Home | History | Annotate | Download | only in dsp
      1 // Copyright 2015 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // SSE2 variant of alpha filters
     11 //
     12 // Author: Skal (pascal.massimino (at) gmail.com)
     13 
     14 #include "src/dsp/dsp.h"
     15 
     16 #if defined(WEBP_USE_SSE2)
     17 
     18 #include <assert.h>
     19 #include <emmintrin.h>
     20 #include <stdlib.h>
     21 #include <string.h>
     22 
     23 //------------------------------------------------------------------------------
     24 // Helpful macro.
     25 
     26 # define SANITY_CHECK(in, out)                                                 \
     27   assert((in) != NULL);                                                        \
     28   assert((out) != NULL);                                                       \
     29   assert(width > 0);                                                           \
     30   assert(height > 0);                                                          \
     31   assert(stride >= width);                                                     \
     32   assert(row >= 0 && num_rows > 0 && row + num_rows <= height);                \
     33   (void)height;  // Silence unused warning.
     34 
     35 static void PredictLineTop_SSE2(const uint8_t* src, const uint8_t* pred,
     36                                 uint8_t* dst, int length) {
     37   int i;
     38   const int max_pos = length & ~31;
     39   assert(length >= 0);
     40   for (i = 0; i < max_pos; i += 32) {
     41     const __m128i A0 = _mm_loadu_si128((const __m128i*)&src[i +  0]);
     42     const __m128i A1 = _mm_loadu_si128((const __m128i*)&src[i + 16]);
     43     const __m128i B0 = _mm_loadu_si128((const __m128i*)&pred[i +  0]);
     44     const __m128i B1 = _mm_loadu_si128((const __m128i*)&pred[i + 16]);
     45     const __m128i C0 = _mm_sub_epi8(A0, B0);
     46     const __m128i C1 = _mm_sub_epi8(A1, B1);
     47     _mm_storeu_si128((__m128i*)&dst[i +  0], C0);
     48     _mm_storeu_si128((__m128i*)&dst[i + 16], C1);
     49   }
     50   for (; i < length; ++i) dst[i] = src[i] - pred[i];
     51 }
     52 
     53 // Special case for left-based prediction (when preds==dst-1 or preds==src-1).
     54 static void PredictLineLeft_SSE2(const uint8_t* src, uint8_t* dst, int length) {
     55   int i;
     56   const int max_pos = length & ~31;
     57   assert(length >= 0);
     58   for (i = 0; i < max_pos; i += 32) {
     59     const __m128i A0 = _mm_loadu_si128((const __m128i*)(src + i +  0    ));
     60     const __m128i B0 = _mm_loadu_si128((const __m128i*)(src + i +  0 - 1));
     61     const __m128i A1 = _mm_loadu_si128((const __m128i*)(src + i + 16    ));
     62     const __m128i B1 = _mm_loadu_si128((const __m128i*)(src + i + 16 - 1));
     63     const __m128i C0 = _mm_sub_epi8(A0, B0);
     64     const __m128i C1 = _mm_sub_epi8(A1, B1);
     65     _mm_storeu_si128((__m128i*)(dst + i +  0), C0);
     66     _mm_storeu_si128((__m128i*)(dst + i + 16), C1);
     67   }
     68   for (; i < length; ++i) dst[i] = src[i] - src[i - 1];
     69 }
     70 
     71 //------------------------------------------------------------------------------
     72 // Horizontal filter.
     73 
     74 static WEBP_INLINE void DoHorizontalFilter_SSE2(const uint8_t* in,
     75                                                 int width, int height,
     76                                                 int stride,
     77                                                 int row, int num_rows,
     78                                                 uint8_t* out) {
     79   const size_t start_offset = row * stride;
     80   const int last_row = row + num_rows;
     81   SANITY_CHECK(in, out);
     82   in += start_offset;
     83   out += start_offset;
     84 
     85   if (row == 0) {
     86     // Leftmost pixel is the same as input for topmost scanline.
