Home | History | Annotate | Download | only in dsp
      1 // Copyright 2015 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // SSE2 variant of methods for lossless encoder
     11 //
     12 // Author: Skal (pascal.massimino (at) gmail.com)
     13 
     14 #include "src/dsp/dsp.h"
     15 
     16 #if defined(WEBP_USE_SSE2)
     17 #include <assert.h>
     18 #include <emmintrin.h>
     19 #include "src/dsp/lossless.h"
     20 #include "src/dsp/common_sse2.h"
     21 #include "src/dsp/lossless_common.h"
     22 
     23 // For sign-extended multiplying constants, pre-shifted by 5:
     24 #define CST_5b(X)  (((int16_t)((uint16_t)(X) << 8)) >> 5)
     25 
     26 //------------------------------------------------------------------------------
     27 // Subtract-Green Transform
     28 
     29 static void SubtractGreenFromBlueAndRed_SSE2(uint32_t* argb_data,
     30                                              int num_pixels) {
     31   int i;
     32   for (i = 0; i + 4 <= num_pixels; i += 4) {
     33     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
     34     const __m128i A = _mm_srli_epi16(in, 8);     // 0 a 0 g
     35     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
     36     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // 0g0g
     37     const __m128i out = _mm_sub_epi8(in, C);
     38     _mm_storeu_si128((__m128i*)&argb_data[i], out);
     39   }
     40   // fallthrough and finish off with plain-C
     41   if (i != num_pixels) {
     42     VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
     43   }
     44 }
     45 
     46 //------------------------------------------------------------------------------
     47 // Color Transform
     48 
     49 static void TransformColor_SSE2(const VP8LMultipliers* const m,
     50                                 uint32_t* argb_data, int num_pixels) {
     51   const __m128i mults_rb = _mm_set_epi16(
     52       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
     53       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
     54       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
     55       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_));
     56   const __m128i mults_b2 = _mm_set_epi16(
     57       CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0,
     58       CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0);
     59   const __m128i mask_ag = _mm_set1_epi32(0xff00ff00);  // alpha-green masks
     60   const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff);  // red-blue masks
     61   int i;
     62   for (i = 0; i + 4 <= num_pixels; i += 4) {
     63     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
     64     const __m128i A = _mm_and_si128(in, mask_ag);     // a   0   g   0
     65     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
     66     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // g0g0
     67     const __m128i D = _mm_mulhi_epi16(C, mults_rb);    // x dr  x db1
     68     const __m128i E = _mm_slli_epi16(in, 8);           // r 0   b   0
     69     const __m128i F = _mm_mulhi_epi16(E, mults_b2);    // x db2 0   0
     70     const __m128i G = _mm_srli_epi32(F, 16);           // 0 0   x db2
     71     const __m128i H = _mm_add_epi8(G, D);              // x dr  x  db
     72     const __m128i I = _mm_and_si128(H, mask_rb);       // 0 dr  0  db
     73     const __m128i out = _mm_sub_epi8(in, I);
     74     _mm_storeu_si128((__m128i*)&argb_data[i], out);
     75   }
     76   // fallthrough and finish off with plain-C
     77   if (i != num_pixels) {
     78     VP8LTransformColor_C(m, argb_data + i, num_pixels - i);
     79   }
     80 }
     81 
     82 //------------------------------------------------------------------------------
     83 #define SPAN 8
     84 static void CollectColorBlueTransforms_SSE2(const uint32_t* argb, int stride,
     85                                             int tile_width, int tile_height,
     86                                             int green_to_blue, int red_to_blue,
     87                                             int histo[]) {
     88   const __m128i mults_r = _mm_set_epi16(
     89       CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0,
     90       CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0);
     91   const __m128i mults_g = _mm_set_epi16(
     92       0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue),
     93       0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue));
     94   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
     95   const __m128i mask_b = _mm_set1_epi32(0x0000ff);  // blue mask
     96   int y;
     97   for (y = 0; y < tile_height; ++y) {
     98     const uint32_t* const src = argb + y * stride;
