Home | History | Annotate | Download | only in platform
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // Platform-specific code for Win32.
      6 
      7 // Secure API functions are not available using MinGW with msvcrt.dll
      8 // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
      9 // disable definition of secure API functions in standard headers that
     10 // would conflict with our own implementation.
     11 #ifdef __MINGW32__
     12 #include <_mingw.h>
     13 #ifdef MINGW_HAS_SECURE_API
     14 #undef MINGW_HAS_SECURE_API
     15 #endif  // MINGW_HAS_SECURE_API
     16 #endif  // __MINGW32__
     17 
     18 #include <limits>
     19 
     20 #include "src/base/win32-headers.h"
     21 
     22 #include "src/base/bits.h"
     23 #include "src/base/lazy-instance.h"
     24 #include "src/base/macros.h"
     25 #include "src/base/platform/platform.h"
     26 #include "src/base/platform/time.h"
     27 #include "src/base/utils/random-number-generator.h"
     28 
     29 
     30 // Extra functions for MinGW. Most of these are the _s functions which are in
     31 // the Microsoft Visual Studio C++ CRT.
     32 #ifdef __MINGW32__
     33 
     34 
     35 #ifndef __MINGW64_VERSION_MAJOR
     36 
     37 #define _TRUNCATE 0
     38 #define STRUNCATE 80
     39 
     40 inline void MemoryBarrier() {
     41   int barrier = 0;
     42   __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
     43 }
     44 
     45 #endif  // __MINGW64_VERSION_MAJOR
     46 
     47 
     48 int localtime_s(tm* out_tm, const time_t* time) {
     49   tm* posix_local_time_struct = localtime_r(time, out_tm);
     50   if (posix_local_time_struct == NULL) return 1;
     51   return 0;
     52 }
     53 
     54 
     55 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
     56   *pFile = fopen(filename, mode);
     57   return *pFile != NULL ? 0 : 1;
     58 }
     59 
     60 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
     61                  const char* format, va_list argptr) {
     62   DCHECK(count == _TRUNCATE);
     63   return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
     64 }
     65 
     66 
     67 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
     68   CHECK(source != NULL);
     69   CHECK(dest != NULL);
     70   CHECK_GT(dest_size, 0);
     71 
     72   if (count == _TRUNCATE) {
     73     while (dest_size > 0 && *source != 0) {
     74       *(dest++) = *(source++);
     75       --dest_size;
     76     }
     77     if (dest_size == 0) {
     78       *(dest - 1) = 0;
     79       return STRUNCATE;
     80     }
     81   } else {
     82     while (dest_size > 0 && count > 0 && *source != 0) {
     83       *(dest++) = *(source++);
     84       --dest_size;
     85       --count;
     86     }
     87   }
     88   CHECK_GT(dest_size, 0);
     89   *dest = 0;
     90   return 0;
     91 }
     92 
     93 #endif  // __MINGW32__
     94 
     95 namespace v8 {
     96 namespace base {
     97 
     98 namespace {
     99 
    100 bool g_hard_abort = false;
    101 
    102 }  // namespace
    103 
    104 class TimezoneCache {
    105  public:
    106   TimezoneCache() : initialized_(false) { }
    107 
    108   void Clear() {
    109     initialized_ = false;
    110   }
    111 
    112   // Initialize timezone information. The timezone information is obtained from
    113   // windows. If we cannot get the timezone information we fall back to CET.
    114   void InitializeIfNeeded() {
    115     // Just return if timezone information has already been initialized.
    116     if (initialized_) return;
    117 
    118     // Initialize POSIX time zone data.
    119     _tzset();
    120     // Obtain timezone information from operating system.
    121     memset(&tzinfo_, 0, sizeof(tzinfo_));
    122     if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
    123       // If we cannot get timezone information we fall back to CET.
    124       tzinfo_.Bias = -60;
    125       tzinfo_.StandardDate.wMonth = 10;
    126       tzinfo_.StandardDate.wDay = 5;
    127       tzinfo_.StandardDate.wHour = 3;
    128       tzinfo_.StandardBias = 0;
    129       tzinfo_.DaylightDate.wMonth = 3;
    130       tzinfo_.DaylightDate.wDay = 5;
    131       tzinfo_.DaylightDate.wHour = 2;
    132       tzinfo_.DaylightBias = -60;
    133     }
    134 
    135     // Make standard and DST timezone names.
    136     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
    137                         std_tz_name_, kTzNameSize, NULL, NULL);
    138     std_tz_name_[kTzNameSize - 1] = '\0';
    139     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
    140                         dst_tz_name_, kTzNameSize, NULL, NULL);
    141     dst_tz_name_[kTzNameSize - 1] = '\0';
    142 
    143     // If OS returned empty string or resource id (like "@tzres.dll,-211")
    144     // simply guess the name from the UTC bias of the timezone.
    145     // To properly resolve the resource identifier requires a library load,
    146     // which is not possible in a sandbox.
    147     if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
    148       OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
    149                    "%s Standard Time",
    150                    GuessTimezoneNameFromBias(tzinfo_.Bias));
    151     }
    152     if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
    153       OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
    154                    "%s Daylight Time",
    155                    GuessTimezoneNameFromBias(tzinfo_.Bias));
    156     }
    157     // Timezone information initialized.
    158     initialized_ = true;
    159   }
    160 
    161   // Guess the name of the timezone from the bias.
    162   // The guess is very biased towards the northern hemisphere.
