Home | History | Annotate | Download | only in src
      1 // Copyright 2017, VIXL authors
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are met:
      6 //
      7 //   * Redistributions of source code must retain the above copyright notice,
      8 //     this list of conditions and the following disclaimer.
      9 //   * Redistributions in binary form must reproduce the above copyright notice,
     10 //     this list of conditions and the following disclaimer in the documentation
     11 //     and/or other materials provided with the distribution.
     12 //   * Neither the name of ARM Limited nor the names of its contributors may be
     13 //     used to endorse or promote products derived from this software without
     14 //     specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
     17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
     20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26 
     27 #ifndef VIXL_POOL_MANAGER_IMPL_H_
     28 #define VIXL_POOL_MANAGER_IMPL_H_
     29 
     30 #include "pool-manager.h"
     31 
     32 #include <algorithm>
     33 #include "assembler-base-vixl.h"
     34 
     35 namespace vixl {
     36 
     37 
     38 template <typename T>
     39 T PoolManager<T>::Emit(MacroAssemblerInterface* masm,
     40                        T pc,
     41                        int num_bytes,
     42                        ForwardReference<T>* new_reference,
     43                        LocationBase<T>* new_object,
     44                        EmitOption option) {
     45   // Make sure that the buffer still has the alignment we think it does.
     46   VIXL_ASSERT(IsAligned(masm->AsAssemblerBase()
     47                             ->GetBuffer()
     48                             ->GetStartAddress<uintptr_t>(),
     49                         buffer_alignment_));
     50 
     51   // We should not call this method when the pools are blocked.
     52   VIXL_ASSERT(!IsBlocked());
     53   if (objects_.empty()) return pc;
     54 
     55   // Emit header.
     56   if (option == kBranchRequired) {
     57     masm->EmitPoolHeader();
     58     // TODO: The pc at this point might not actually be aligned according to
     59     // alignment_. This is to support the current AARCH32 MacroAssembler which
     60     // does not have a fixed size instruction set. In practice, the pc will be
     61     // aligned to the alignment instructions need for the current instruction
     62     // set, so we do not need to align it here. All other calculations do take
     63     // the alignment into account, which only makes the checkpoint calculations
     64     // more conservative when we use T32. Uncomment the following assertion if
     65     // the AARCH32 MacroAssembler is modified to only support one ISA at the
     66     // time.
     67     // VIXL_ASSERT(pc == AlignUp(pc, alignment_));
     68     pc += header_size_;
     69   } else {
     70     // If the header is optional, we might need to add some extra padding to
     71     // meet the minimum location of the first object.
     72     if (pc < objects_[0].min_location_) {
     73       int32_t padding = objects_[0].min_location_ - pc;
     74       masm->EmitNopBytes(padding);
     75       pc += padding;
     76     }
     77   }
     78 
     79   PoolObject<T>* existing_object = GetObjectIfTracked(new_object);
     80 
     81   // Go through all objects and emit one by one.
     82   for (objects_iter iter = objects_.begin(); iter != objects_.end();) {
     83     PoolObject<T>& current = *iter;
     84     if (ShouldSkipObject(&current,
     85                          pc,
     86                          num_bytes,
     87                          new_reference,
     88                          new_object,
     89                          existing_object)) {
     90       ++iter;
     91       continue;
     92     }
     93     LocationBase<T>* label_base = current.label_base_;
     94     T aligned_pc = AlignUp(pc, current.alignment_);
     95     masm->EmitPaddingBytes(aligned_pc - pc);
     96     pc = aligned_pc;
     97     VIXL_ASSERT(pc >= current.min_location_);
     98     VIXL_ASSERT(pc <= current.max_location_);
     99     // First call SetLocation, which will also resolve the references, and then
    100     // call EmitPoolObject, which might add a new reference.
    101     label_base->SetLocation(masm->AsAssemblerBase(), pc);
    102     label_base->EmitPoolObject(masm);
    103     int object_size = label_base->GetPoolObjectSizeInBytes();
    104     if (label_base->ShouldDeletePoolObjectOnPlacement()) {
    105       label_base->MarkBound();
    106       iter = RemoveAndDelete(iter);
    107     } else {
    108       VIXL_ASSERT(!current.label_base_->ShouldDeletePoolObjectOnPlacement());
    109       current.label_base_->UpdatePoolObject(&current);
    110       VIXL_ASSERT(current.alignment_ >= label_base->GetPoolObjectAlignment());
    111       ++iter;
    112     }
    113     pc += object_size;
    114   }
    115 
    116   // Recalculate the checkpoint before emitting the footer. The footer might
    117   // call Bind() which will check if we need to emit.