     99     int i, x;
    100     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
    101       uint16_t values[SPAN];
    102       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
    103       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
    104       const __m128i A0 = _mm_slli_epi16(in0, 8);        // r 0  | b 0
    105       const __m128i A1 = _mm_slli_epi16(in1, 8);
    106       const __m128i B0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
    107       const __m128i B1 = _mm_and_si128(in1, mask_g);
    108       const __m128i C0 = _mm_mulhi_epi16(A0, mults_r);  // x db | 0 0
    109       const __m128i C1 = _mm_mulhi_epi16(A1, mults_r);
    110       const __m128i D0 = _mm_mulhi_epi16(B0, mults_g);  // 0 0  | x db
    111       const __m128i D1 = _mm_mulhi_epi16(B1, mults_g);
    112       const __m128i E0 = _mm_sub_epi8(in0, D0);         // x x  | x b'
    113       const __m128i E1 = _mm_sub_epi8(in1, D1);
    114       const __m128i F0 = _mm_srli_epi32(C0, 16);        // 0 0  | x db
    115       const __m128i F1 = _mm_srli_epi32(C1, 16);
    116       const __m128i G0 = _mm_sub_epi8(E0, F0);          // 0 0  | x b'
    117       const __m128i G1 = _mm_sub_epi8(E1, F1);
    118       const __m128i H0 = _mm_and_si128(G0, mask_b);     // 0 0  | 0 b
    119       const __m128i H1 = _mm_and_si128(G1, mask_b);
    120       const __m128i I = _mm_packs_epi32(H0, H1);        // 0 b' | 0 b'
    121       _mm_storeu_si128((__m128i*)values, I);
    122       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
    123     }
    124   }
    125   {
    126     const int left_over = tile_width & (SPAN - 1);
    127     if (left_over > 0) {
    128       VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride,
    129                                        left_over, tile_height,
    130                                        green_to_blue, red_to_blue, histo);
    131     }
    132   }
    133 }
    134 
    135 static void CollectColorRedTransforms_SSE2(const uint32_t* argb, int stride,
    136                                            int tile_width, int tile_height,
    137                                            int green_to_red, int histo[]) {
    138   const __m128i mults_g = _mm_set_epi16(
    139       0, CST_5b(green_to_red), 0, CST_5b(green_to_red),
    140       0, CST_5b(green_to_red), 0, CST_5b(green_to_red));
    141   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
    142   const __m128i mask = _mm_set1_epi32(0xff);
    143 
    144   int y;
    145   for (y = 0; y < tile_height; ++y) {
    146     const uint32_t* const src = argb + y * stride;
    147     int i, x;
    148     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
    149       uint16_t values[SPAN];
    150       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
    151       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
    152       const __m128i A0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
    153       const __m128i A1 = _mm_and_si128(in1, mask_g);
    154       const __m128i B0 = _mm_srli_epi32(in0, 16);       // 0 0  | x r
    155       const __m128i B1 = _mm_srli_epi32(in1, 16);
    156       const __m128i C0 = _mm_mulhi_epi16(A0, mults_g);  // 0 0  | x dr
    157       const __m128i C1 = _mm_mulhi_epi16(A1, mults_g);
    158       const __m128i E0 = _mm_sub_epi8(B0, C0);          // x x  | x r'
    159       const __m128i E1 = _mm_sub_epi8(B1, C1);
    160       const __m128i F0 = _mm_and_si128(E0, mask);       // 0 0  | 0 r'
    161       const __m128i F1 = _mm_and_si128(E1, mask);
    162       const __m128i I = _mm_packs_epi32(F0, F1);
    163       _mm_storeu_si128((__m128i*)values, I);
    164       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
    165     }
    166   }
    167   {
    168     const int left_over = tile_width & (SPAN - 1);
    169     if (left_over > 0) {
    170       VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride,
    171                                       left_over, tile_height,
    172                                       green_to_red, histo);
    173     }
    174   }
    175 }
    176 #undef SPAN
    177 
    178 //------------------------------------------------------------------------------
    179 
    180 #define LINE_SIZE 16    // 8 or 16
    181 static void AddVector_SSE2(const uint32_t* a, const uint32_t* b, uint32_t* out,
    182                            int size) {
    183   int i;
    184   assert(size % LINE_SIZE == 0);
    185   for (i = 0; i < size; i += LINE_SIZE) {
    186     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
    187     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
    188 #if (LINE_SIZE == 16)
    189     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