     87     out[0] = in[0];
     88     PredictLineLeft_SSE2(in + 1, out + 1, width - 1);
     89     row = 1;
     90     in += stride;
     91     out += stride;
     92   }
     93 
     94   // Filter line-by-line.
     95   while (row < last_row) {
     96     // Leftmost pixel is predicted from above.
     97     out[0] = in[0] - in[-stride];
     98     PredictLineLeft_SSE2(in + 1, out + 1, width - 1);
     99     ++row;
    100     in += stride;
    101     out += stride;
    102   }
    103 }
    104 
    105 //------------------------------------------------------------------------------
    106 // Vertical filter.
    107 
    108 static WEBP_INLINE void DoVerticalFilter_SSE2(const uint8_t* in,
    109                                               int width, int height, int stride,
    110                                               int row, int num_rows,
    111                                               uint8_t* out) {
    112   const size_t start_offset = row * stride;
    113   const int last_row = row + num_rows;
    114   SANITY_CHECK(in, out);
    115   in += start_offset;
    116   out += start_offset;
    117 
    118   if (row == 0) {
    119     // Very first top-left pixel is copied.
    120     out[0] = in[0];
    121     // Rest of top scan-line is left-predicted.
    122     PredictLineLeft_SSE2(in + 1, out + 1, width - 1);
    123     row = 1;
    124     in += stride;
    125     out += stride;
    126   }
    127 
    128   // Filter line-by-line.
    129   while (row < last_row) {
    130     PredictLineTop_SSE2(in, in - stride, out, width);
    131     ++row;
    132     in += stride;
    133     out += stride;
    134   }
    135 }
    136 
    137 //------------------------------------------------------------------------------
    138 // Gradient filter.
    139 
    140 static WEBP_INLINE int GradientPredictor_SSE2(uint8_t a, uint8_t b, uint8_t c) {
    141   const int g = a + b - c;
    142   return ((g & ~0xff) == 0) ? g : (g < 0) ? 0 : 255;  // clip to 8bit
    143 }
    144 
    145 static void GradientPredictDirect_SSE2(const uint8_t* const row,
    146                                        const uint8_t* const top,
    147                                        uint8_t* const out, int length) {
    148   const int max_pos = length & ~7;
    149   int i;
    150   const __m128i zero = _mm_setzero_si128();
    151   for (i = 0; i < max_pos; i += 8) {
    152     const __m128i A0 = _mm_loadl_epi64((const __m128i*)&row[i - 1]);
    153     const __m128i B0 = _mm_loadl_epi64((const __m128i*)&top[i]);
    154     const __m128i C0 = _mm_loadl_epi64((const __m128i*)&top[i - 1]);
    155     const __m128i D = _mm_loadl_epi64((const __m128i*)&row[i]);
    156     const __m128i A1 = _mm_unpacklo_epi8(A0, zero);
    157     const __m128i B1 = _mm_unpacklo_epi8(B0, zero);
    158     const __m128i C1 = _mm_unpacklo_epi8(C0, zero);
    159     const __m128i E = _mm_add_epi16(A1, B1);
    160     const __m128i F = _mm_sub_epi16(E, C1);
    161     const __m128i G = _mm_packus_epi16(F, zero);
    162     const __m128i H = _mm_sub_epi8(D, G);
    163     _mm_storel_epi64((__m128i*)(out + i), H);
    164   }
    165   for (; i < length; ++i) {
    166     out[i] = row[i] - GradientPredictor_SSE2(row[i - 1], top[i], top[i - 1]);
    167   }
    168 }
    169 
    170 static WEBP_INLINE void DoGradientFilter_SSE2(const uint8_t* in,
    171                                               int width, int height, int stride,
    172                                               int row, int num_rows,
    173                                               uint8_t* out) {
    174   const size_t start_offset = row * stride;
    175   const int last_row = row + num_rows;
    176   SANITY_CHECK(in, out);
    177   in += start_offset;
    178   out += start_offset;
    179 
    180   // left prediction for top scan-line
    181   if (row == 0) {
    182     out[0] = in[0];
    183     PredictLineLeft_SSE2(in + 1, out + 1, width - 1);
    184     row = 1;
    185     in += stride;
    186     out += stride;
    187   }
    188 
    189   // Filter line-by-line.
