Home | History | Annotate | Download | only in regexp
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // A simple interpreter for the Irregexp byte code.
      6 
      7 #ifdef V8_INTERPRETED_REGEXP
      8 
      9 #include "src/regexp/interpreter-irregexp.h"
     10 
     11 #include "src/ast/ast.h"
     12 #include "src/objects-inl.h"
     13 #include "src/regexp/bytecodes-irregexp.h"
     14 #include "src/regexp/jsregexp.h"
     15 #include "src/regexp/regexp-macro-assembler.h"
     16 #include "src/unicode.h"
     17 #include "src/utils.h"
     18 
     19 #ifdef V8_I18N_SUPPORT
     20 #include "unicode/uchar.h"
     21 #endif  // V8_I18N_SUPPORT
     22 
     23 namespace v8 {
     24 namespace internal {
     25 
     26 typedef unibrow::Mapping<unibrow::Ecma262Canonicalize> Canonicalize;
     27 
     28 static bool BackRefMatchesNoCase(Isolate* isolate, int from, int current,
     29                                  int len, Vector<const uc16> subject,
     30                                  bool unicode) {
     31   Address offset_a =
     32       reinterpret_cast<Address>(const_cast<uc16*>(&subject.at(from)));
     33   Address offset_b =
     34       reinterpret_cast<Address>(const_cast<uc16*>(&subject.at(current)));
     35   size_t length = len * kUC16Size;
     36   return RegExpMacroAssembler::CaseInsensitiveCompareUC16(
     37              offset_a, offset_b, length, unicode ? nullptr : isolate) == 1;
     38 }
     39 
     40 
     41 static bool BackRefMatchesNoCase(Isolate* isolate, int from, int current,
     42                                  int len, Vector<const uint8_t> subject,
     43                                  bool unicode) {
     44   // For Latin1 characters the unicode flag makes no difference.
     45   for (int i = 0; i < len; i++) {
     46     unsigned int old_char = subject[from++];
     47     unsigned int new_char = subject[current++];
     48     if (old_char == new_char) continue;
     49     // Convert both characters to lower case.
     50     old_char |= 0x20;
     51     new_char |= 0x20;
     52     if (old_char != new_char) return false;
     53     // Not letters in the ASCII range and Latin-1 range.
     54     if (!(old_char - 'a' <= 'z' - 'a') &&
     55         !(old_char - 224 <= 254 - 224 && old_char != 247)) {
     56       return false;
     57     }
     58   }
     59   return true;
     60 }
     61 
     62 
     63 #ifdef DEBUG
     64 static void TraceInterpreter(const byte* code_base,
     65                              const byte* pc,
     66                              int stack_depth,
     67                              int current_position,
     68                              uint32_t current_char,
     69                              int bytecode_length,
     70                              const char* bytecode_name) {
     71   if (FLAG_trace_regexp_bytecodes) {
     72     bool printable = (current_char < 127 && current_char >= 32);
     73     const char* format =
     74         printable ?
     75         "pc = %02x, sp = %d, curpos = %d, curchar = %08x (%c), bc = %s" :
     76         "pc = %02x, sp = %d, curpos = %d, curchar = %08x .%c., bc = %s";
     77     PrintF(format,
     78            pc - code_base,
     79            stack_depth,
     80            current_position,
     81            current_char,
     82            printable ? current_char : '.',
     83            bytecode_name);
     84     for (int i = 0; i < bytecode_length; i++) {
     85       printf(", %02x", pc[i]);
     86     }
     87     printf(" ");
     88     for (int i = 1; i < bytecode_length; i++) {
     89       unsigned char b = pc[i];
     90       if (b < 127 && b >= 32) {
     91         printf("%c", b);
     92       } else {
     93         printf(".");
     94       }
     95     }
     96     printf("\n");
     97   }
     98 }
     99 
    100 
    101 #define BYTECODE(name)                                                      \
    102   case BC_##name:                                                           \
    103     TraceInterpreter(code_base,                                             \
    104                      pc,                                                    \
    105                      static_cast<int>(backtrack_sp - backtrack_stack_base), \
    106                      current,                                               \
    107                      current_char,                                          \
    108                      BC_##name##_LENGTH,                                    \
    109                      #name);
    110 #else
    111 #define BYTECODE(name)                                                      \
    112   case BC_##name:
    113 #endif
    114 
    115 
    116 static int32_t Load32Aligned(const byte* pc) {
    117   DCHECK((reinterpret_cast<intptr_t>(pc) & 3) == 0);
    118   return *reinterpret_cast<const int32_t *>(pc);
    119 }
    120 
    121 
    122 static int32_t Load16Aligned(const byte* pc) {
    123   DCHECK((reinterpret_cast<intptr_t>(pc) & 1) == 0);
    124   return *reinterpret_cast<const uint16_t *>(pc);
    125 }
    126 
    127 
    128 // A simple abstraction over the backtracking stack used by the interpreter.