    190     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
    191 #endif
    192     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i +  0]);
    193     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i +  4]);
    194 #if (LINE_SIZE == 16)
    195     const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i +  8]);
    196     const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]);
    197 #endif
    198     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
    199     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
    200 #if (LINE_SIZE == 16)
    201     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
    202     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
    203 #endif
    204   }
    205 }
    206 
    207 static void AddVectorEq_SSE2(const uint32_t* a, uint32_t* out, int size) {
    208   int i;
    209   assert(size % LINE_SIZE == 0);
    210   for (i = 0; i < size; i += LINE_SIZE) {
    211     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
    212     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
    213 #if (LINE_SIZE == 16)
    214     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
    215     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
    216 #endif
    217     const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i +  0]);
    218     const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i +  4]);
    219 #if (LINE_SIZE == 16)
    220     const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i +  8]);
    221     const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]);
    222 #endif
    223     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
    224     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
    225 #if (LINE_SIZE == 16)
    226     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
    227     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
    228 #endif
    229   }
    230 }
    231 #undef LINE_SIZE
    232 
    233 // Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But
    234 // that's ok since the histogram values are less than 1<<28 (max picture size).
    235 static void HistogramAdd_SSE2(const VP8LHistogram* const a,
    236                               const VP8LHistogram* const b,
    237                               VP8LHistogram* const out) {
    238   int i;
    239   const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_);
    240   assert(a->palette_code_bits_ == b->palette_code_bits_);
    241   if (b != out) {
    242     AddVector_SSE2(a->literal_, b->literal_, out->literal_, NUM_LITERAL_CODES);
    243     AddVector_SSE2(a->red_, b->red_, out->red_, NUM_LITERAL_CODES);
    244     AddVector_SSE2(a->blue_, b->blue_, out->blue_, NUM_LITERAL_CODES);
    245     AddVector_SSE2(a->alpha_, b->alpha_, out->alpha_, NUM_LITERAL_CODES);
    246   } else {
    247     AddVectorEq_SSE2(a->literal_, out->literal_, NUM_LITERAL_CODES);
    248     AddVectorEq_SSE2(a->red_, out->red_, NUM_LITERAL_CODES);
    249     AddVectorEq_SSE2(a->blue_, out->blue_, NUM_LITERAL_CODES);
    250     AddVectorEq_SSE2(a->alpha_, out->alpha_, NUM_LITERAL_CODES);
    251   }
    252   for (i = NUM_LITERAL_CODES; i < literal_size; ++i) {
    253     out->literal_[i] = a->literal_[i] + b->literal_[i];
    254   }
    255   for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
    256     out->distance_[i] = a->distance_[i] + b->distance_[i];
    257   }
    258 }
    259 
    260 //------------------------------------------------------------------------------
    261 // Entropy
    262 
    263 // Checks whether the X or Y contribution is worth computing and adding.
    264 // Used in loop unrolling.
    265 #define ANALYZE_X_OR_Y(x_or_y, j)                                           \
    266   do {                                                                      \
    267     if ((x_or_y)[i + (j)] != 0) retval -= VP8LFastSLog2((x_or_y)[i + (j)]); \
    268   } while (0)
    269 
    270 // Checks whether the X + Y contribution is worth computing and adding.
    271 // Used in loop unrolling.
    272 #define ANALYZE_XY(j)                  \
    273   do {                                 \
    274     if (tmp[j] != 0) {                 \
    275       retval -= VP8LFastSLog2(tmp[j]); \
    276       ANALYZE_X_OR_Y(X, j);            \
    277     }                                  \
    278   } while (0)
    279 
    280 static float CombinedShannonEntropy_SSE2(const int X[256], const int Y[256]) {
    281   int i;
    282   double retval = 0.;
    283   int sumX, sumXY;
    284   int32_t tmp[4];
    285   __m128i zero = _mm_setzero_si128();
    286   // Sums up X + Y, 4 ints at a time (and will merge it at the end for sumXY).