    190   while (row < last_row) {
    191     out[0] = in[0] - in[-stride];
    192     GradientPredictDirect_SSE2(in + 1, in + 1 - stride, out + 1, width - 1);
    193     ++row;
    194     in += stride;
    195     out += stride;
    196   }
    197 }
    198 
    199 #undef SANITY_CHECK
    200 
    201 //------------------------------------------------------------------------------
    202 
    203 static void HorizontalFilter_SSE2(const uint8_t* data, int width, int height,
    204                                   int stride, uint8_t* filtered_data) {
    205   DoHorizontalFilter_SSE2(data, width, height, stride, 0, height,
    206                           filtered_data);
    207 }
    208 
    209 static void VerticalFilter_SSE2(const uint8_t* data, int width, int height,
    210                                 int stride, uint8_t* filtered_data) {
    211   DoVerticalFilter_SSE2(data, width, height, stride, 0, height, filtered_data);
    212 }
    213 
    214 static void GradientFilter_SSE2(const uint8_t* data, int width, int height,
    215                                 int stride, uint8_t* filtered_data) {
    216   DoGradientFilter_SSE2(data, width, height, stride, 0, height, filtered_data);
    217 }
    218 
    219 //------------------------------------------------------------------------------
    220 // Inverse transforms
    221 
    222 static void HorizontalUnfilter_SSE2(const uint8_t* prev, const uint8_t* in,
    223                                     uint8_t* out, int width) {
    224   int i;
    225   __m128i last;
    226   out[0] = in[0] + (prev == NULL ? 0 : prev[0]);
    227   if (width <= 1) return;
    228   last = _mm_set_epi32(0, 0, 0, out[0]);
    229   for (i = 1; i + 8 <= width; i += 8) {
    230     const __m128i A0 = _mm_loadl_epi64((const __m128i*)(in + i));
    231     const __m128i A1 = _mm_add_epi8(A0, last);
    232     const __m128i A2 = _mm_slli_si128(A1, 1);
    233     const __m128i A3 = _mm_add_epi8(A1, A2);
    234     const __m128i A4 = _mm_slli_si128(A3, 2);
    235     const __m128i A5 = _mm_add_epi8(A3, A4);
    236     const __m128i A6 = _mm_slli_si128(A5, 4);
    237     const __m128i A7 = _mm_add_epi8(A5, A6);
    238     _mm_storel_epi64((__m128i*)(out + i), A7);
    239     last = _mm_srli_epi64(A7, 56);
    240   }
    241   for (; i < width; ++i) out[i] = in[i] + out[i - 1];
    242 }
    243 
    244 static void VerticalUnfilter_SSE2(const uint8_t* prev, const uint8_t* in,
    245                                   uint8_t* out, int width) {
    246   if (prev == NULL) {
    247     HorizontalUnfilter_SSE2(NULL, in, out, width);
    248   } else {
    249     int i;
    250     const int max_pos = width & ~31;
    251     assert(width >= 0);
    252     for (i = 0; i < max_pos; i += 32) {
    253       const __m128i A0 = _mm_loadu_si128((const __m128i*)&in[i +  0]);
    254       const __m128i A1 = _mm_loadu_si128((const __m128i*)&in[i + 16]);
    255       const __m128i B0 = _mm_loadu_si128((const __m128i*)&prev[i +  0]);
    256       const __m128i B1 = _mm_loadu_si128((const __m128i*)&prev[i + 16]);
    257       const __m128i C0 = _mm_add_epi8(A0, B0);
    258       const __m128i C1 = _mm_add_epi8(A1, B1);
    259       _mm_storeu_si128((__m128i*)&out[i +  0], C0);
    260       _mm_storeu_si128((__m128i*)&out[i + 16], C1);
    261     }
    262     for (; i < width; ++i) out[i] = in[i] + prev[i];
    263   }
    264 }
    265 
