Home | History | Annotate | Download | only in src
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <stdint.h>
      6 
      7 #include <cmath>
      8 
      9 #include "src/base/logging.h"
     10 #include "src/utils.h"
     11 
     12 #include "src/double.h"
     13 #include "src/fixed-dtoa.h"
     14 
     15 namespace v8 {
     16 namespace internal {
     17 
     18 // Represents a 128bit type. This class should be replaced by a native type on
     19 // platforms that support 128bit integers.
     20 class UInt128 {
     21  public:
     22   UInt128() : high_bits_(0), low_bits_(0) { }
     23   UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
     24 
     25   void Multiply(uint32_t multiplicand) {
     26     uint64_t accumulator;
     27 
     28     accumulator = (low_bits_ & kMask32) * multiplicand;
     29     uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
     30     accumulator >>= 32;
     31     accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
     32     low_bits_ = (accumulator << 32) + part;
     33     accumulator >>= 32;
     34     accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
     35     part = static_cast<uint32_t>(accumulator & kMask32);
     36     accumulator >>= 32;
     37     accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
     38     high_bits_ = (accumulator << 32) + part;
     39     DCHECK((accumulator >> 32) == 0);
     40   }
     41 
     42   void Shift(int shift_amount) {
     43     DCHECK(-64 <= shift_amount && shift_amount <= 64);
     44     if (shift_amount == 0) {
     45       return;
     46     } else if (shift_amount == -64) {
     47       high_bits_ = low_bits_;
     48       low_bits_ = 0;
     49     } else if (shift_amount == 64) {
     50       low_bits_ = high_bits_;
     51       high_bits_ = 0;
     52     } else if (shift_amount <= 0) {
     53       high_bits_ <<= -shift_amount;
     54       high_bits_ += low_bits_ >> (64 + shift_amount);
     55       low_bits_ <<= -shift_amount;
     56     } else {
     57       low_bits_ >>= shift_amount;
     58       low_bits_ += high_bits_ << (64 - shift_amount);
     59       high_bits_ >>= shift_amount;
     60     }
     61   }
     62 
     63   // Modifies *this to *this MOD (2^power).
     64   // Returns *this DIV (2^power).
     65   int DivModPowerOf2(int power) {
     66     if (power >= 64) {
     67       int result = static_cast<int>(high_bits_ >> (power - 64));
     68       high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
     69       return result;
     70     } else {
     71       uint64_t part_low = low_bits_ >> power;
     72       uint64_t part_high = high_bits_ << (64 - power);
     73       int result = static_cast<int>(part_low + part_high);
     74       high_bits_ = 0;
     75       low_bits_ -= part_low << power;
     76       return result;
     77     }
     78   }
     79 
     80   bool IsZero() const {
     81     return high_bits_ == 0 && low_bits_ == 0;
     82   }
     83 
     84   int BitAt(int position) {
     85     if (position >= 64) {
     86       return static_cast<int>(high_bits_ >> (position - 64)) & 1;
     87     } else {
     88       return static_cast<int>(low_bits_ >> position) & 1;
     89     }
     90   }
     91 
     92  private:
     93   static const uint64_t kMask32 = 0xFFFFFFFF;
     94   // Value == (high_bits_ << 64) + low_bits_
     95   uint64_t high_bits_;
     96   uint64_t low_bits_;
     97 };
     98 
     99 
    100 static const int kDoubleSignificandSize = 53;  // Includes the hidden bit.
    101 
    102 
    103 static void FillDigits32FixedLength(uint32_t number, int requested_length,
    104                                     Vector<char> buffer, int* length) {
    105   for (int i = requested_length - 1; i >= 0; --i) {
    106     buffer[(*length) + i] = '0' + number % 10;
    107     number /= 10;
    108   }
    109   *length += requested_length;
    110 }
    111 
    112 
    113 static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
    114   int number_length = 0;
    115   // We fill the digits in reverse order and exchange them afterwards.
    116   while (number != 0) {
    117     int digit = number % 10;
    118     number /= 10;
    119     buffer[(*length) + number_length] = '0' + digit;
    120     number_length++;
    121   }
    122   // Exchange the digits.
    123   int i = *length;
    124   int j = *length + number_length - 1;
    125   while (i < j) {
    126     char tmp = buffer[i];
    127     buffer[i] = buffer[j];
    128     buffer[j] = tmp;
    129     i++;
    130     j--;
    131   }
    132   *length += number_length;
    133 }
    134 
    135 
    136 static void FillDigits64FixedLength(uint64_t number, int requested_length,
    137                                     Vector<char> buffer, int* length) {
    138   const uint32_t kTen7 = 10000000;
    139   // For efficiency cut the number into 3 uint32_t parts, and print those.
    140   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
    141   number /= kTen7;
    142   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
    143   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
    144 
    145   FillDigits32FixedLength(part0, 3, buffer, length);
    146   FillDigits32FixedLength(part1, 7, buffer, length);
    147   FillDigits32FixedLength(part2, 7, buffer, length);
    148 }
    149 
    150 
    151 static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
    152   const uint32_t kTen7 = 10000000;
    153   // For efficiency cut the number into 3 uint32_t parts, and print those.