    287   __m128i sumXY_128 = zero;
    288   __m128i sumX_128 = zero;
    289 
    290   for (i = 0; i < 256; i += 4) {
    291     const __m128i x = _mm_loadu_si128((const __m128i*)(X + i));
    292     const __m128i y = _mm_loadu_si128((const __m128i*)(Y + i));
    293 
    294     // Check if any X is non-zero: this actually provides a speedup as X is
    295     // usually sparse.
    296     if (_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero)) != 0xFFFF) {
    297       const __m128i xy_128 = _mm_add_epi32(x, y);
    298       sumXY_128 = _mm_add_epi32(sumXY_128, xy_128);
    299 
    300       sumX_128 = _mm_add_epi32(sumX_128, x);
    301 
    302       // Analyze the different X + Y.
    303       _mm_storeu_si128((__m128i*)tmp, xy_128);
    304 
    305       ANALYZE_XY(0);
    306       ANALYZE_XY(1);
    307       ANALYZE_XY(2);
    308       ANALYZE_XY(3);
    309     } else {
    310       // X is fully 0, so only deal with Y.
    311       sumXY_128 = _mm_add_epi32(sumXY_128, y);
    312 
    313       ANALYZE_X_OR_Y(Y, 0);
    314       ANALYZE_X_OR_Y(Y, 1);
    315       ANALYZE_X_OR_Y(Y, 2);
    316       ANALYZE_X_OR_Y(Y, 3);
    317     }
    318   }
    319 
    320   // Sum up sumX_128 to get sumX.
    321   _mm_storeu_si128((__m128i*)tmp, sumX_128);
    322   sumX = tmp[3] + tmp[2] + tmp[1] + tmp[0];
    323 
    324   // Sum up sumXY_128 to get sumXY.
    325   _mm_storeu_si128((__m128i*)tmp, sumXY_128);
    326   sumXY = tmp[3] + tmp[2] + tmp[1] + tmp[0];
    327 
    328   retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY);
    329   return (float)retval;
    330 }
    331 #undef ANALYZE_X_OR_Y
    332 #undef ANALYZE_XY
    333 
    334 //------------------------------------------------------------------------------
    335 
    336 static int VectorMismatch_SSE2(const uint32_t* const array1,
    337                                const uint32_t* const array2, int length) {
    338   int match_len;
    339 
    340   if (length >= 12) {
    341     __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]);
    342     __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]);
    343     match_len = 0;
    344     do {
    345       // Loop unrolling and early load both provide a speedup of 10% for the
    346       // current function. Also, max_limit can be MAX_LENGTH=4096 at most.
    347       const __m128i cmpA = _mm_cmpeq_epi32(A0, A1);
    348       const __m128i B0 =
    349           _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
    350       const __m128i B1 =
    351           _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
    352       if (_mm_movemask_epi8(cmpA) != 0xffff) break;
    353       match_len += 4;
    354 
    355       {
    356         const __m128i cmpB = _mm_cmpeq_epi32(B0, B1);
    357         A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
    358         A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
    359         if (_mm_movemask_epi8(cmpB) != 0xffff) break;
    360         match_len += 4;
    361       }
    362     } while (match_len + 12 < length);
    363   } else {
    364     match_len = 0;
    365     // Unroll the potential first two loops.
    366     if (length >= 4 &&
    367         _mm_movemask_epi8(_mm_cmpeq_epi32(
    368             _mm_loadu_si128((const __m128i*)&array1[0]),
    369             _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) {
    370       match_len = 4;
    371       if (length >= 8 &&
    372           _mm_movemask_epi8(_mm_cmpeq_epi32(
    373               _mm_loadu_si128((const __m128i*)&array1[4]),
    374               _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) {
    375         match_len = 8;
    376       }
    377     }
    378   }
    379 
    380   while (match_len < length && array1[match_len] == array2[match_len]) {
    381     ++match_len;
    382   }
    383   return match_len;
    384 }
    385 
    386 // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
    387 static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits,
    388                                 uint32_t* dst) {
    389   int x;
    390   assert(xbits >= 0);
    391   assert(xbits <= 3);
    392   switch (xbits) {
    393     case 0: {
    394       const __m128i ff = _mm_set1_epi16(0xff00);
    395       const __m128i zero = _mm_setzero_si128();
    396       // Store 0xff000000 | (row[x] << 8).
