Home | History | Annotate | Download | only in ia32
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_IA32_CODE_STUBS_IA32_H_
      6 #define V8_IA32_CODE_STUBS_IA32_H_
      7 
      8 namespace v8 {
      9 namespace internal {
     10 
     11 
     12 void ArrayNativeCode(MacroAssembler* masm,
     13                      bool construct_call,
     14                      Label* call_generic_code);
     15 
     16 
     17 class StringHelper : public AllStatic {
     18  public:
     19   // Compares two flat one byte strings and returns result in eax.
     20   static void GenerateCompareFlatOneByteStrings(MacroAssembler* masm,
     21                                                 Register left, Register right,
     22                                                 Register scratch1,
     23                                                 Register scratch2,
     24                                                 Register scratch3);
     25 
     26   // Compares two flat one byte strings for equality and returns result in eax.
     27   static void GenerateFlatOneByteStringEquals(MacroAssembler* masm,
     28                                               Register left, Register right,
     29                                               Register scratch1,
     30                                               Register scratch2);
     31 
     32  private:
     33   static void GenerateOneByteCharsCompareLoop(
     34       MacroAssembler* masm, Register left, Register right, Register length,
     35       Register scratch, Label* chars_not_equal,
     36       Label::Distance chars_not_equal_near = Label::kFar);
     37 
     38   DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
     39 };
     40 
     41 
     42 class NameDictionaryLookupStub: public PlatformCodeStub {
     43  public:
     44   enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP };
     45 
     46   NameDictionaryLookupStub(Isolate* isolate, Register dictionary,
     47                            Register result, Register index, LookupMode mode)
     48       : PlatformCodeStub(isolate) {
     49     minor_key_ = DictionaryBits::encode(dictionary.code()) |
     50                  ResultBits::encode(result.code()) |
     51                  IndexBits::encode(index.code()) | LookupModeBits::encode(mode);
     52   }
     53 
     54   static void GenerateNegativeLookup(MacroAssembler* masm,
     55                                      Label* miss,
     56                                      Label* done,
     57                                      Register properties,
     58                                      Handle<Name> name,
     59                                      Register r0);
     60 
     61   bool SometimesSetsUpAFrame() override { return false; }
     62 
     63  private:
     64   static const int kInlinedProbes = 4;
     65   static const int kTotalProbes = 20;
     66 
     67   static const int kCapacityOffset =
     68       NameDictionary::kHeaderSize +
     69       NameDictionary::kCapacityIndex * kPointerSize;
     70 
     71   static const int kElementsStartOffset =
     72       NameDictionary::kHeaderSize +
     73       NameDictionary::kElementsStartIndex * kPointerSize;
     74 
     75   Register dictionary() const {
     76     return Register::from_code(DictionaryBits::decode(minor_key_));
     77   }
     78 
     79   Register result() const {
     80     return Register::from_code(ResultBits::decode(minor_key_));
     81   }
     82 
     83   Register index() const {
     84     return Register::from_code(IndexBits::decode(minor_key_));
     85   }
     86 
     87   LookupMode mode() const { return LookupModeBits::decode(minor_key_); }
     88 
     89   class DictionaryBits: public BitField<int, 0, 3> {};
     90   class ResultBits: public BitField<int, 3, 3> {};
     91   class IndexBits: public BitField<int, 6, 3> {};
     92   class LookupModeBits: public BitField<LookupMode, 9, 1> {};
     93 
     94   DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
     95   DEFINE_PLATFORM_CODE_STUB(NameDictionaryLookup, PlatformCodeStub);
     96 };
     97 
     98 
     99 class RecordWriteStub: public PlatformCodeStub {
    100  public:
    101   RecordWriteStub(Isolate* isolate,
    102                   Register object,
    103                   Register value,
    104                   Register address,
    105                   RememberedSetAction remembered_set_action,
    106                   SaveFPRegsMode fp_mode)
    107       : PlatformCodeStub(isolate),
    108         regs_(object,   // An input reg.
    109               address,  // An input reg.
    110               value) {  // One scratch reg.
    111     minor_key_ = ObjectBits::encode(object.code()) |
    112                  ValueBits::encode(value.code()) |
    113                  AddressBits::encode(address.code()) |
    114                  RememberedSetActionBits::encode(remembered_set_action) |
    115                  SaveFPRegsModeBits::encode(fp_mode);
    116   }
    117 
    118   RecordWriteStub(uint32_t key, Isolate* isolate)
    119       : PlatformCodeStub(key, isolate), regs_(object(), address(), value()) {}
    120 
    121   enum Mode {
    122     STORE_BUFFER_ONLY,
    123     INCREMENTAL,
    124     INCREMENTAL_COMPACTION
    125   };
    126 
    127   bool SometimesSetsUpAFrame() override { return false; }
    128 
    129   static const byte kTwoByteNopInstruction = 0x3c;  // Cmpb al, #imm8.