    163   const char* GuessTimezoneNameFromBias(int bias) {
    164     static const int kHour = 60;
    165     switch (-bias) {
    166       case -9*kHour: return "Alaska";
    167       case -8*kHour: return "Pacific";
    168       case -7*kHour: return "Mountain";
    169       case -6*kHour: return "Central";
    170       case -5*kHour: return "Eastern";
    171       case -4*kHour: return "Atlantic";
    172       case  0*kHour: return "GMT";
    173       case +1*kHour: return "Central Europe";
    174       case +2*kHour: return "Eastern Europe";
    175       case +3*kHour: return "Russia";
    176       case +5*kHour + 30: return "India";
    177       case +8*kHour: return "China";
    178       case +9*kHour: return "Japan";
    179       case +12*kHour: return "New Zealand";
    180       default: return "Local";
    181     }
    182   }
    183 
    184 
    185  private:
    186   static const int kTzNameSize = 128;
    187   bool initialized_;
    188   char std_tz_name_[kTzNameSize];
    189   char dst_tz_name_[kTzNameSize];
    190   TIME_ZONE_INFORMATION tzinfo_;
    191   friend class Win32Time;
    192 };
    193 
    194 
    195 // ----------------------------------------------------------------------------
    196 // The Time class represents time on win32. A timestamp is represented as
    197 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
    198 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
    199 // January 1, 1970.
    200 
    201 class Win32Time {
    202  public:
    203   // Constructors.
    204   Win32Time();
    205   explicit Win32Time(double jstime);
    206   Win32Time(int year, int mon, int day, int hour, int min, int sec);
    207 
    208   // Convert timestamp to JavaScript representation.
    209   double ToJSTime();
    210 
    211   // Set timestamp to current time.
    212   void SetToCurrentTime();
    213 
    214   // Returns the local timezone offset in milliseconds east of UTC. This is
    215   // the number of milliseconds you must add to UTC to get local time, i.e.
    216   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
    217   // routine also takes into account whether daylight saving is effect
    218   // at the time.
    219   int64_t LocalOffset(TimezoneCache* cache);
    220 
    221   // Returns the daylight savings time offset for the time in milliseconds.
    222   int64_t DaylightSavingsOffset(TimezoneCache* cache);
    223 
    224   // Returns a string identifying the current timezone for the
    225   // timestamp taking into account daylight saving.
    226   char* LocalTimezone(TimezoneCache* cache);
    227 
    228  private:
    229   // Constants for time conversion.
    230   static const int64_t kTimeEpoc = 116444736000000000LL;
    231   static const int64_t kTimeScaler = 10000;
    232   static const int64_t kMsPerMinute = 60000;
    233 
    234   // Constants for timezone information.
    235   static const bool kShortTzNames = false;
    236 
    237   // Return whether or not daylight savings time is in effect at this time.
    238   bool InDST(TimezoneCache* cache);
    239 
    240   // Accessor for FILETIME representation.
    241   FILETIME& ft() { return time_.ft_; }
    242 
    243   // Accessor for integer representation.
    244   int64_t& t() { return time_.t_; }
    245 
    246   // Although win32 uses 64-bit integers for representing timestamps,
    247   // these are packed into a FILETIME structure. The FILETIME structure
    248   // is just a struct representing a 64-bit integer. The TimeStamp union
    249   // allows access to both a FILETIME and an integer representation of
    250   // the timestamp.
    251   union TimeStamp {
    252     FILETIME ft_;
    253     int64_t t_;
    254   };
    255 
    256   TimeStamp time_;
    257 };
    258 
    259 
    260 // Initialize timestamp to start of epoc.
    261 Win32Time::Win32Time() {
    262   t() = 0;
    263 }
    264 
    265 
    266 // Initialize timestamp from a JavaScript timestamp.
    267 Win32Time::Win32Time(double jstime) {
    268   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
    269 }
    270 
    271 
    272 // Initialize timestamp from date/time components.
    273 Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
    274   SYSTEMTIME st;
    275   st.wYear = year;
    276   st.wMonth = mon;
    277   st.wDay = day;
    278   st.wHour = hour;
    279   st.wMinute = min;
    280   st.wSecond = sec;
    281   st.wMilliseconds = 0;
    282   SystemTimeToFileTime(&st, &ft());
    283 }
    284 
    285 
    286 // Convert timestamp to JavaScript timestamp.
    287 double Win32Time::ToJSTime() {
    288   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
    289 }
    290 
    291 
    292 // Set timestamp to current time.
    293 void Win32Time::SetToCurrentTime() {
    294   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
    295   // Because we're fast, we like fast timers which have at least a
    296   // 1ms resolution.
    297   //
    298   // timeGetTime() provides 1ms granularity when combined with
    299   // timeBeginPeriod().  If the host application for v8 wants fast
    300   // timers, it can use timeBeginPeriod to increase the resolution.
    301   //
    302   // Using timeGetTime() has a drawback because it is a 32bit value
    303   // and hence rolls-over every ~49days.
    304   //
    305   // To use the clock, we use GetSystemTimeAsFileTime as our base;
    306   // and then use timeGetTime to extrapolate current time from the
    307   // start time.  To deal with rollovers, we resync the clock
    308   // any time when more than kMaxClockElapsedTime has passed or
    309   // whenever timeGetTime creates a rollover.
    310 
    311   static bool initialized = false;
    312   static TimeStamp init_time;
    313   static DWORD init_ticks;
    314   static const int64_t kHundredNanosecondsPerSecond = 10000000;
    315   static const int64_t kMaxClockElapsedTime =
    316       60*kHundredNanosecondsPerSecond;  // 1 minute
    317 
    318   // If we are uninitialized, we need to resync the clock.
    319   bool needs_resync = !initialized;
    320 
    321   // Get the current time.
    322   TimeStamp time_now;
    323   GetSystemTimeAsFileTime(&time_now.ft_);
    324   DWORD ticks_now = timeGetTime();
    325 
    326   // Check if we need to resync due to clock rollover.
    327   needs_resync |= ticks_now < init_ticks;
    328 
    329   // Check if we need to resync due to elapsed time.
    330   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
    331 
    332   // Check if we need to resync due to backwards time change.
    333   needs_resync |= time_now.t_ < init_time.t_;
    334 
    335   // Resync the clock if necessary.
    336   if (needs_resync) {
    337     GetSystemTimeAsFileTime(&init_time.ft_);
    338     init_ticks = ticks_now = timeGetTime();
    339     initialized = true;
    340   }
    341 
    342   // Finally, compute the actual time.  Why is this so hard.
    343   DWORD elapsed = ticks_now - init_ticks;
    344   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
    345 }
    346 
    347 
    348 // Return the local timezone offset in milliseconds east of UTC. This
    349 // takes into account whether daylight saving is in effect at the time.