    397       for (x = 0; x + 16 <= width; x += 16, dst += 16) {
    398         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
    399         const __m128i in_lo = _mm_unpacklo_epi8(zero, in);
    400         const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff);
    401         const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff);
    402         const __m128i in_hi = _mm_unpackhi_epi8(zero, in);
    403         const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff);
    404         const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff);
    405         _mm_storeu_si128((__m128i*)&dst[0], dst0);
    406         _mm_storeu_si128((__m128i*)&dst[4], dst1);
    407         _mm_storeu_si128((__m128i*)&dst[8], dst2);
    408         _mm_storeu_si128((__m128i*)&dst[12], dst3);
    409       }
    410       break;
    411     }
    412     case 1: {
    413       const __m128i ff = _mm_set1_epi16(0xff00);
    414       const __m128i mul = _mm_set1_epi16(0x110);
    415       for (x = 0; x + 16 <= width; x += 16, dst += 8) {
    416         // 0a0b | (where a/b are 4 bits).
    417         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
    418         const __m128i tmp = _mm_mullo_epi16(in, mul);  // aba0
    419         const __m128i pack = _mm_and_si128(tmp, ff);   // ab00
    420         const __m128i dst0 = _mm_unpacklo_epi16(pack, ff);
    421         const __m128i dst1 = _mm_unpackhi_epi16(pack, ff);
    422         _mm_storeu_si128((__m128i*)&dst[0], dst0);
    423         _mm_storeu_si128((__m128i*)&dst[4], dst1);
    424       }
    425       break;
    426     }
    427     case 2: {
    428       const __m128i mask_or = _mm_set1_epi32(0xff000000);
    429       const __m128i mul_cst = _mm_set1_epi16(0x0104);
    430       const __m128i mask_mul = _mm_set1_epi16(0x0f00);
    431       for (x = 0; x + 16 <= width; x += 16, dst += 4) {
    432         // 000a000b000c000d | (where a/b/c/d are 2 bits).
    433         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
    434         const __m128i mul = _mm_mullo_epi16(in, mul_cst);  // 00ab00b000cd00d0
    435         const __m128i tmp = _mm_and_si128(mul, mask_mul);  // 00ab000000cd0000
    436         const __m128i shift = _mm_srli_epi32(tmp, 12);     // 00000000ab000000
    437         const __m128i pack = _mm_or_si128(shift, tmp);     // 00000000abcd0000
    438         // Convert to 0xff00**00.
    439         const __m128i res = _mm_or_si128(pack, mask_or);
    440         _mm_storeu_si128((__m128i*)dst, res);
    441       }
    442       break;
    443     }
    444     default: {
    445       assert(xbits == 3);
    446       for (x = 0; x + 16 <= width; x += 16, dst += 2) {
    447         // 0000000a00000000b... | (where a/b are 1 bit).
    448         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
    449         const __m128i shift = _mm_slli_epi64(in, 7);
    450         const uint32_t move = _mm_movemask_epi8(shift);
    451         dst[0] = 0xff000000 | ((move & 0xff) << 8);
    452         dst[1] = 0xff000000 | (move & 0xff00);
    453       }
    454       break;
    455     }
    456   }
    457   if (x != width) {
    458     VP8LBundleColorMap_C(row + x, width - x, xbits, dst);
    459   }
    460 }
    461 
    462 //------------------------------------------------------------------------------
    463 // Batch version of Predictor Transform subtraction
    464 
    465 static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
    466                                        const __m128i* const a1,
    467                                        __m128i* const avg) {
    468   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
    469   const __m128i ones = _mm_set1_epi8(1);
    470   const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
    471   const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
    472   *avg = _mm_sub_epi8(avg1, one);
    473 }
    474 
    475 // Predictor0: ARGB_BLACK.