    118   RecalculateCheckpoint();
    119 
    120   // Always emit footer - this might add some padding.
    121   masm->EmitPoolFooter();
    122   pc = AlignUp(pc, alignment_);
    123 
    124   return pc;
    125 }
    126 
    127 template <typename T>
    128 bool PoolManager<T>::ShouldSkipObject(PoolObject<T>* pool_object,
    129                                       T pc,
    130                                       int num_bytes,
    131                                       ForwardReference<T>* new_reference,
    132                                       LocationBase<T>* new_object,
    133                                       PoolObject<T>* existing_object) const {
    134   // We assume that all objects before this have been skipped and all objects
    135   // after this will be emitted, therefore we will emit the whole pool. Add
    136   // the header size and alignment, as well as the number of bytes we are
    137   // planning to emit.
    138   T max_actual_location = pc + num_bytes + max_pool_size_;
    139 
    140   if (new_reference != NULL) {
    141     // If we're adding a new object, also assume that it will have to be emitted
    142     // before the object we are considering to skip.
    143     VIXL_ASSERT(new_object != NULL);
    144     T new_object_alignment = std::max(new_reference->object_alignment_,
    145                                       new_object->GetPoolObjectAlignment());
    146     if ((existing_object != NULL) &&
    147         (existing_object->alignment_ > new_object_alignment)) {
    148       new_object_alignment = existing_object->alignment_;
    149     }
    150     max_actual_location +=
    151         (new_object->GetPoolObjectSizeInBytes() + new_object_alignment - 1);
    152   }
    153 
    154   // Hard limit.
    155   if (max_actual_location >= pool_object->max_location_) return false;
    156 
    157   // Use heuristic.
    158   return (pc < pool_object->skip_until_location_hint_);
    159 }
    160 
    161 template <typename T>
    162 T PoolManager<T>::UpdateCheckpointForObject(T checkpoint,
    163                                             const PoolObject<T>* object) {
    164   checkpoint -= object->label_base_->GetPoolObjectSizeInBytes();
    165   if (checkpoint > object->max_location_) checkpoint = object->max_location_;
    166   checkpoint = AlignDown(checkpoint, object->alignment_);
    167   return checkpoint;
    168 }
    169 
    170 template <typename T>
    171 static T MaxCheckpoint() {
    172   return std::numeric_limits<T>::max();
    173 }
    174 
    175 template <typename T>
    176 static inline bool CheckCurrentPC(T pc, T checkpoint) {
    177   VIXL_ASSERT(pc <= checkpoint);
    178   // We must emit the pools if we are at the checkpoint now.
    179   return pc == checkpoint;
    180 }
    181 
    182 template <typename T>
    183 static inline bool CheckFuturePC(T pc, T checkpoint) {
    184   // We do not need to emit the pools now if the projected future PC will be
    185   // equal to the checkpoint (we will need to emit the pools then).
    186   return pc > checkpoint;
    187 }
    188 
    189 template <typename T>
    190 bool PoolManager<T>::MustEmit(T pc,
    191                               int num_bytes,
    192                               ForwardReference<T>* reference,
    193                               LocationBase<T>* label_base) const {
    194   // Check if we are at or past the checkpoint.
    195   if (CheckCurrentPC(pc, checkpoint_)) return true;
    196 
    197   // Check if the future PC will be past the checkpoint.
    198   pc += num_bytes;
    199   if (CheckFuturePC(pc, checkpoint_)) return true;
    200 
    201   // No new reference - nothing to do.
    202   if (reference == NULL) {
    203     VIXL_ASSERT(label_base == NULL);
    204     return false;
    205   }
    206 
    207   if (objects_.empty()) {
    208     // Basic assertions that restrictions on the new (and only) reference are
    209     // possible to satisfy.
    210     VIXL_ASSERT(AlignUp(pc + header_size_, alignment_) >=
    211                 reference->min_object_location_);
    212     VIXL_ASSERT(pc <= reference->max_object_location_);
    213     return false;
    214   }
    215 
    216   // Check if the object is already being tracked.