    350 // Only times in the 32-bit Unix range may be passed to this function.
    351 // Also, adding the time-zone offset to the input must not overflow.
    352 // The function EquivalentTime() in date.js guarantees this.
    353 int64_t Win32Time::LocalOffset(TimezoneCache* cache) {
    354   cache->InitializeIfNeeded();
    355 
    356   Win32Time rounded_to_second(*this);
    357   rounded_to_second.t() =
    358       rounded_to_second.t() / 1000 / kTimeScaler * 1000 * kTimeScaler;
    359   // Convert to local time using POSIX localtime function.
    360   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
    361   // very slow.  Other browsers use localtime().
    362 
    363   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
    364   // POSIX seconds past 1/1/1970 0:00:00.
    365   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
    366   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
    367     return 0;
    368   }
    369   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
    370   time_t posix_time = static_cast<time_t>(unchecked_posix_time);
    371 
    372   // Convert to local time, as struct with fields for day, hour, year, etc.
    373   tm posix_local_time_struct;
    374   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
    375 
    376   if (posix_local_time_struct.tm_isdst > 0) {
    377     return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
    378   } else if (posix_local_time_struct.tm_isdst == 0) {
    379     return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
    380   } else {
    381     return cache->tzinfo_.Bias * -kMsPerMinute;
    382   }
    383 }
    384 
    385 
    386 // Return whether or not daylight savings time is in effect at this time.
    387 bool Win32Time::InDST(TimezoneCache* cache) {
    388   cache->InitializeIfNeeded();
    389 
    390   // Determine if DST is in effect at the specified time.
    391   bool in_dst = false;
    392   if (cache->tzinfo_.StandardDate.wMonth != 0 ||
    393       cache->tzinfo_.DaylightDate.wMonth != 0) {
    394     // Get the local timezone offset for the timestamp in milliseconds.
    395     int64_t offset = LocalOffset(cache);
    396 
    397     // Compute the offset for DST. The bias parameters in the timezone info
    398     // are specified in minutes. These must be converted to milliseconds.
    399     int64_t dstofs =
    400         -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
    401 
    402     // If the local time offset equals the timezone bias plus the daylight
    403     // bias then DST is in effect.
    404     in_dst = offset == dstofs;
    405   }
    406 
    407   return in_dst;
    408 }
    409 
    410 
    411 // Return the daylight savings time offset for this time.
    412 int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) {
    413   return InDST(cache) ? 60 * kMsPerMinute : 0;
    414 }
    415 
    416 
    417 // Returns a string identifying the current timezone for the
    418 // timestamp taking into account daylight saving.
    419 char* Win32Time::LocalTimezone(TimezoneCache* cache) {
    420   // Return the standard or DST time zone name based on whether daylight
    421   // saving is in effect at the given time.
    422   return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
    423 }
    424 
    425 
    426 // Returns the accumulated user time for thread.
    427 int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
    428   FILETIME dummy;
    429   uint64_t usertime;
    430 
    431   // Get the amount of time that the thread has executed in user mode.
    432   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
    433                       reinterpret_cast<FILETIME*>(&usertime))) return -1;
    434 
    435   // Adjust the resolution to micro-seconds.
    436   usertime /= 10;
    437 
    438   // Convert to seconds and microseconds
    439   *secs = static_cast<uint32_t>(usertime / 1000000);
    440   *usecs = static_cast<uint32_t>(usertime % 1000000);
    441   return 0;
    442 }
    443 
    444 
    445 // Returns current time as the number of milliseconds since
    446 // 00:00:00 UTC, January 1, 1970.
    447 double OS::TimeCurrentMillis() {
    448   return Time::Now().ToJsTime();
    449 }
    450 
    451 
    452 TimezoneCache* OS::CreateTimezoneCache() {
    453   return new TimezoneCache();
    454 }
    455 
    456 
    457 void OS::DisposeTimezoneCache(TimezoneCache* cache) {
    458   delete cache;
    459 }
    460 
    461 
    462 void OS::ClearTimezoneCache(TimezoneCache* cache) {
    463   cache->Clear();
    464 }
    465 
    466 
    467 // Returns a string identifying the current timezone taking into
    468 // account daylight saving.
    469 const char* OS::LocalTimezone(double time, TimezoneCache* cache) {
    470   return Win32Time(time).LocalTimezone(cache);
    471 }
    472 
    473 
    474 // Returns the local time offset in milliseconds east of UTC without
    475 // taking daylight savings time into account.
    476 double OS::LocalTimeOffset(TimezoneCache* cache) {
    477   // Use current time, rounded to the millisecond.
    478   Win32Time t(TimeCurrentMillis());
    479   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
    480   return static_cast<double>(t.LocalOffset(cache) -
    481                              t.DaylightSavingsOffset(cache));
    482 }
    483 
    484 
    485 // Returns the daylight savings offset in milliseconds for the given
    486 // time.
    487 double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) {
    488   int64_t offset = Win32Time(time).DaylightSavingsOffset(cache);
    489   return static_cast<double>(offset);
    490 }
    491 
    492 
    493 int OS::GetLastError() {
    494   return ::GetLastError();
    495 }
    496 
    497 
    498 int OS::GetCurrentProcessId() {
    499   return static_cast<int>(::GetCurrentProcessId());
    500 }
    501 
    502 
    503 int OS::GetCurrentThreadId() {
    504   return static_cast<int>(::GetCurrentThreadId());
    505 }
    506 
    507 
    508 // ----------------------------------------------------------------------------
    509 // Win32 console output.
    510 //
    511 // If a Win32 application is linked as a console application it has a normal
    512 // standard output and standard error. In this case normal printf works fine
    513 // for output. However, if the application is linked as a GUI application,
    514 // the process doesn't have a console, and therefore (debugging) output is lost.
    515 // This is the case if we are embedded in a windows program (like a browser).
    516 // In order to be able to get debug output in this case the the debugging
    517 // facility using OutputDebugString. This output goes to the active debugger
    518 // for the process (if any). Else the output can be monitored using DBMON.EXE.