    129 // This backtracking stack does not grow automatically, but it ensures that the
    130 // the memory held by the stack is released or remembered in a cache if the
    131 // matching terminates.
    132 class BacktrackStack {
    133  public:
    134   BacktrackStack() { data_ = NewArray<int>(kBacktrackStackSize); }
    135 
    136   ~BacktrackStack() {
    137     DeleteArray(data_);
    138   }
    139 
    140   int* data() const { return data_; }
    141 
    142   int max_size() const { return kBacktrackStackSize; }
    143 
    144  private:
    145   static const int kBacktrackStackSize = 10000;
    146 
    147   int* data_;
    148 
    149   DISALLOW_COPY_AND_ASSIGN(BacktrackStack);
    150 };
    151 
    152 
    153 template <typename Char>
    154 static RegExpImpl::IrregexpResult RawMatch(Isolate* isolate,
    155                                            const byte* code_base,
    156                                            Vector<const Char> subject,
    157                                            int* registers,
    158                                            int current,
    159                                            uint32_t current_char) {
    160   const byte* pc = code_base;
    161   // BacktrackStack ensures that the memory allocated for the backtracking stack
    162   // is returned to the system or cached if there is no stack being cached at
    163   // the moment.
    164   BacktrackStack backtrack_stack;
    165   int* backtrack_stack_base = backtrack_stack.data();
    166   int* backtrack_sp = backtrack_stack_base;
    167   int backtrack_stack_space = backtrack_stack.max_size();
    168 #ifdef DEBUG
    169   if (FLAG_trace_regexp_bytecodes) {
    170     PrintF("\n\nStart bytecode interpreter\n\n");
    171   }
    172 #endif
    173   while (true) {
    174     int32_t insn = Load32Aligned(pc);
    175     switch (insn & BYTECODE_MASK) {
    176       BYTECODE(BREAK)
    177         UNREACHABLE();
    178         return RegExpImpl::RE_FAILURE;
    179       BYTECODE(PUSH_CP)
    180         if (--backtrack_stack_space < 0) {
    181           return RegExpImpl::RE_EXCEPTION;
    182         }
    183         *backtrack_sp++ = current;
    184         pc += BC_PUSH_CP_LENGTH;
    185         break;
    186       BYTECODE(PUSH_BT)
    187         if (--backtrack_stack_space < 0) {
    188           return RegExpImpl::RE_EXCEPTION;
    189         }
    190         *backtrack_sp++ = Load32Aligned(pc + 4);
    191         pc += BC_PUSH_BT_LENGTH;
    192         break;
    193       BYTECODE(PUSH_REGISTER)
    194         if (--backtrack_stack_space < 0) {
    195           return RegExpImpl::RE_EXCEPTION;
    196         }
    197         *backtrack_sp++ = registers[insn >> BYTECODE_SHIFT];
    198         pc += BC_PUSH_REGISTER_LENGTH;
    199         break;
    200       BYTECODE(SET_REGISTER)
    201         registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4);
    202         pc += BC_SET_REGISTER_LENGTH;
    203         break;
    204       BYTECODE(ADVANCE_REGISTER)
    205         registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4);
    206         pc += BC_ADVANCE_REGISTER_LENGTH;
    207         break;
    208       BYTECODE(SET_REGISTER_TO_CP)
    209         registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4);
    210         pc += BC_SET_REGISTER_TO_CP_LENGTH;
    211         break;
    212       BYTECODE(SET_CP_TO_REGISTER)
    213         current = registers[insn >> BYTECODE_SHIFT];
    214         pc += BC_SET_CP_TO_REGISTER_LENGTH;
    215         break;
    216       BYTECODE(SET_REGISTER_TO_SP)
    217         registers[insn >> BYTECODE_SHIFT] =
    218             static_cast<int>(backtrack_sp - backtrack_stack_base);
    219         pc += BC_SET_REGISTER_TO_SP_LENGTH;
    220         break;
    221       BYTECODE(SET_SP_TO_REGISTER)
    222         backtrack_sp = backtrack_stack_base + registers[insn >> BYTECODE_SHIFT];
    223         backtrack_stack_space = backtrack_stack.max_size() -
    224             static_cast<int>(backtrack_sp - backtrack_stack_base);
    225         pc += BC_SET_SP_TO_REGISTER_LENGTH;