    217   const PoolObject<T>* existing_object = GetObjectIfTracked(label_base);
    218   if (existing_object != NULL) {
    219     // If the existing_object is already in existing_objects_ and its new
    220     // alignment and new location restrictions are not stricter, skip the more
    221     // expensive check.
    222     if ((reference->min_object_location_ <= existing_object->min_location_) &&
    223         (reference->max_object_location_ >= existing_object->max_location_) &&
    224         (reference->object_alignment_ <= existing_object->alignment_)) {
    225       return false;
    226     }
    227   }
    228 
    229   // Create a temporary object.
    230   PoolObject<T> temp(label_base);
    231   temp.RestrictRange(reference->min_object_location_,
    232                      reference->max_object_location_);
    233   temp.RestrictAlignment(reference->object_alignment_);
    234   if (existing_object != NULL) {
    235     temp.RestrictRange(existing_object->min_location_,
    236                        existing_object->max_location_);
    237     temp.RestrictAlignment(existing_object->alignment_);
    238   }
    239 
    240   // Check if the new reference can be added after the end of the current pool.
    241   // If yes, we don't need to emit.
    242   T last_reachable = AlignDown(temp.max_location_, temp.alignment_);
    243   const PoolObject<T>& last = objects_.back();
    244   T after_pool = AlignDown(last.max_location_, last.alignment_) +
    245                  last.label_base_->GetPoolObjectSizeInBytes();
    246   // The current object can be placed at the end of the pool, even if the last
    247   // object is placed at the last possible location.
    248   if (last_reachable >= after_pool) return false;
    249   // The current object can be placed after the code we are about to emit and
    250   // after the existing pool (with a pessimistic size estimate).
    251   if (last_reachable >= pc + num_bytes + max_pool_size_) return false;
    252 
    253   // We're not in a trivial case, so we need to recalculate the checkpoint.
    254 
    255   // Check (conservatively) if we can fit it into the objects_ array, without
    256   // breaking our assumptions. Here we want to recalculate the checkpoint as
    257   // if the new reference was added to the PoolManager but without actually
    258   // adding it (as removing it is non-trivial).
    259 
    260   T checkpoint = MaxCheckpoint<T>();
    261   // Will temp be the last object in objects_?
    262   if (PoolObjectLessThan(last, temp)) {
    263     checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
    264     if (checkpoint < temp.min_location_) return true;
    265   }
    266 
    267   bool tempNotPlacedYet = true;
    268   for (int i = static_cast<int>(objects_.size()) - 1; i >= 0; --i) {
    269     const PoolObject<T>& current = objects_[i];
    270     if (tempNotPlacedYet && PoolObjectLessThan(current, temp)) {
    271       checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
    272       if (checkpoint < temp.min_location_) return true;
    273       if (CheckFuturePC(pc, checkpoint)) return true;
    274       tempNotPlacedYet = false;
    275     }
    276     if (current.label_base_ == label_base) continue;
    277     checkpoint = UpdateCheckpointForObject(checkpoint, &current);
    278     if (checkpoint < current.min_location_) return true;
    279     if (CheckFuturePC(pc, checkpoint)) return true;
    280   }
    281   // temp is the object with the smallest max_location_.
    282   if (tempNotPlacedYet) {
    283     checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
    284     if (checkpoint < temp.min_location_) return true;
    285   }
    286 
    287   // Take the header into account.
    288   checkpoint -= header_size_;
    289   checkpoint = AlignDown(checkpoint, alignment_);
    290 
    291   return CheckFuturePC(pc, checkpoint);
    292 }
    293 
    294 template <typename T>
    295 void PoolManager<T>::RecalculateCheckpoint(SortOption sort_option) {
    296   // TODO: Improve the max_pool_size_ estimate by starting from the
    297   // min_location_ of the first object, calculating the end of the pool as if
    298   // all objects were placed starting from there, and in the end adding the
    299   // maximum object alignment found minus one (which is the maximum extra
    300   // padding we would need if we were to relocate the pool to a different
    301   // address).
    302   max_pool_size_ = 0;
    303 
    304   if (objects_.empty()) {
    305     checkpoint_ = MaxCheckpoint<T>();
    306     return;
    307   }
    308 
    309   // Sort objects by their max_location_.
    310   if (sort_option == kSortRequired) {
    311     std::sort(objects_.begin(), objects_.end(), PoolObjectLessThan);
    312   }
    313 
    314   // Add the header size and header and footer max alignment to the maximum
    315   // pool size.