    519 
    520 enum OutputMode {
    521   UNKNOWN,  // Output method has not yet been determined.
    522   CONSOLE,  // Output is written to stdout.
    523   ODS       // Output is written to debug facility.
    524 };
    525 
    526 static OutputMode output_mode = UNKNOWN;  // Current output mode.
    527 
    528 
    529 // Determine if the process has a console for output.
    530 static bool HasConsole() {
    531   // Only check the first time. Eventual race conditions are not a problem,
    532   // because all threads will eventually determine the same mode.
    533   if (output_mode == UNKNOWN) {
    534     // We cannot just check that the standard output is attached to a console
    535     // because this would fail if output is redirected to a file. Therefore we
    536     // say that a process does not have an output console if either the
    537     // standard output handle is invalid or its file type is unknown.
    538     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
    539         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
    540       output_mode = CONSOLE;
    541     else
    542       output_mode = ODS;
    543   }
    544   return output_mode == CONSOLE;
    545 }
    546 
    547 
    548 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
    549   if ((stream == stdout || stream == stderr) && !HasConsole()) {
    550     // It is important to use safe print here in order to avoid
    551     // overflowing the buffer. We might truncate the output, but this
    552     // does not crash.
    553     char buffer[4096];
    554     OS::VSNPrintF(buffer, sizeof(buffer), format, args);
    555     OutputDebugStringA(buffer);
    556   } else {
    557     vfprintf(stream, format, args);
    558   }
    559 }
    560 
    561 
    562 FILE* OS::FOpen(const char* path, const char* mode) {
    563   FILE* result;
    564   if (fopen_s(&result, path, mode) == 0) {
    565     return result;
    566   } else {
    567     return NULL;
    568   }
    569 }
    570 
    571 
    572 bool OS::Remove(const char* path) {
    573   return (DeleteFileA(path) != 0);
    574 }
    575 
    576 char OS::DirectorySeparator() { return '\\'; }
    577 
    578 bool OS::isDirectorySeparator(const char ch) {
    579   return ch == '/' || ch == '\\';
    580 }
    581 
    582 
    583 FILE* OS::OpenTemporaryFile() {
    584   // tmpfile_s tries to use the root dir, don't use it.
    585   char tempPathBuffer[MAX_PATH];
    586   DWORD path_result = 0;
    587   path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
    588   if (path_result > MAX_PATH || path_result == 0) return NULL;
    589   UINT name_result = 0;
    590   char tempNameBuffer[MAX_PATH];
    591   name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
    592   if (name_result == 0) return NULL;
    593   FILE* result = FOpen(tempNameBuffer, "w+");  // Same mode as tmpfile uses.
    594   if (result != NULL) {
    595     Remove(tempNameBuffer);  // Delete on close.
    596   }
    597   return result;
    598 }
    599 
    600 
    601 // Open log file in binary mode to avoid /n -> /r/n conversion.
    602 const char* const OS::LogFileOpenMode = "wb";
    603 
    604 
    605 // Print (debug) message to console.
    606 void OS::Print(const char* format, ...) {
    607   va_list args;
    608   va_start(args, format);
    609   VPrint(format, args);
    610   va_end(args);
    611 }
    612 
    613 
    614 void OS::VPrint(const char* format, va_list args) {
    615   VPrintHelper(stdout, format, args);
    616 }
    617 
    618 
    619 void OS::FPrint(FILE* out, const char* format, ...) {
    620   va_list args;
    621   va_start(args, format);
    622   VFPrint(out, format, args);
    623   va_end(args);
    624 }
    625 
    626 
    627 void OS::VFPrint(FILE* out, const char* format, va_list args) {
    628   VPrintHelper(out, format, args);
    629 }
    630 
    631 
    632 // Print error message to console.
    633 void OS::PrintError(const char* format, ...) {
    634   va_list args;
    635   va_start(args, format);
    636   VPrintError(format, args);
    637   va_end(args);
    638 }
    639 
    640 
    641 void OS::VPrintError(const char* format, va_list args) {
    642   VPrintHelper(stderr, format, args);
    643 }
    644 
    645 
    646 int OS::SNPrintF(char* str, int length, const char* format, ...) {
    647   va_list args;
    648   va_start(args, format);
    649   int result = VSNPrintF(str, length, format, args);
    650   va_end(args);
    651   return result;
    652 }
    653 
    654 
    655 int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
    656   int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
    657   // Make sure to zero-terminate the string if the output was
    658   // truncated or if there was an error.
    659   if (n < 0 || n >= length) {
    660     if (length > 0)
    661       str[length - 1] = '\0';
    662     return -1;
    663   } else {
    664     return n;
    665   }
    666 }
    667 
    668 
    669 char* OS::StrChr(char* str, int c) {
    670   return const_cast<char*>(strchr(str, c));
    671 }
    672 
    673 
    674 void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
    675   // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
    676   size_t buffer_size = static_cast<size_t>(length);
    677   if (n + 1 > buffer_size)  // count for trailing '\0'
    678     n = _TRUNCATE;
    679   int result = strncpy_s(dest, length, src, n);
    680   USE(result);
    681   DCHECK(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
    682 }
    683 
    684 
    685 #undef _TRUNCATE
    686 #undef STRUNCATE
    687 
    688 
    689 // Get the system's page size used by VirtualAlloc() or the next power
    690 // of two. The reason for always returning a power of two is that the
    691 // rounding up in OS::Allocate expects that.
    692 static size_t GetPageSize() {
    693   static size_t page_size = 0;
    694   if (page_size == 0) {
    695     SYSTEM_INFO info;
    696     GetSystemInfo(&info);
    697     page_size = base::bits::RoundUpToPowerOfTwo32(info.dwPageSize);
    698   }
    699   return page_size;
    700 }
    701 
    702 
    703 // The allocation alignment is the guaranteed alignment for
    704 // VirtualAlloc'ed blocks of memory.