    226         break;
    227       BYTECODE(POP_CP)
    228         backtrack_stack_space++;
    229         --backtrack_sp;
    230         current = *backtrack_sp;
    231         pc += BC_POP_CP_LENGTH;
    232         break;
    233       BYTECODE(POP_BT)
    234         backtrack_stack_space++;
    235         --backtrack_sp;
    236         pc = code_base + *backtrack_sp;
    237         break;
    238       BYTECODE(POP_REGISTER)
    239         backtrack_stack_space++;
    240         --backtrack_sp;
    241         registers[insn >> BYTECODE_SHIFT] = *backtrack_sp;
    242         pc += BC_POP_REGISTER_LENGTH;
    243         break;
    244       BYTECODE(FAIL)
    245         return RegExpImpl::RE_FAILURE;
    246       BYTECODE(SUCCEED)
    247         return RegExpImpl::RE_SUCCESS;
    248       BYTECODE(ADVANCE_CP)
    249         current += insn >> BYTECODE_SHIFT;
    250         pc += BC_ADVANCE_CP_LENGTH;
    251         break;
    252       BYTECODE(GOTO)
    253         pc = code_base + Load32Aligned(pc + 4);
    254         break;
    255       BYTECODE(ADVANCE_CP_AND_GOTO)
    256         current += insn >> BYTECODE_SHIFT;
    257         pc = code_base + Load32Aligned(pc + 4);
    258         break;
    259       BYTECODE(CHECK_GREEDY)
    260         if (current == backtrack_sp[-1]) {
    261           backtrack_sp--;
    262           backtrack_stack_space++;
    263           pc = code_base + Load32Aligned(pc + 4);
    264         } else {
    265           pc += BC_CHECK_GREEDY_LENGTH;
    266         }
    267         break;
    268       BYTECODE(LOAD_CURRENT_CHAR) {
    269         int pos = current + (insn >> BYTECODE_SHIFT);
    270         if (pos >= subject.length() || pos < 0) {
    271           pc = code_base + Load32Aligned(pc + 4);
    272         } else {
    273           current_char = subject[pos];
    274           pc += BC_LOAD_CURRENT_CHAR_LENGTH;
    275         }
    276         break;
    277       }
    278       BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) {
    279         int pos = current + (insn >> BYTECODE_SHIFT);
    280         current_char = subject[pos];
    281         pc += BC_LOAD_CURRENT_CHAR_UNCHECKED_LENGTH;
    282         break;
    283       }
    284       BYTECODE(LOAD_2_CURRENT_CHARS) {
    285         int pos = current + (insn >> BYTECODE_SHIFT);
    286         if (pos + 2 > subject.length() || pos < 0) {
    287           pc = code_base + Load32Aligned(pc + 4);
    288         } else {
    289           Char next = subject[pos + 1];
    290           current_char =
    291               (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
    292           pc += BC_LOAD_2_CURRENT_CHARS_LENGTH;
    293         }
    294         break;
    295       }
    296       BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) {
    297         int pos = current + (insn >> BYTECODE_SHIFT);
    298         Char next = subject[pos + 1];
    299         current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
    300         pc += BC_LOAD_2_CURRENT_CHARS_UNCHECKED_LENGTH;
    301         break;
    302       }
    303       BYTECODE(LOAD_4_CURRENT_CHARS) {
    304         DCHECK(sizeof(Char) == 1);
    305         int pos = current + (insn >> BYTECODE_SHIFT);
    306         if (pos + 4 > subject.length() || pos < 0) {
    307           pc = code_base + Load32Aligned(pc + 4);
    308         } else {
    309           Char next1 = subject[pos + 1];
    310           Char next2 = subject[pos + 2];
    311           Char next3 = subject[pos + 3];
    312           current_char = (subject[pos] |
    313                           (next1 << 8) |
    314                           (next2 << 16) |
    315                           (next3 << 24));
    316           pc += BC_LOAD_4_CURRENT_CHARS_LENGTH;
    317         }
    318         break;
    319       }
    320       BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) {
    321         DCHECK(sizeof(Char) == 1);
    322         int pos = current + (insn >> BYTECODE_SHIFT);
    323         Char next1 = subject[pos + 1];