    266 static void GradientPredictInverse_SSE2(const uint8_t* const in,
    267                                         const uint8_t* const top,
    268                                         uint8_t* const row, int length) {
    269   if (length > 0) {
    270     int i;
    271     const int max_pos = length & ~7;
    272     const __m128i zero = _mm_setzero_si128();
    273     __m128i A = _mm_set_epi32(0, 0, 0, row[-1]);   // left sample
    274     for (i = 0; i < max_pos; i += 8) {
    275       const __m128i tmp0 = _mm_loadl_epi64((const __m128i*)&top[i]);
    276       const __m128i tmp1 = _mm_loadl_epi64((const __m128i*)&top[i - 1]);
    277       const __m128i B = _mm_unpacklo_epi8(tmp0, zero);
    278       const __m128i C = _mm_unpacklo_epi8(tmp1, zero);
    279       const __m128i D = _mm_loadl_epi64((const __m128i*)&in[i]);  // base input
    280       const __m128i E = _mm_sub_epi16(B, C);  // unclipped gradient basis B - C
    281       __m128i out = zero;                     // accumulator for output
    282       __m128i mask_hi = _mm_set_epi32(0, 0, 0, 0xff);
    283       int k = 8;
    284       while (1) {
    285         const __m128i tmp3 = _mm_add_epi16(A, E);           // delta = A + B - C
    286         const __m128i tmp4 = _mm_packus_epi16(tmp3, zero);  // saturate delta
    287         const __m128i tmp5 = _mm_add_epi8(tmp4, D);         // add to in[]
    288         A = _mm_and_si128(tmp5, mask_hi);                   // 1-complement clip
    289         out = _mm_or_si128(out, A);                         // accumulate output
    290         if (--k == 0) break;
    291         A = _mm_slli_si128(A, 1);                        // rotate left sample
    292         mask_hi = _mm_slli_si128(mask_hi, 1);            // rotate mask
    293         A = _mm_unpacklo_epi8(A, zero);                  // convert 8b->16b
    294       }
    295       A = _mm_srli_si128(A, 7);       // prepare left sample for next iteration
    296       _mm_storel_epi64((__m128i*)&row[i], out);
    297     }
    298     for (; i < length; ++i) {
    299       row[i] = in[i] + GradientPredictor_SSE2(row[i - 1], top[i], top[i - 1]);
    300     }
    301   }
    302 }
    303 
    304 static void GradientUnfilter_SSE2(const uint8_t* prev, const uint8_t* in,
    305                                   uint8_t* out, int width) {
    306   if (prev == NULL) {
    307     HorizontalUnfilter_SSE2(NULL, in, out, width);
    308   } else {
    309     out[0] = in[0] + prev[0];  // predict from above
    310     GradientPredictInverse_SSE2(in + 1, prev + 1, out + 1, width - 1);
    311   }
    312 }
    313 
    314 //------------------------------------------------------------------------------
    315 // Entry point
    316 
    317 extern void VP8FiltersInitSSE2(void);
    318 
    319 WEBP_TSAN_IGNORE_FUNCTION void VP8FiltersInitSSE2(void) {
    320   WebPUnfilters[WEBP_FILTER_HORIZONTAL] = HorizontalUnfilter_SSE2;
    321   WebPUnfilters[WEBP_FILTER_VERTICAL] = VerticalUnfilter_SSE2;
    322   WebPUnfilters[WEBP_FILTER_GRADIENT] = GradientUnfilter_SSE2;
    323 
    324   WebPFilters[WEBP_FILTER_HORIZONTAL] = HorizontalFilter_SSE2;
    325   WebPFilters[WEBP_FILTER_VERTICAL] = VerticalFilter_SSE2;
    326   WebPFilters[WEBP_FILTER_GRADIENT] = GradientFilter_SSE2;
    327 }
    328 
    329 #else  // !WEBP_USE_SSE2
    330 
    331 WEBP_DSP_INIT_STUB(VP8FiltersInitSSE2)
    332 
    333 #endif  // WEBP_USE_SSE2
    334