    705 size_t OS::AllocateAlignment() {
    706   static size_t allocate_alignment = 0;
    707   if (allocate_alignment == 0) {
    708     SYSTEM_INFO info;
    709     GetSystemInfo(&info);
    710     allocate_alignment = info.dwAllocationGranularity;
    711   }
    712   return allocate_alignment;
    713 }
    714 
    715 
    716 static LazyInstance<RandomNumberGenerator>::type
    717     platform_random_number_generator = LAZY_INSTANCE_INITIALIZER;
    718 
    719 
    720 void OS::Initialize(int64_t random_seed, bool hard_abort,
    721                     const char* const gc_fake_mmap) {
    722   if (random_seed) {
    723     platform_random_number_generator.Pointer()->SetSeed(random_seed);
    724   }
    725   g_hard_abort = hard_abort;
    726 }
    727 
    728 
    729 void* OS::GetRandomMmapAddr() {
    730   // The address range used to randomize RWX allocations in OS::Allocate
    731   // Try not to map pages into the default range that windows loads DLLs
    732   // Use a multiple of 64k to prevent committing unused memory.
    733   // Note: This does not guarantee RWX regions will be within the
    734   // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
    735 #ifdef V8_HOST_ARCH_64_BIT
    736   static const uintptr_t kAllocationRandomAddressMin = 0x0000000080000000;
    737   static const uintptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
    738 #else
    739   static const uintptr_t kAllocationRandomAddressMin = 0x04000000;
    740   static const uintptr_t kAllocationRandomAddressMax = 0x3FFF0000;
    741 #endif
    742   uintptr_t address;
    743   platform_random_number_generator.Pointer()->NextBytes(&address,
    744                                                         sizeof(address));
    745   address <<= kPageSizeBits;
    746   address += kAllocationRandomAddressMin;
    747   address &= kAllocationRandomAddressMax;
    748   return reinterpret_cast<void *>(address);
    749 }
    750 
    751 
    752 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
    753   LPVOID base = NULL;
    754   static BOOL use_aslr = -1;
    755 #ifdef V8_HOST_ARCH_32_BIT
    756   // Don't bother randomizing on 32-bit hosts, because they lack the room and
    757   // don't have viable ASLR anyway.
    758   if (use_aslr == -1 && !IsWow64Process(GetCurrentProcess(), &use_aslr))
    759     use_aslr = FALSE;
    760 #else
    761   use_aslr = TRUE;
    762 #endif
    763 
    764   if (use_aslr &&
    765       (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS)) {
    766     // For executable pages try and randomize the allocation address
    767     for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
    768       base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection);
    769     }
    770   }
    771 
    772   // After three attempts give up and let the OS find an address to use.
    773   if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
    774 
    775   return base;
    776 }
    777 
    778 
    779 void* OS::Allocate(const size_t requested,
    780                    size_t* allocated,
    781                    bool is_executable) {
    782   // VirtualAlloc rounds allocated size to page size automatically.
    783   size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
    784 
    785   // Windows XP SP2 allows Data Excution Prevention (DEP).
    786   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
    787 
    788   LPVOID mbase = RandomizedVirtualAlloc(msize,
    789                                         MEM_COMMIT | MEM_RESERVE,
    790                                         prot);
    791 
    792   if (mbase == NULL) return NULL;
    793 
    794   DCHECK((reinterpret_cast<uintptr_t>(mbase) % OS::AllocateAlignment()) == 0);
    795 
    796   *allocated = msize;
    797   return mbase;
    798 }
    799 
    800 void* OS::AllocateGuarded(const size_t requested) {
    801   return VirtualAlloc(nullptr, requested, MEM_RESERVE, PAGE_NOACCESS);
    802 }
    803 
    804 void OS::Free(void* address, const size_t size) {
    805   // TODO(1240712): VirtualFree has a return value which is ignored here.
    806   VirtualFree(address, 0, MEM_RELEASE);
    807   USE(size);
    808 }
    809 
    810 
    811 intptr_t OS::CommitPageSize() {
    812   return 4096;
    813 }
    814 
    815 
    816 void OS::ProtectCode(void* address, const size_t size) {
    817   DWORD old_protect;
    818   VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
    819 }
    820 
    821 
    822 void OS::Guard(void* address, const size_t size) {
    823   DWORD oldprotect;
    824   VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
    825 }
    826 
    827 void OS::Unprotect(void* address, const size_t size) {
    828   LPVOID result = VirtualAlloc(address, size, MEM_COMMIT, PAGE_READWRITE);
    829   DCHECK_IMPLIES(result != nullptr, GetLastError() == 0);
    830 }
    831 
    832 void OS::Sleep(TimeDelta interval) {
    833   ::Sleep(static_cast<DWORD>(interval.InMilliseconds()));
    834 }
    835 
    836 
    837 void OS::Abort() {
    838   if (g_hard_abort) {
    839     V8_IMMEDIATE_CRASH();
    840   }
    841   // Make the MSVCRT do a silent abort.
    842   raise(SIGABRT);
    843 
    844   // Make sure function doesn't return.