    324         Char next2 = subject[pos + 2];
    325         Char next3 = subject[pos + 3];
    326         current_char = (subject[pos] |
    327                         (next1 << 8) |
    328                         (next2 << 16) |
    329                         (next3 << 24));
    330         pc += BC_LOAD_4_CURRENT_CHARS_UNCHECKED_LENGTH;
    331         break;
    332       }
    333       BYTECODE(CHECK_4_CHARS) {
    334         uint32_t c = Load32Aligned(pc + 4);
    335         if (c == current_char) {
    336           pc = code_base + Load32Aligned(pc + 8);
    337         } else {
    338           pc += BC_CHECK_4_CHARS_LENGTH;
    339         }
    340         break;
    341       }
    342       BYTECODE(CHECK_CHAR) {
    343         uint32_t c = (insn >> BYTECODE_SHIFT);
    344         if (c == current_char) {
    345           pc = code_base + Load32Aligned(pc + 4);
    346         } else {
    347           pc += BC_CHECK_CHAR_LENGTH;
    348         }
    349         break;
    350       }
    351       BYTECODE(CHECK_NOT_4_CHARS) {
    352         uint32_t c = Load32Aligned(pc + 4);
    353         if (c != current_char) {
    354           pc = code_base + Load32Aligned(pc + 8);
    355         } else {
    356           pc += BC_CHECK_NOT_4_CHARS_LENGTH;
    357         }
    358         break;
    359       }
    360       BYTECODE(CHECK_NOT_CHAR) {
    361         uint32_t c = (insn >> BYTECODE_SHIFT);
    362         if (c != current_char) {
    363           pc = code_base + Load32Aligned(pc + 4);
    364         } else {
    365           pc += BC_CHECK_NOT_CHAR_LENGTH;
    366         }
    367         break;
    368       }
    369       BYTECODE(AND_CHECK_4_CHARS) {
    370         uint32_t c = Load32Aligned(pc + 4);
    371         if (c == (current_char & Load32Aligned(pc + 8))) {
    372           pc = code_base + Load32Aligned(pc + 12);
    373         } else {
    374           pc += BC_AND_CHECK_4_CHARS_LENGTH;
    375         }
    376         break;
    377       }
    378       BYTECODE(AND_CHECK_CHAR) {
    379         uint32_t c = (insn >> BYTECODE_SHIFT);
    380         if (c == (current_char & Load32Aligned(pc + 4))) {
    381           pc = code_base + Load32Aligned(pc + 8);
    382         } else {
    383           pc += BC_AND_CHECK_CHAR_LENGTH;
    384         }
    385         break;
    386       }
    387       BYTECODE(AND_CHECK_NOT_4_CHARS) {
    388         uint32_t c = Load32Aligned(pc + 4);
    389         if (c != (current_char & Load32Aligned(pc + 8))) {
    390           pc = code_base + Load32Aligned(pc + 12);
    391         } else {
    392           pc += BC_AND_CHECK_NOT_4_CHARS_LENGTH;
    393         }
    394         break;
    395       }
    396       BYTECODE(AND_CHECK_NOT_CHAR) {
    397         uint32_t c = (insn >> BYTECODE_SHIFT);
    398         if (c != (current_char & Load32Aligned(pc + 4))) {
    399           pc = code_base + Load32Aligned(pc + 8);
    400         } else {
    401           pc += BC_AND_CHECK_NOT_CHAR_LENGTH;
    402         }
    403         break;
    404       }
    405       BYTECODE(MINUS_AND_CHECK_NOT_CHAR) {
    406         uint32_t c = (insn >> BYTECODE_SHIFT);
    407         uint32_t minus = Load16Aligned(pc + 4);
    408         uint32_t mask = Load16Aligned(pc + 6);
    409         if (c != ((current_char - minus) & mask)) {
    410           pc = code_base + Load32Aligned(pc + 8);
    411         } else {
    412           pc += BC_MINUS_AND_CHECK_NOT_CHAR_LENGTH;
    413         }
    414         break;
    415       }
    416       BYTECODE(CHECK_CHAR_IN_RANGE) {
    417         uint32_t from = Load16Aligned(pc + 4);
    418         uint32_t to = Load16Aligned(pc + 6);
    419         if (from <= current_char && current_char <= to) {
    420           pc = code_base + Load32Aligned(pc + 8);
    421         } else {
    422           pc += BC_CHECK_CHAR_IN_RANGE_LENGTH;
    423         }
    424         break;
    425       }
    426       BYTECODE(CHECK_CHAR_NOT_IN_RANGE) {
    427         uint32_t from = Load16Aligned(pc + 4);
    428         uint32_t to = Load16Aligned(pc + 6);