    130   static const byte kTwoByteJumpInstruction = 0xeb;  // Jmp #imm8.
    131 
    132   static const byte kFiveByteNopInstruction = 0x3d;  // Cmpl eax, #imm32.
    133   static const byte kFiveByteJumpInstruction = 0xe9;  // Jmp #imm32.
    134 
    135   static Mode GetMode(Code* stub) {
    136     byte first_instruction = stub->instruction_start()[0];
    137     byte second_instruction = stub->instruction_start()[2];
    138 
    139     if (first_instruction == kTwoByteJumpInstruction) {
    140       return INCREMENTAL;
    141     }
    142 
    143     DCHECK(first_instruction == kTwoByteNopInstruction);
    144 
    145     if (second_instruction == kFiveByteJumpInstruction) {
    146       return INCREMENTAL_COMPACTION;
    147     }
    148 
    149     DCHECK(second_instruction == kFiveByteNopInstruction);
    150 
    151     return STORE_BUFFER_ONLY;
    152   }
    153 
    154   static void Patch(Code* stub, Mode mode) {
    155     switch (mode) {
    156       case STORE_BUFFER_ONLY:
    157         DCHECK(GetMode(stub) == INCREMENTAL ||
    158                GetMode(stub) == INCREMENTAL_COMPACTION);
    159         stub->instruction_start()[0] = kTwoByteNopInstruction;
    160         stub->instruction_start()[2] = kFiveByteNopInstruction;
    161         break;
    162       case INCREMENTAL:
    163         DCHECK(GetMode(stub) == STORE_BUFFER_ONLY);
    164         stub->instruction_start()[0] = kTwoByteJumpInstruction;
    165         break;
    166       case INCREMENTAL_COMPACTION:
    167         DCHECK(GetMode(stub) == STORE_BUFFER_ONLY);
    168         stub->instruction_start()[0] = kTwoByteNopInstruction;
    169         stub->instruction_start()[2] = kFiveByteJumpInstruction;
    170         break;
    171     }
    172     DCHECK(GetMode(stub) == mode);
    173     Assembler::FlushICache(stub->GetIsolate(), stub->instruction_start(), 7);
    174   }
    175 
    176   DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
    177 
    178  private:
    179   // This is a helper class for freeing up 3 scratch registers, where the third
    180   // is always ecx (needed for shift operations).  The input is two registers
    181   // that must be preserved and one scratch register provided by the caller.
    182   class RegisterAllocation {
    183    public:
    184     RegisterAllocation(Register object,
    185                        Register address,
    186                        Register scratch0)
    187         : object_orig_(object),
    188           address_orig_(address),
    189           scratch0_orig_(scratch0),
    190           object_(object),
    191           address_(address),
    192           scratch0_(scratch0) {
    193       DCHECK(!AreAliased(scratch0, object, address, no_reg));
    194       scratch1_ = GetRegThatIsNotEcxOr(object_, address_, scratch0_);
    195       if (scratch0.is(ecx)) {
    196         scratch0_ = GetRegThatIsNotEcxOr(object_, address_, scratch1_);
    197       }
    198       if (object.is(ecx)) {
    199         object_ = GetRegThatIsNotEcxOr(address_, scratch0_, scratch1_);
    200       }
    201       if (address.is(ecx)) {
    202         address_ = GetRegThatIsNotEcxOr(object_, scratch0_, scratch1_);
    203       }
    204       DCHECK(!AreAliased(scratch0_, object_, address_, ecx));
    205     }
    206 
    207     void Save(MacroAssembler* masm) {
    208       DCHECK(!address_orig_.is(object_));
    209       DCHECK(object_.is(object_orig_) || address_.is(address_orig_));
    210       DCHECK(!AreAliased(object_, address_, scratch1_, scratch0_));
    211       DCHECK(!AreAliased(object_orig_, address_, scratch1_, scratch0_));
    212       DCHECK(!AreAliased(object_, address_orig_, scratch1_, scratch0_));
    213       // We don't have to save scratch0_orig_ because it was given to us as
    214       // a scratch register.  But if we had to switch to a different reg then
    215       // we should save the new scratch0_.
    216       if (!scratch0_.is(scratch0_orig_)) masm->push(scratch0_);
    217       if (!ecx.is(scratch0_orig_) &&
    218           !ecx.is(object_orig_) &&
    219           !ecx.is(address_orig_)) {
    220         masm->push(ecx);
    221       }
    222       masm->push(scratch1_);
    223       if (!address_.is(address_orig_)) {
    224         masm->push(address_);
    225         masm->mov(address_, address_orig_);
    226       }
    227       if (!object_.is(object_orig_)) {
    228         masm->push(object_);
    229         masm->mov(object_, object_orig_);
    230       }
    231     }
    232 
    233     void Restore(MacroAssembler* masm) {
    234       // These will have been preserved the entire time, so we just need to move
    235       // them back.  Only in one case is the orig_ reg different from the plain
    236       // one, since only one of them can alias with ecx.