    845   abort();
    846 }
    847 
    848 
    849 void OS::DebugBreak() {
    850 #if V8_CC_MSVC
    851   // To avoid Visual Studio runtime support the following code can be used
    852   // instead
    853   // __asm { int 3 }
    854   __debugbreak();
    855 #else
    856   ::DebugBreak();
    857 #endif
    858 }
    859 
    860 
    861 class Win32MemoryMappedFile final : public OS::MemoryMappedFile {
    862  public:
    863   Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory,
    864                         size_t size)
    865       : file_(file),
    866         file_mapping_(file_mapping),
    867         memory_(memory),
    868         size_(size) {}
    869   ~Win32MemoryMappedFile() final;
    870   void* memory() const final { return memory_; }
    871   size_t size() const final { return size_; }
    872 
    873  private:
    874   HANDLE const file_;
    875   HANDLE const file_mapping_;
    876   void* const memory_;
    877   size_t const size_;
    878 };
    879 
    880 
    881 // static
    882 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
    883   // Open a physical file
    884   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
    885       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
    886   if (file == INVALID_HANDLE_VALUE) return NULL;
    887 
    888   DWORD size = GetFileSize(file, NULL);
    889 
    890   // Create a file mapping for the physical file
    891   HANDLE file_mapping =
    892       CreateFileMapping(file, NULL, PAGE_READWRITE, 0, size, NULL);
    893   if (file_mapping == NULL) return NULL;
    894 
    895   // Map a view of the file into memory
    896   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
    897   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
    898 }
    899 
    900 
    901 // static
    902 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name,
    903                                                    size_t size, void* initial) {
    904   // Open a physical file
    905   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
    906                             FILE_SHARE_READ | FILE_SHARE_WRITE, NULL,
    907                             OPEN_ALWAYS, 0, NULL);
    908   if (file == NULL) return NULL;
    909   // Create a file mapping for the physical file
    910   HANDLE file_mapping = CreateFileMapping(file, NULL, PAGE_READWRITE, 0,
    911                                           static_cast<DWORD>(size), NULL);
    912   if (file_mapping == NULL) return NULL;
    913   // Map a view of the file into memory
    914   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
    915   if (memory) memmove(memory, initial, size);
    916   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
    917 }
    918 
    919 
    920 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
    921   if (memory_) UnmapViewOfFile(memory_);
    922   CloseHandle(file_mapping_);
    923   CloseHandle(file_);
    924 }
    925 
    926 
    927 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
    928 // dynamically. This is to avoid being depending on dbghelp.dll and
    929 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
    930 // kernel32.dll at some point so loading functions defines in TlHelp32.h
    931 // dynamically might not be necessary any more - for some versions of Windows?).
    932 
    933 // Function pointers to functions dynamically loaded from dbghelp.dll.
    934 #define DBGHELP_FUNCTION_LIST(V)  \
    935   V(SymInitialize)                \
    936   V(SymGetOptions)                \
    937   V(SymSetOptions)                \
    938   V(SymGetSearchPath)             \
    939   V(SymLoadModule64)              \
    940   V(StackWalk64)                  \
    941   V(SymGetSymFromAddr64)          \
    942   V(SymGetLineFromAddr64)         \
    943   V(SymFunctionTableAccess64)     \
    944   V(SymGetModuleBase64)
    945 
    946 // Function pointers to functions dynamically loaded from dbghelp.dll.
    947 #define TLHELP32_FUNCTION_LIST(V)  \
    948   V(CreateToolhelp32Snapshot)      \
    949   V(Module32FirstW)                \
    950   V(Module32NextW)
    951 
    952 // Define the decoration to use for the type and variable name used for
    953 // dynamically loaded DLL function..
    954 #define DLL_FUNC_TYPE(name) _##name##_
    955 #define DLL_FUNC_VAR(name) _##name
    956 
    957 // Define the type for each dynamically loaded DLL function. The function
    958 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
    959 // from the Windows include files are redefined here to have the function
    960 // definitions to be as close to the ones in the original .h files as possible.
    961 #ifndef IN
    962 #define IN
    963 #endif
    964 #ifndef VOID
    965 #define VOID void
    966 #endif
    967 
    968 // DbgHelp isn't supported on MinGW yet
    969 #ifndef __MINGW32__
    970 // DbgHelp.h functions.
    971 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
    972                                                        IN PSTR UserSearchPath,
    973                                                        IN BOOL fInvadeProcess);
    974 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
    975 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
    976 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
    977     IN HANDLE hProcess,
    978     OUT PSTR SearchPath,
    979     IN DWORD SearchPathLength);
    980 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
    981     IN HANDLE hProcess,
    982     IN HANDLE hFile,
    983     IN PSTR ImageName,
    984     IN PSTR ModuleName,
    985     IN DWORD64 BaseOfDll,
    986     IN DWORD SizeOfDll);
    987 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
    988     DWORD MachineType,
    989     HANDLE hProcess,
    990     HANDLE hThread,
    991     LPSTACKFRAME64 StackFrame,
    992     PVOID ContextRecord,
    993     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
    994     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
    995     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
    996     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
    997 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
    998     IN HANDLE hProcess,
    999     IN DWORD64 qwAddr,
   1000     OUT PDWORD64 pdwDisplacement,
   1001     OUT PIMAGEHLP_SYMBOL64 Symbol);
   1002 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
   1003     IN HANDLE hProcess,
   1004     IN DWORD64 qwAddr,
   1005     OUT PDWORD pdwDisplacement,
   1006     OUT PIMAGEHLP_LINE64 Line64);
   1007 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
   1008 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
   1009     HANDLE hProcess,
   1010     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
   1011 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
   1012     HANDLE hProcess,
   1013     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
   1014 
   1015 // TlHelp32.h functions.
   1016 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
   1017     DWORD dwFlags,
   1018     DWORD th32ProcessID);
   1019 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
   1020                                                         LPMODULEENTRY32W lpme);
   1021 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
   1022                                                        LPMODULEENTRY32W lpme);
   1023 
   1024 #undef IN
   1025 #undef VOID
   1026 
   1027 // Declare a variable for each dynamically loaded DLL function.
   1028 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
   1029 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
   1030 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
   1031 #undef DEF_DLL_FUNCTION
   1032 
   1033 // Load the functions. This function has a lot of "ugly" macros in order to
   1034 // keep down code duplication.
   1035 
   1036 static bool LoadDbgHelpAndTlHelp32() {
   1037   static bool dbghelp_loaded = false;
   1038 
   1039   if (dbghelp_loaded) return true;
   1040 
   1041   HMODULE module;
   1042 
   1043   // Load functions from the dbghelp.dll module.
   1044   module = LoadLibrary(TEXT("dbghelp.dll"));
   1045   if (module == NULL) {
   1046     return false;
   1047   }
   1048 
   1049 #define LOAD_DLL_FUNC(name)                                                 \
   1050   DLL_FUNC_VAR(name) =                                                      \
   1051       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
   1052 
   1053 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
   1054 
   1055 #undef LOAD_DLL_FUNC
   1056 
   1057   // Load functions from the kernel32.dll module (the TlHelp32.h function used
   1058   // to be in tlhelp32.dll but are now moved to kernel32.dll).