    429         if (from > current_char || current_char > to) {
    430           pc = code_base + Load32Aligned(pc + 8);
    431         } else {
    432           pc += BC_CHECK_CHAR_NOT_IN_RANGE_LENGTH;
    433         }
    434         break;
    435       }
    436       BYTECODE(CHECK_BIT_IN_TABLE) {
    437         int mask = RegExpMacroAssembler::kTableMask;
    438         byte b = pc[8 + ((current_char & mask) >> kBitsPerByteLog2)];
    439         int bit = (current_char & (kBitsPerByte - 1));
    440         if ((b & (1 << bit)) != 0) {
    441           pc = code_base + Load32Aligned(pc + 4);
    442         } else {
    443           pc += BC_CHECK_BIT_IN_TABLE_LENGTH;
    444         }
    445         break;
    446       }
    447       BYTECODE(CHECK_LT) {
    448         uint32_t limit = (insn >> BYTECODE_SHIFT);
    449         if (current_char < limit) {
    450           pc = code_base + Load32Aligned(pc + 4);
    451         } else {
    452           pc += BC_CHECK_LT_LENGTH;
    453         }
    454         break;
    455       }
    456       BYTECODE(CHECK_GT) {
    457         uint32_t limit = (insn >> BYTECODE_SHIFT);
    458         if (current_char > limit) {
    459           pc = code_base + Load32Aligned(pc + 4);
    460         } else {
    461           pc += BC_CHECK_GT_LENGTH;
    462         }
    463         break;
    464       }
    465       BYTECODE(CHECK_REGISTER_LT)
    466         if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) {
    467           pc = code_base + Load32Aligned(pc + 8);
    468         } else {
    469           pc += BC_CHECK_REGISTER_LT_LENGTH;
    470         }
    471         break;
    472       BYTECODE(CHECK_REGISTER_GE)
    473         if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) {
    474           pc = code_base + Load32Aligned(pc + 8);
    475         } else {
    476           pc += BC_CHECK_REGISTER_GE_LENGTH;
    477         }
    478         break;
    479       BYTECODE(CHECK_REGISTER_EQ_POS)
    480         if (registers[insn >> BYTECODE_SHIFT] == current) {
    481           pc = code_base + Load32Aligned(pc + 4);
    482         } else {
    483           pc += BC_CHECK_REGISTER_EQ_POS_LENGTH;
    484         }
    485         break;
    486       BYTECODE(CHECK_NOT_REGS_EQUAL)
    487         if (registers[insn >> BYTECODE_SHIFT] ==
    488             registers[Load32Aligned(pc + 4)]) {
    489           pc += BC_CHECK_NOT_REGS_EQUAL_LENGTH;
    490         } else {
    491           pc = code_base + Load32Aligned(pc + 8);
    492         }
    493         break;
    494       BYTECODE(CHECK_NOT_BACK_REF) {
    495         int from = registers[insn >> BYTECODE_SHIFT];
    496         int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
    497         if (from >= 0 && len > 0) {
    498           if (current + len > subject.length() ||
    499               CompareChars(&subject[from], &subject[current], len) != 0) {
    500             pc = code_base + Load32Aligned(pc + 4);
    501             break;
    502           }
    503           current += len;
    504         }
    505         pc += BC_CHECK_NOT_BACK_REF_LENGTH;
    506         break;
    507       }
    508       BYTECODE(CHECK_NOT_BACK_REF_BACKWARD) {
    509         int from = registers[insn >> BYTECODE_SHIFT];
    510         int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
    511         if (from >= 0 && len > 0) {
    512           if (current - len < 0 ||
    513               CompareChars(&subject[from], &subject[current - len], len) != 0) {
    514             pc = code_base + Load32Aligned(pc + 4);
    515             break;
    516           }
    517           current -= len;
    518         }
    519         pc += BC_CHECK_NOT_BACK_REF_BACKWARD_LENGTH;
    520         break;
    521       }
    522       BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE)
    523       BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) {
    524         bool unicode =
    525             (insn & BYTECODE_MASK) == BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE;
    526         int from = registers[insn >> BYTECODE_SHIFT];