    316   max_pool_size_ += header_size_ + 2 * (alignment_ - 1);
    317 
    318   T checkpoint = MaxCheckpoint<T>();
    319   int last_object_index = static_cast<int>(objects_.size()) - 1;
    320   for (int i = last_object_index; i >= 0; --i) {
    321     // Bring back the checkpoint by the size of the current object, unless
    322     // we need to bring it back more, then align.
    323     PoolObject<T>& current = objects_[i];
    324     checkpoint = UpdateCheckpointForObject(checkpoint, &current);
    325     VIXL_ASSERT(checkpoint >= current.min_location_);
    326     max_pool_size_ += (current.alignment_ - 1 +
    327                        current.label_base_->GetPoolObjectSizeInBytes());
    328   }
    329   // Take the header into account.
    330   checkpoint -= header_size_;
    331   checkpoint = AlignDown(checkpoint, alignment_);
    332 
    333   // Update the checkpoint of the pool manager.
    334   checkpoint_ = checkpoint;
    335 
    336   // NOTE: To handle min_location_ in the generic case, we could make a second
    337   // pass of the objects_ vector, increasing the checkpoint as needed, while
    338   // maintaining the alignment requirements.
    339   // It should not be possible to have any issues with min_location_ with actual
    340   // code, since there should always be some kind of branch over the pool,
    341   // whether introduced by the pool emission or by the user, which will make
    342   // sure the min_location_ requirement is satisfied. It's possible that the
    343   // user could emit code in the literal pool and intentionally load the first
    344   // value and then fall-through into the pool, but that is not a supported use
    345   // of VIXL and we will assert in that case.
    346 }
    347 
    348 template <typename T>
    349 bool PoolManager<T>::PoolObjectLessThan(const PoolObject<T>& a,
    350                                         const PoolObject<T>& b) {
    351   if (a.max_location_ != b.max_location_)
    352     return (a.max_location_ < b.max_location_);
    353   int a_size = a.label_base_->GetPoolObjectSizeInBytes();
    354   int b_size = b.label_base_->GetPoolObjectSizeInBytes();
    355   if (a_size != b_size) return (a_size < b_size);
    356   if (a.alignment_ != b.alignment_) return (a.alignment_ < b.alignment_);
    357   if (a.min_location_ != b.min_location_)
    358     return (a.min_location_ < b.min_location_);
    359   return false;
    360 }
    361 
    362 template <typename T>
    363 void PoolManager<T>::AddObjectReference(const ForwardReference<T>* reference,
    364                                         LocationBase<T>* label_base) {
    365   VIXL_ASSERT(reference->object_alignment_ <= buffer_alignment_);
    366   VIXL_ASSERT(label_base->GetPoolObjectAlignment() <= buffer_alignment_);
    367 
    368   PoolObject<T>* object = GetObjectIfTracked(label_base);
    369 
    370   if (object == NULL) {
    371     PoolObject<T> new_object(label_base);
    372     new_object.RestrictRange(reference->min_object_location_,
    373                              reference->max_object_location_);
    374     new_object.RestrictAlignment(reference->object_alignment_);
    375     Insert(new_object);
    376   } else {
    377     object->RestrictRange(reference->min_object_location_,
    378                           reference->max_object_location_);
    379     object->RestrictAlignment(reference->object_alignment_);
    380 
    381     // Move the object, if needed.
    382     if (objects_.size() != 1) {
    383       PoolObject<T> new_object(*object);
    384       ptrdiff_t distance = std::distance(objects_.data(), object);
    385       objects_.erase(objects_.begin() + distance);
    386       Insert(new_object);
    387     }
    388   }
    389   // No need to sort, we inserted the object in an already sorted array.
    390   RecalculateCheckpoint(kNoSortRequired);
    391 }
    392 
    393 template <typename T>
    394 void PoolManager<T>::Insert(const PoolObject<T>& new_object) {
    395   bool inserted = false;
    396   // Place the object in the right position.
