in this block (flush block if full).
    535         slot = j % (TT.blocksize/sizeof(struct ext2_group));
    536         if (!slot) {
    537           if (j) xwrite(TT.fsfd, bg, TT.blocksize);
    538           memset(bg, 0, TT.blocksize);
    539         }
    540 
    541         // How many free inodes in this group?
    542         temp = TT.inodespg;
    543         if (!i) temp -= INODES_RESERVED;
    544         if (temp > treeinodes) {
    545           treeinodes -= temp;
    546           temp = 0;
    547         } else {
    548           temp -= treeinodes;
    549           treeinodes = 0;
    550         }
    551         bg[slot].free_inodes_count = SWAP_LE16(temp);
    552 
    553         // How many free blocks in this group?
    554         temp = TT.inodespg/(TT.blocksize/sizeof(struct ext2_inode)) + 2;
    555         temp = end-used-temp;
    556         if (temp > treeblocks) {
    557           treeblocks -= temp;
    558           temp = 0;
    559         } else {
    560           temp -= treeblocks;
    561           treeblocks = 0;
    562         }
    563         bg[slot].free_blocks_count = SWAP_LE32(temp);
    564 
    565         // Fill out rest of group structure
    566         used += j*TT.blockbits;
    567         bg[slot].block_bitmap = SWAP_LE32(used++);
    568         bg[slot].inode_bitmap = SWAP_LE32(used++);
    569         bg[slot].inode_table = SWAP_LE32(used);
    570         bg[slot].used_dirs_count = 0;  // (TODO)
    571       }
    572       xwrite(TT.fsfd, bg, TT.blocksize);
    573     }
    574 
    575     // Now write out stuff that every block group has.
    576 
    577     // Write block usage bitmap
    578 
    579     start += 2 + itable;
    580     memset(toybuf, 0, TT.blocksize);
    581     bits_set(toybuf, 0, start);
    582     bits_set(toybuf, end, TT.blockbits-end);
    583     temp = TT.treeblocks - usedblocks;
    584     if (temp) {
    585       if (end-start > temp) temp = end-start;
    586       bits_set(toybuf, start, temp);
    587     }
    588     xwrite(TT.fsfd, toybuf, TT.blocksize);
    589 
    590     // Write inode bitmap
    591     memset(toybuf, 0, TT.blocksize);
    592     j = 0;
    593     if (!i) bits_set(toybuf, 0, j = INODES_RESERVED);
    594     bits_set(toybuf, TT.inodespg, slot = TT.blockbits-TT.inodespg);
    595     temp = TT.treeinodes - usedinodes;
    596     if (temp) {
    597       if (slot-j > temp) temp = slot-j;
    598       bits_set(toybuf, j, temp);
    599     }
    600     xwrite(TT.fsfd, toybuf, TT.blocksize);
    601 
    602     // Write inode table for this group (TODO)
    603     for (j = 0; j<TT.inodespg; j++) {
    604       slot = j % (TT.blocksize/sizeof(struct ext2_inode));
    605       if (!slot) {
    606         if (j) xwrite(TT.fsfd, in, TT.blocksize);
    607         memset(in, 0, TT.blocksize);
    608       }
    609       if (!i && j<INODES_RESERVED) {
    610         // Write root inode
    611         if (j == 2) fill_inode(in+slot, dtb);
    612       } else if (dti) {
    613         fill_inode(in+slot, dti);
    614         dti = treenext(dti);
    615       }
    616     }
    617     xwrite(TT.fsfd, in, TT.blocksize);
    618 
    619     while (dtb) {
    620       // TODO write index data block
    621       // TODO write root directory data block
    622       // TODO write directory data block
    623       // TODO write file data block
    624       put_zeroes(TT.blocksize);
    625       start++;
    626       if (start == end) break;
    627     }
    628     // Write data blocks (TODO)
    629     put_zeroes((end-start) * TT.blocksize);
    630   }
    631 }
    632