    527         int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
    528         if (from >= 0 && len > 0) {
    529           if (current + len > subject.length() ||
    530               !BackRefMatchesNoCase(isolate, from, current, len, subject,
    531                                     unicode)) {
    532             pc = code_base + Load32Aligned(pc + 4);
    533             break;
    534           }
    535           current += len;
    536         }
    537         pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH;
    538         break;
    539       }
    540       BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD)
    541       BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD) {
    542         bool unicode = (insn & BYTECODE_MASK) ==
    543                        BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD;
    544         int from = registers[insn >> BYTECODE_SHIFT];
    545         int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
    546         if (from >= 0 && len > 0) {
    547           if (current - len < 0 ||
    548               !BackRefMatchesNoCase(isolate, from, current - len, len, subject,
    549                                     unicode)) {
    550             pc = code_base + Load32Aligned(pc + 4);
    551             break;
    552           }
    553           current -= len;
    554         }
    555         pc += BC_CHECK_NOT_BACK_REF_NO_CASE_BACKWARD_LENGTH;
    556         break;
    557       }
    558       BYTECODE(CHECK_AT_START)
    559         if (current == 0) {
    560           pc = code_base + Load32Aligned(pc + 4);
    561         } else {
    562           pc += BC_CHECK_AT_START_LENGTH;
    563         }
    564         break;
    565       BYTECODE(CHECK_NOT_AT_START)
    566         if (current + (insn >> BYTECODE_SHIFT) == 0) {
    567           pc += BC_CHECK_NOT_AT_START_LENGTH;
    568         } else {
    569           pc = code_base + Load32Aligned(pc + 4);
    570         }
    571         break;
    572       BYTECODE(SET_CURRENT_POSITION_FROM_END) {
    573         int by = static_cast<uint32_t>(insn) >> BYTECODE_SHIFT;
    574         if (subject.length() - current > by) {
    575           current = subject.length() - by;
    576           current_char = subject[current - 1];
    577         }
    578         pc += BC_SET_CURRENT_POSITION_FROM_END_LENGTH;
    579         break;
    580       }
    581       default:
    582         UNREACHABLE();
    583         break;
    584     }
    585   }
    586 }
    587 
    588 
    589 RegExpImpl::IrregexpResult IrregexpInterpreter::Match(
    590     Isolate* isolate,
    591     Handle<ByteArray> code_array,
    592     Handle<String> subject,
    593     int* registers,
    594     int start_position) {
    595   DCHECK(subject->IsFlat());
    596 
    597   DisallowHeapAllocation no_gc;
    598   const byte* code_base = code_array->GetDataStartAddress();
    599   uc16 previous_char = '\n';
    600   String::FlatContent subject_content = subject->GetFlatContent();
    601   if (subject_content.IsOneByte()) {
    602     Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector();
    603     if (start_position != 0) previous_char = subject_vector[start_position - 1];
    604     return RawMatch(isolate,
    605                     code_base,
    606                     subject_vector,
    607                     registers,
    608                     start_position,
    609                     previous_char);
    610   } else {
    611     DCHECK(subject_content.IsTwoByte());
    612     Vector<const uc16> subject_vector = subject_content.ToUC16Vector();
    613     if (start_position != 0) previous_char = subject_vector[start_position - 1];
    614     return RawMatch(isolate,
    615                     code_base,
    616                     subject_vector,
    617                     registers,
    618                     start_position,
    619                     previous_char);
    620   }
    621 }
    622 
    623 }  // namespace internal
    624 }  // namespace v8
    625 
    626 #endif  // V8_INTERPRETED_REGEXP
    627