    397   for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
    398     PoolObject<T>& current = *iter;
    399     if (!PoolObjectLessThan(current, new_object)) {
    400       objects_.insert(iter, new_object);
    401       inserted = true;
    402       break;
    403     }
    404   }
    405   if (!inserted) {
    406     objects_.push_back(new_object);
    407   }
    408 }
    409 
    410 template <typename T>
    411 void PoolManager<T>::RemoveAndDelete(PoolObject<T>* object) {
    412   for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
    413     PoolObject<T>& current = *iter;
    414     if (current.label_base_ == object->label_base_) {
    415       (void)RemoveAndDelete(iter);
    416       return;
    417     }
    418   }
    419   VIXL_UNREACHABLE();
    420 }
    421 
    422 template <typename T>
    423 typename PoolManager<T>::objects_iter PoolManager<T>::RemoveAndDelete(
    424     objects_iter iter) {
    425   PoolObject<T>& object = *iter;
    426   LocationBase<T>* label_base = object.label_base_;
    427 
    428   // Check if we also need to delete the LocationBase object.
    429   if (label_base->ShouldBeDeletedOnPoolManagerDestruction()) {
    430     delete_on_destruction_.push_back(label_base);
    431   }
    432   if (label_base->ShouldBeDeletedOnPlacementByPoolManager()) {
    433     VIXL_ASSERT(!label_base->ShouldBeDeletedOnPoolManagerDestruction());
    434     delete label_base;
    435   }
    436 
    437   return objects_.erase(iter);
    438 }
    439 
    440 template <typename T>
    441 T PoolManager<T>::Bind(MacroAssemblerInterface* masm,
    442                        LocationBase<T>* object,
    443                        T location) {
    444   PoolObject<T>* existing_object = GetObjectIfTracked(object);
    445   int alignment;
    446   T min_location;
    447   if (existing_object == NULL) {
    448     alignment = object->GetMaxAlignment();
    449     min_location = object->GetMinLocation();
    450   } else {
    451     alignment = existing_object->alignment_;
    452     min_location = existing_object->min_location_;
    453   }
    454 
    455   // Align if needed, and add necessary padding to reach the min_location_.
    456   T aligned_location = AlignUp(location, alignment);
    457   masm->EmitNopBytes(aligned_location - location);
    458   location = aligned_location;
    459   while (location < min_location) {
    460     masm->EmitNopBytes(alignment);
    461     location += alignment;
    462   }
    463 
    464   object->SetLocation(masm->AsAssemblerBase(), location);
    465   object->MarkBound();
    466 
    467   if (existing_object != NULL) {
    468     RemoveAndDelete(existing_object);
    469     // No need to sort, we removed the object from a sorted array.
    470     RecalculateCheckpoint(kNoSortRequired);
    471   }
    472 
    473   // We assume that the maximum padding we can possibly add here is less
    474   // than the header alignment - hence that we're not going to go past our
    475   // checkpoint.
    476   VIXL_ASSERT(!CheckFuturePC(location, checkpoint_));
    477   return location;
    478 }
    479 
    480 template <typename T>
    481 void PoolManager<T>::Release(T pc) {
    482   USE(pc);
    483   if (--monitor_ == 0) {
    484     // Ensure the pool has not been blocked for too long.
    485     VIXL_ASSERT(pc <= checkpoint_);
    486   }
    487 }
    488 
    489 template <typename T>
    490 PoolManager<T>::~PoolManager<T>() {
    491 #ifdef VIXL_DEBUG
    492   // Check for unbound objects.
    493   for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
    494     // There should not be any bound objects left in the pool. For unbound
    495     // objects, we will check in the destructor of the object itself.
    496     VIXL_ASSERT(!(*iter).label_base_->IsBound());
    497   }
    498 #endif
    499   // Delete objects the pool manager owns.
    500   for (typename std::vector<LocationBase<T> *>::iterator
    501            iter = delete_on_destruction_.begin(),
    502            end = delete_on_destruction_.end();
    503        iter != end;
    504        ++iter) {
    505     delete *iter;
    506   }
    507 }
    508 
    509 template <typename T>
    510 int PoolManager<T>::GetPoolSizeForTest() const {
    511   // Iterate over objects and return their cumulative size. This does not take
    512   // any padding into account, just the size of the objects themselves.
    513   int size = 0;
    514   for (const_objects_iter iter = objects_.begin(); iter != objects_.end();
    515        ++iter) {
    516     size += (*iter).label_base_->GetPoolObjectSizeInBytes();
    517   }
    518   return size;
    519 }
    520 }
    521 
    522 #endif  // VIXL_POOL_MANAGER_IMPL_H_
    523