    476 static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper,
    477                                int num_pixels, uint32_t* out) {
    478   int i;
    479   const __m128i black = _mm_set1_epi32(ARGB_BLACK);
    480   for (i = 0; i + 4 <= num_pixels; i += 4) {
    481     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    482     const __m128i res = _mm_sub_epi8(src, black);
    483     _mm_storeu_si128((__m128i*)&out[i], res);
    484   }
    485   if (i != num_pixels) {
    486     VP8LPredictorsSub_C[0](in + i, upper + i, num_pixels - i, out + i);
    487   }
    488 }
    489 
    490 #define GENERATE_PREDICTOR_1(X, IN)                                           \
    491 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
    492                                    int num_pixels, uint32_t* out) {           \
    493   int i;                                                                      \
    494   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
    495     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
    496     const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN));              \
    497     const __m128i res = _mm_sub_epi8(src, pred);                              \
    498     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
    499   }                                                                           \
    500   if (i != num_pixels) {                                                      \
    501     VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
    502   }                                                                           \
    503 }
    504 
    505 GENERATE_PREDICTOR_1(1, in[i - 1])       // Predictor1: L
    506 GENERATE_PREDICTOR_1(2, upper[i])        // Predictor2: T
    507 GENERATE_PREDICTOR_1(3, upper[i + 1])    // Predictor3: TR
    508 GENERATE_PREDICTOR_1(4, upper[i - 1])    // Predictor4: TL
    509 #undef GENERATE_PREDICTOR_1
    510 
    511 // Predictor5: avg2(avg2(L, TR), T)
    512 static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper,
    513                                int num_pixels, uint32_t* out) {
    514   int i;
    515   for (i = 0; i + 4 <= num_pixels; i += 4) {
    516     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
    517     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
    518     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
    519     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    520     __m128i avg, pred, res;
    521     Average2_m128i(&L, &TR, &avg);
    522     Average2_m128i(&avg, &T, &pred);
    523     res = _mm_sub_epi8(src, pred);
    524     _mm_storeu_si128((__m128i*)&out[i], res);
    525   }
    526   if (i != num_pixels) {
    527     VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i);
    528   }
    529 }
    530 
    531 #define GENERATE_PREDICTOR_2(X, A, B)                                         \
    532 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
    533                                    int num_pixels, uint32_t* out) {           \
    534   int i;                                                                      \
    535   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
    536     const __m128i tA = _mm_loadu_si128((const __m128i*)&(A));                 \
    537     const __m128i tB = _mm_loadu_si128((const __m128i*)&(B));                 \
    538     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
    539     __m128i pred, res;                                                        \
    540     Average2_m128i(&tA, &tB, &pred);                                          \
    541     res = _mm_sub_epi8(src, pred);                                            \
    542     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
    543   }                                                                           \
    544   if (i != num_pixels) {                                                      \
    545     VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
    546   }                                                                           \
    547 }
    548 
    549 GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1])   // Predictor6: avg(L, TL)
    550 GENERATE_PREDICTOR_2(7, in[i - 1], upper[i])       // Predictor7: avg(L, T)
    551 GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i])    // Predictor8: avg(TL, T)
    552 GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1])    // Predictor9: average(T, TR)
    553 #undef GENERATE_PREDICTOR_2
    554 
    555 // Predictor10: avg(avg(L,TL), avg(T, TR)).
    556 static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper,
    557                                 int num_pixels, uint32_t* out) {
    558   int i;
    559   for (i = 0; i + 4 <= num_pixels; i += 4) {
    560     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
    561     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    562     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
    563     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
    564     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
    565     __m128i avgTTR, avgLTL, avg, res;
    566     Average2_m128i(&T, &TR, &avgTTR);
    567     Average2_m128i(&L, &TL, &avgLTL);
    568     Average2_m128i(&avgTTR, &avgLTL, &avg);
    569     res = _mm_sub_epi8(src, avg);
    570     _mm_storeu_si128((__m128i*)&out[i], res);
    571   }
    572   if (i != num_pixels) {
    573     VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i);
    574   }
    575 }
    576 
    577 // Predictor11: select.