   1059   module = LoadLibrary(TEXT("kernel32.dll"));
   1060   if (module == NULL) {
   1061     return false;
   1062   }
   1063 
   1064 #define LOAD_DLL_FUNC(name)                                                 \
   1065   DLL_FUNC_VAR(name) =                                                      \
   1066       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
   1067 
   1068 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
   1069 
   1070 #undef LOAD_DLL_FUNC
   1071 
   1072   // Check that all functions where loaded.
   1073   bool result =
   1074 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
   1075 
   1076 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
   1077 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
   1078 
   1079 #undef DLL_FUNC_LOADED
   1080   true;
   1081 
   1082   dbghelp_loaded = result;
   1083   return result;
   1084   // NOTE: The modules are never unloaded and will stay around until the
   1085   // application is closed.
   1086 }
   1087 
   1088 #undef DBGHELP_FUNCTION_LIST
   1089 #undef TLHELP32_FUNCTION_LIST
   1090 #undef DLL_FUNC_VAR
   1091 #undef DLL_FUNC_TYPE
   1092 
   1093 
   1094 // Load the symbols for generating stack traces.
   1095 static std::vector<OS::SharedLibraryAddress> LoadSymbols(
   1096     HANDLE process_handle) {
   1097   static std::vector<OS::SharedLibraryAddress> result;
   1098 
   1099   static bool symbols_loaded = false;
   1100 
   1101   if (symbols_loaded) return result;
   1102 
   1103   BOOL ok;
   1104 
   1105   // Initialize the symbol engine.
   1106   ok = _SymInitialize(process_handle,  // hProcess
   1107                       NULL,            // UserSearchPath
   1108                       false);          // fInvadeProcess
   1109   if (!ok) return result;
   1110 
   1111   DWORD options = _SymGetOptions();
   1112   options |= SYMOPT_LOAD_LINES;
   1113   options |= SYMOPT_FAIL_CRITICAL_ERRORS;
   1114   options = _SymSetOptions(options);
   1115 
   1116   char buf[OS::kStackWalkMaxNameLen] = {0};
   1117   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
   1118   if (!ok) {
   1119     int err = GetLastError();
   1120     OS::Print("%d\n", err);
   1121     return result;
   1122   }
   1123 
   1124   HANDLE snapshot = _CreateToolhelp32Snapshot(
   1125       TH32CS_SNAPMODULE,       // dwFlags
   1126       GetCurrentProcessId());  // th32ProcessId
   1127   if (snapshot == INVALID_HANDLE_VALUE) return result;
   1128   MODULEENTRY32W module_entry;
   1129   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
   1130   BOOL cont = _Module32FirstW(snapshot, &module_entry);
   1131   while (cont) {
   1132     DWORD64 base;
   1133     // NOTE the SymLoadModule64 function has the peculiarity of accepting a
   1134     // both unicode and ASCII strings even though the parameter is PSTR.
   1135     base = _SymLoadModule64(
   1136         process_handle,                                       // hProcess
   1137         0,                                                    // hFile
   1138         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
   1139         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
   1140         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
   1141         module_entry.modBaseSize);                            // SizeOfDll
   1142     if (base == 0) {
   1143       int err = GetLastError();
   1144       if (err != ERROR_MOD_NOT_FOUND &&
   1145           err != ERROR_INVALID_HANDLE) {
   1146         result.clear();
   1147         return result;
   1148       }
   1149     }
   1150     int lib_name_length = WideCharToMultiByte(
   1151         CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL);
   1152     std::string lib_name(lib_name_length, 0);
   1153     WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
   1154                         lib_name_length, NULL, NULL);
   1155     result.push_back(OS::SharedLibraryAddress(
   1156         lib_name, reinterpret_cast<uintptr_t>(module_entry.modBaseAddr),
   1157         reinterpret_cast<uintptr_t>(module_entry.modBaseAddr +
   1158                                     module_entry.modBaseSize)));
   1159     cont = _Module32NextW(snapshot, &module_entry);
   1160   }
   1161   CloseHandle(snapshot);
   1162 
   1163   symbols_loaded = true;
   1164   return result;
   1165 }
   1166 
   1167 
   1168 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
   1169   // SharedLibraryEvents are logged when loading symbol information.
   1170   // Only the shared libraries loaded at the time of the call to
   1171   // GetSharedLibraryAddresses are logged.  DLLs loaded after
   1172   // initialization are not accounted for.
   1173   if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
   1174   HANDLE process_handle = GetCurrentProcess();
   1175   return LoadSymbols(process_handle);
   1176 }
   1177 
   1178 
   1179 void OS::SignalCodeMovingGC() {
   1180 }
   1181 
   1182 
   1183 #else  // __MINGW32__
   1184 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
   1185   return std::vector<OS::SharedLibraryAddress>();
   1186 }
   1187 
   1188 
   1189 void OS::SignalCodeMovingGC() { }
   1190 #endif  // __MINGW32__
   1191 
   1192 
   1193 int OS::ActivationFrameAlignment() {
   1194 #ifdef _WIN64
   1195   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
   1196 #elif defined(__MINGW32__)
   1197   // With gcc 4.4 the tree vectorization optimizer can generate code
   1198   // that requires 16 byte alignment such as movdqa on x86.
   1199   return 16;
   1200 #else
   1201   return 8;  // Floating-point math runs faster with 8-byte alignment.
   1202 #endif
   1203 }
   1204 
   1205 
   1206 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
   1207 
   1208 
   1209 VirtualMemory::VirtualMemory(size_t size)
   1210     : address_(ReserveRegion(size)), size_(size) { }
   1211 
   1212 
   1213 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
   1214     : address_(NULL), size_(0) {
   1215   DCHECK((alignment % OS::AllocateAlignment()) == 0);
   1216   size_t request_size = RoundUp(size + alignment,
   1217                                 static_cast<intptr_t>(OS::AllocateAlignment()));
   1218   void* address = ReserveRegion(request_size);
   1219   if (address == NULL) return;
   1220   uint8_t* base = RoundUp(static_cast<uint8_t*>(address), alignment);
   1221   // Try reducing the size by freeing and then reallocating a specific area.