    237       if (!object_.is(object_orig_)) {
    238         masm->mov(object_orig_, object_);
    239         masm->pop(object_);
    240       }
    241       if (!address_.is(address_orig_)) {
    242         masm->mov(address_orig_, address_);
    243         masm->pop(address_);
    244       }
    245       masm->pop(scratch1_);
    246       if (!ecx.is(scratch0_orig_) &&
    247           !ecx.is(object_orig_) &&
    248           !ecx.is(address_orig_)) {
    249         masm->pop(ecx);
    250       }
    251       if (!scratch0_.is(scratch0_orig_)) masm->pop(scratch0_);
    252     }
    253 
    254     // If we have to call into C then we need to save and restore all caller-
    255     // saved registers that were not already preserved.  The caller saved
    256     // registers are eax, ecx and edx.  The three scratch registers (incl. ecx)
    257     // will be restored by other means so we don't bother pushing them here.
    258     void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) {
    259       masm->PushCallerSaved(mode, ecx, scratch0_, scratch1_);
    260     }
    261 
    262     inline void RestoreCallerSaveRegisters(MacroAssembler* masm,
    263                                            SaveFPRegsMode mode) {
    264       masm->PopCallerSaved(mode, ecx, scratch0_, scratch1_);
    265     }
    266 
    267     inline Register object() { return object_; }
    268     inline Register address() { return address_; }
    269     inline Register scratch0() { return scratch0_; }
    270     inline Register scratch1() { return scratch1_; }
    271 
    272    private:
    273     Register object_orig_;
    274     Register address_orig_;
    275     Register scratch0_orig_;
    276     Register object_;
    277     Register address_;
    278     Register scratch0_;
    279     Register scratch1_;
    280     // Third scratch register is always ecx.
    281 
    282     Register GetRegThatIsNotEcxOr(Register r1,
    283                                   Register r2,
    284                                   Register r3) {
    285       for (int i = 0; i < Register::kNumRegisters; i++) {
    286         if (RegisterConfiguration::Crankshaft()->IsAllocatableGeneralCode(i)) {
    287           Register candidate = Register::from_code(i);
    288           if (candidate.is(ecx)) continue;
    289           if (candidate.is(r1)) continue;
    290           if (candidate.is(r2)) continue;
    291           if (candidate.is(r3)) continue;
    292           return candidate;
    293         }
    294       }
    295       UNREACHABLE();
    296       return no_reg;
    297     }
    298     friend class RecordWriteStub;
    299   };
    300 
    301   enum OnNoNeedToInformIncrementalMarker {
    302     kReturnOnNoNeedToInformIncrementalMarker,
    303     kUpdateRememberedSetOnNoNeedToInformIncrementalMarker
    304   };
    305 
    306   inline Major MajorKey() const final { return RecordWrite; }
    307 
    308   void Generate(MacroAssembler* masm) override;
    309   void GenerateIncremental(MacroAssembler* masm, Mode mode);
    310   void CheckNeedsToInformIncrementalMarker(
    311       MacroAssembler* masm,
    312       OnNoNeedToInformIncrementalMarker on_no_need,
    313       Mode mode);
    314   void InformIncrementalMarker(MacroAssembler* masm);
    315 
    316   void Activate(Code* code) override {
    317     code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code);
    318   }
    319 
    320   Register object() const {
    321     return Register::from_code(ObjectBits::decode(minor_key_));
    322   }
    323 
    324   Register value() const {
    325     return Register::from_code(ValueBits::decode(minor_key_));
    326   }
    327 
    328   Register address() const {
    329     return Register::from_code(AddressBits::decode(minor_key_));
    330   }
    331 
    332   RememberedSetAction remembered_set_action() const {
    333     return RememberedSetActionBits::decode(minor_key_);
    334   }
    335 
    336   SaveFPRegsMode save_fp_regs_mode() const {
    337     return SaveFPRegsModeBits::decode(minor_key_);
    338   }
    339 
    340   class ObjectBits: public BitField<int, 0, 3> {};
    341   class ValueBits: public BitField<int, 3, 3> {};
    342   class AddressBits: public BitField<int, 6, 3> {};
    343   class RememberedSetActionBits: public BitField<RememberedSetAction, 9, 1> {};
    344   class SaveFPRegsModeBits: public BitField<SaveFPRegsMode, 10, 1> {};
    345 
    346   RegisterAllocation regs_;
    347 
    348   DISALLOW_COPY_AND_ASSIGN(RecordWriteStub);
    349 };
    350 
    351 
    352 }  // namespace internal
    353 }  // namespace v8
    354 
    355 #endif  // V8_IA32_CODE_STUBS_IA32_H_
    356