    154   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
    155   number /= kTen7;
    156   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
    157   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
    158 
    159   if (part0 != 0) {
    160     FillDigits32(part0, buffer, length);
    161     FillDigits32FixedLength(part1, 7, buffer, length);
    162     FillDigits32FixedLength(part2, 7, buffer, length);
    163   } else if (part1 != 0) {
    164     FillDigits32(part1, buffer, length);
    165     FillDigits32FixedLength(part2, 7, buffer, length);
    166   } else {
    167     FillDigits32(part2, buffer, length);
    168   }
    169 }
    170 
    171 
    172 static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
    173   // An empty buffer represents 0.
    174   if (*length == 0) {
    175     buffer[0] = '1';
    176     *decimal_point = 1;
    177     *length = 1;
    178     return;
    179   }
    180   // Round the last digit until we either have a digit that was not '9' or until
    181   // we reached the first digit.
    182   buffer[(*length) - 1]++;
    183   for (int i = (*length) - 1; i > 0; --i) {
    184     if (buffer[i] != '0' + 10) {
    185       return;
    186     }
    187     buffer[i] = '0';
    188     buffer[i - 1]++;
    189   }
    190   // If the first digit is now '0' + 10, we would need to set it to '0' and add
    191   // a '1' in front. However we reach the first digit only if all following
    192   // digits had been '9' before rounding up. Now all trailing digits are '0' and
    193   // we simply switch the first digit to '1' and update the decimal-point
    194   // (indicating that the point is now one digit to the right).
    195   if (buffer[0] == '0' + 10) {
    196     buffer[0] = '1';
    197     (*decimal_point)++;
    198   }
    199 }
    200 
    201 
    202 // The given fractionals number represents a fixed-point number with binary
    203 // point at bit (-exponent).
    204 // Preconditions:
    205 //   -128 <= exponent <= 0.
    206 //   0 <= fractionals * 2^exponent < 1
    207 //   The buffer holds the result.
    208 // The function will round its result. During the rounding-process digits not
    209 // generated by this function might be updated, and the decimal-point variable
    210 // might be updated. If this function generates the digits 99 and the buffer
    211 // already contained "199" (thus yielding a buffer of "19999") then a
    212 // rounding-up will change the contents of the buffer to "20000".
    213 static void FillFractionals(uint64_t fractionals, int exponent,
    214                             int fractional_count, Vector<char> buffer,
    215                             int* length, int* decimal_point) {
    216   DCHECK(-128 <= exponent && exponent <= 0);
    217   // 'fractionals' is a fixed-point number, with binary point at bit
    218   // (-exponent). Inside the function the non-converted remainder of fractionals
    219   // is a fixed-point number, with binary point at bit 'point'.
    220   if (-exponent <= 64) {
    221     // One 64 bit number is sufficient.
    222     DCHECK(fractionals >> 56 == 0);
    223     int point = -exponent;
    224     for (int i = 0; i < fractional_count; ++i) {
    225       if (fractionals == 0) break;
    226       // Instead of multiplying by 10 we multiply by 5 and adjust the point
    227       // location. This way the fractionals variable will not overflow.
    228       // Invariant at the beginning of the loop: fractionals < 2^point.
    229       // Initially we have: point <= 64 and fractionals < 2^56
    230       // After each iteration the point is decremented by one.
    231       // Note that 5^3 = 125 < 128 = 2^7.
    232       // Therefore three iterations of this loop will not overflow fractionals
    233       // (even without the subtraction at the end of the loop body). At this
    234       // time point will satisfy point <= 61 and therefore fractionals < 2^point
    235       // and any further multiplication of fractionals by 5 will not overflow.
    236       fractionals *= 5;
    237       point--;
    238       int digit = static_cast<int>(fractionals >> point);
    239       buffer[*length] = '0' + digit;
    240       (*length)++;
    241       fractionals -= static_cast<uint64_t>(digit) << point;
    242     }
    243     // If the first bit after the point is set we have to round up.
    244     if (((fractionals >> (point - 1)) & 1) == 1) {
    245       RoundUp(buffer, length, decimal_point);
    246     }
    247   } else {  // We need 128 bits.
    248     DCHECK(64 < -exponent && -exponent <= 128);
    249     UInt128 fractionals128 = UInt128(fractionals, 0);
    250     fractionals128.Shift(-exponent - 64);
    251     int point = 128;
    252     for (int i = 0; i < fractional_count; ++i) {
    253       if (fractionals128.IsZero()) break;
    254       // As before: instead of multiplying by 10 we multiply by 5 and adjust the
    255       // point location.
    256       // This multiplication will not overflow for the same reasons as before.
    257       fractionals128.Multiply(5);
    258       point--;
    259       int digit = fractionals128.DivModPowerOf2(point);
    260       buffer[*length] = '0' + digit;
    261       (*length)++;
    262     }
    263     if (fractionals128.BitAt(point - 1) == 1) {
    264       RoundUp(buffer, length, decimal_point);
    265     }
    266   }
    267 }
    268 
    269 
    270 // Removes leading and trailing zeros.