   1222   bool result = ReleaseRegion(address, request_size);
   1223   USE(result);
   1224   DCHECK(result);
   1225   address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
   1226   if (address != NULL) {
   1227     request_size = size;
   1228     DCHECK(base == static_cast<uint8_t*>(address));
   1229   } else {
   1230     // Resizing failed, just go with a bigger area.
   1231     address = ReserveRegion(request_size);
   1232     if (address == NULL) return;
   1233   }
   1234   address_ = address;
   1235   size_ = request_size;
   1236 }
   1237 
   1238 
   1239 VirtualMemory::~VirtualMemory() {
   1240   if (IsReserved()) {
   1241     bool result = ReleaseRegion(address(), size());
   1242     DCHECK(result);
   1243     USE(result);
   1244   }
   1245 }
   1246 
   1247 
   1248 bool VirtualMemory::IsReserved() {
   1249   return address_ != NULL;
   1250 }
   1251 
   1252 
   1253 void VirtualMemory::Reset() {
   1254   address_ = NULL;
   1255   size_ = 0;
   1256 }
   1257 
   1258 
   1259 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
   1260   return CommitRegion(address, size, is_executable);
   1261 }
   1262 
   1263 
   1264 bool VirtualMemory::Uncommit(void* address, size_t size) {
   1265   DCHECK(IsReserved());
   1266   return UncommitRegion(address, size);
   1267 }
   1268 
   1269 
   1270 bool VirtualMemory::Guard(void* address) {
   1271   if (NULL == VirtualAlloc(address,
   1272                            OS::CommitPageSize(),
   1273                            MEM_COMMIT,
   1274                            PAGE_NOACCESS)) {
   1275     return false;
   1276   }
   1277   return true;
   1278 }
   1279 
   1280 
   1281 void* VirtualMemory::ReserveRegion(size_t size) {
   1282   return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
   1283 }
   1284 
   1285 
   1286 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
   1287   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
   1288   if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
   1289     return false;
   1290   }
   1291   return true;
   1292 }
   1293 
   1294 
   1295 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
   1296   return VirtualFree(base, size, MEM_DECOMMIT) != 0;
   1297 }
   1298 
   1299 bool VirtualMemory::ReleasePartialRegion(void* base, size_t size,
   1300                                          void* free_start, size_t free_size) {
   1301   return VirtualFree(free_start, free_size, MEM_DECOMMIT) != 0;
   1302 }
   1303 
   1304 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
   1305   return VirtualFree(base, 0, MEM_RELEASE) != 0;
   1306 }
   1307 
   1308 
   1309 bool VirtualMemory::HasLazyCommits() {
   1310   // TODO(alph): implement for the platform.
   1311   return false;
   1312 }
   1313 
   1314 
   1315 // ----------------------------------------------------------------------------
   1316 // Win32 thread support.
   1317 
   1318 // Definition of invalid thread handle and id.
   1319 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
   1320 
   1321 // Entry point for threads. The supplied argument is a pointer to the thread
   1322 // object. The entry function dispatches to the run method in the thread
   1323 // object. It is important that this function has __stdcall calling
   1324 // convention.
   1325 static unsigned int __stdcall ThreadEntry(void* arg) {
   1326   Thread* thread = reinterpret_cast<Thread*>(arg);
   1327   thread->NotifyStartedAndRun();
   1328   return 0;
   1329 }
   1330 
   1331 
   1332 class Thread::PlatformData {
   1333  public:
   1334   explicit PlatformData(HANDLE thread) : thread_(thread) {}
   1335   HANDLE thread_;
   1336   unsigned thread_id_;
   1337 };
   1338 
   1339 
   1340 // Initialize a Win32 thread object. The thread has an invalid thread
   1341 // handle until it is started.
   1342 
   1343 Thread::Thread(const Options& options)
   1344     : stack_size_(options.stack_size()),
   1345       start_semaphore_(NULL) {
   1346   data_ = new PlatformData(kNoThread);
   1347   set_name(options.name());
   1348 }
   1349 
   1350 
   1351 void Thread::set_name(const char* name) {
   1352   OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
   1353   name_[sizeof(name_) - 1] = '\0';
   1354 }
   1355 
   1356 
   1357 // Close our own handle for the thread.
   1358 Thread::~Thread() {
   1359   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
   1360   delete data_;
   1361 }
   1362 
   1363 
   1364 // Create a new thread. It is important to use _beginthreadex() instead of
   1365 // the Win32 function CreateThread(), because the CreateThread() does not
   1366 // initialize thread specific structures in the C runtime library.
   1367 void Thread::Start() {
   1368   data_->thread_ = reinterpret_cast<HANDLE>(
   1369       _beginthreadex(NULL,
   1370                      static_cast<unsigned>(stack_size_),
   1371                      ThreadEntry,
   1372                      this,
   1373                      0,
   1374                      &data_->thread_id_));
   1375 }
   1376 
   1377 
   1378 // Wait for thread to terminate.
   1379 void Thread::Join() {
   1380   if (data_->thread_id_ != GetCurrentThreadId()) {
   1381     WaitForSingleObject(data_->thread_, INFINITE);
   1382   }
   1383 }
   1384 
   1385 
   1386 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
   1387   DWORD result = TlsAlloc();
   1388   DCHECK(result != TLS_OUT_OF_INDEXES);
   1389   return static_cast<LocalStorageKey>(result);
   1390 }
   1391 
   1392 
   1393 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
   1394   BOOL result = TlsFree(static_cast<DWORD>(key));
   1395   USE(result);
   1396   DCHECK(result);
   1397 }
   1398 
   1399 
   1400 void* Thread::GetThreadLocal(LocalStorageKey key) {
   1401   return TlsGetValue(static_cast<DWORD>(key));
   1402 }
   1403 
   1404 
   1405 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
   1406   BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
   1407   USE(result);
   1408   DCHECK(result);
   1409 }
   1410 
   1411 }  // namespace base
   1412 }  // namespace v8
   1413