    271 // If leading zeros are removed then the decimal point position is adjusted.
    272 static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
    273   while (*length > 0 && buffer[(*length) - 1] == '0') {
    274     (*length)--;
    275   }
    276   int first_non_zero = 0;
    277   while (first_non_zero < *length && buffer[first_non_zero] == '0') {
    278     first_non_zero++;
    279   }
    280   if (first_non_zero != 0) {
    281     for (int i = first_non_zero; i < *length; ++i) {
    282       buffer[i - first_non_zero] = buffer[i];
    283     }
    284     *length -= first_non_zero;
    285     *decimal_point -= first_non_zero;
    286   }
    287 }
    288 
    289 
    290 bool FastFixedDtoa(double v,
    291                    int fractional_count,
    292                    Vector<char> buffer,
    293                    int* length,
    294                    int* decimal_point) {
    295   const uint32_t kMaxUInt32 = 0xFFFFFFFF;
    296   uint64_t significand = Double(v).Significand();
    297   int exponent = Double(v).Exponent();
    298   // v = significand * 2^exponent (with significand a 53bit integer).
    299   // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
    300   // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
    301   // If necessary this limit could probably be increased, but we don't need
    302   // more.
    303   if (exponent > 20) return false;
    304   if (fractional_count > 20) return false;
    305   *length = 0;
    306   // At most kDoubleSignificandSize bits of the significand are non-zero.
    307   // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
    308   // bits:  0..11*..0xxx..53*..xx
    309   if (exponent + kDoubleSignificandSize > 64) {
    310     // The exponent must be > 11.
    311     //
    312     // We know that v = significand * 2^exponent.
    313     // And the exponent > 11.
    314     // We simplify the task by dividing v by 10^17.
    315     // The quotient delivers the first digits, and the remainder fits into a 64
    316     // bit number.
    317     // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
    318     const uint64_t kFive17 = V8_2PART_UINT64_C(0xB1, A2BC2EC5);  // 5^17
    319     uint64_t divisor = kFive17;
    320     int divisor_power = 17;
    321     uint64_t dividend = significand;
    322     uint32_t quotient;
    323     uint64_t remainder;
    324     // Let v = f * 2^e with f == significand and e == exponent.
    325     // Then need q (quotient) and r (remainder) as follows:
    326     //   v            = q * 10^17       + r
    327     //   f * 2^e      = q * 10^17       + r
    328     //   f * 2^e      = q * 5^17 * 2^17 + r
    329     // If e > 17 then
    330     //   f * 2^(e-17) = q * 5^17        + r/2^17
    331     // else
    332     //   f  = q * 5^17 * 2^(17-e) + r/2^e
    333     if (exponent > divisor_power) {
    334       // We only allow exponents of up to 20 and therefore (17 - e) <= 3
    335       dividend <<= exponent - divisor_power;
    336       quotient = static_cast<uint32_t>(dividend / divisor);
    337       remainder = (dividend % divisor) << divisor_power;
    338     } else {
    339       divisor <<= divisor_power - exponent;
    340       quotient = static_cast<uint32_t>(dividend / divisor);
    341       remainder = (dividend % divisor) << exponent;
    342     }
    343     FillDigits32(quotient, buffer, length);
    344     FillDigits64FixedLength(remainder, divisor_power, buffer, length);
    345     *decimal_point = *length;
    346   } else if (exponent >= 0) {
    347     // 0 <= exponent <= 11
    348     significand <<= exponent;
    349     FillDigits64(significand, buffer, length);
    350     *decimal_point = *length;
    351   } else if (exponent > -kDoubleSignificandSize) {
    352     // We have to cut the number.
    353     uint64_t integrals = significand >> -exponent;
    354     uint64_t fractionals = significand - (integrals << -exponent);
    355     if (integrals > kMaxUInt32) {
    356       FillDigits64(integrals, buffer, length);
    357     } else {
    358       FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
    359     }
    360     *decimal_point = *length;
    361     FillFractionals(fractionals, exponent, fractional_count,
    362                     buffer, length, decimal_point);
    363   } else if (exponent < -128) {
    364     // This configuration (with at most 20 digits) means that all digits must be
    365     // 0.
    366     DCHECK(fractional_count <= 20);
    367     buffer[0] = '\0';
    368     *length = 0;
    369     *decimal_point = -fractional_count;
    370   } else {
    371     *decimal_point = 0;
    372     FillFractionals(significand, exponent, fractional_count,
    373                     buffer, length, decimal_point);
    374   }
    375   TrimZeros(buffer, length, decimal_point);
    376   buffer[*length] = '\0';
    377   if ((*length) == 0) {
    378     // The string is empty and the decimal_point thus has no importance. Mimick
    379     // Gay's dtoa and and set it to -fractional_count.
    380     *decimal_point = -fractional_count;
    381   }
    382   return true;
    383 }
    384 
    385 }  // namespace internal
    386 }  // namespace v8
    387