    578 static void GetSumAbsDiff32_SSE2(const __m128i* const A, const __m128i* const B,
    579                                  __m128i* const out) {
    580   // We can unpack with any value on the upper 32 bits, provided it's the same
    581   // on both operands (to that their sum of abs diff is zero). Here we use *A.
    582   const __m128i A_lo = _mm_unpacklo_epi32(*A, *A);
    583   const __m128i B_lo = _mm_unpacklo_epi32(*B, *A);
    584   const __m128i A_hi = _mm_unpackhi_epi32(*A, *A);
    585   const __m128i B_hi = _mm_unpackhi_epi32(*B, *A);
    586   const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo);
    587   const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi);
    588   *out = _mm_packs_epi32(s_lo, s_hi);
    589 }
    590 
    591 static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper,
    592                                 int num_pixels, uint32_t* out) {
    593   int i;
    594   for (i = 0; i + 4 <= num_pixels; i += 4) {
    595     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
    596     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
    597     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
    598     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    599     __m128i pa, pb;
    600     GetSumAbsDiff32_SSE2(&T, &TL, &pa);   // pa = sum |T-TL|
    601     GetSumAbsDiff32_SSE2(&L, &TL, &pb);   // pb = sum |L-TL|
    602     {
    603       const __m128i mask = _mm_cmpgt_epi32(pb, pa);
    604       const __m128i A = _mm_and_si128(mask, L);
    605       const __m128i B = _mm_andnot_si128(mask, T);
    606       const __m128i pred = _mm_or_si128(A, B);    // pred = (L > T)? L : T
    607       const __m128i res = _mm_sub_epi8(src, pred);
    608       _mm_storeu_si128((__m128i*)&out[i], res);
    609     }
    610   }
    611   if (i != num_pixels) {
    612     VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i);
    613   }
    614 }
    615 
    616 // Predictor12: ClampedSubSubtractFull.
    617 static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper,
    618                                 int num_pixels, uint32_t* out) {
    619   int i;
    620   const __m128i zero = _mm_setzero_si128();
    621   for (i = 0; i + 4 <= num_pixels; i += 4) {
    622     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    623     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
    624     const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
    625     const __m128i L_hi = _mm_unpackhi_epi8(L, zero);
    626     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
    627     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
    628     const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
    629     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
    630     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
    631     const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
    632     const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
    633     const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
    634     const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo);
    635     const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi);
    636     const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi);
    637     const __m128i res = _mm_sub_epi8(src, pred);
    638     _mm_storeu_si128((__m128i*)&out[i], res);
    639   }
    640   if (i != num_pixels) {
    641     VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i);
    642   }
    643 }
    644 
    645 // Predictors13: ClampedAddSubtractHalf
    646 static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper,
    647                                 int num_pixels, uint32_t* out) {
    648   int i;
    649   const __m128i zero = _mm_setzero_si128();
    650   for (i = 0; i + 2 <= num_pixels; i += 2) {
    651     // we can only process two pixels at a time
    652     const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]);
    653     const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]);
    654     const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]);
    655     const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]);
    656     const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
    657     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
    658     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
    659     const __m128i sum = _mm_add_epi16(T_lo, L_lo);
    660     const __m128i avg = _mm_srli_epi16(sum, 1);
    661     const __m128i A1 = _mm_sub_epi16(avg, TL_lo);
    662     const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg);
    663     const __m128i A2 = _mm_sub_epi16(A1, bit_fix);
    664     const __m128i A3 = _mm_srai_epi16(A2, 1);
    665     const __m128i A4 = _mm_add_epi16(avg, A3);
    666     const __m128i pred = _mm_packus_epi16(A4, A4);
    667     const __m128i res = _mm_sub_epi8(src, pred);
    668     _mm_storel_epi64((__m128i*)&out[i], res);
    669   }
    670   if (i != num_pixels) {
    671     VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i);
    672   }
    673 }
    674 
    675 //------------------------------------------------------------------------------
    676 // Entry point
    677 
    678 extern void VP8LEncDspInitSSE2(void);
    679 
    680 WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) {
    681   VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_SSE2;
    682   VP8LTransformColor = TransformColor_SSE2;
    683   VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_SSE2;
    684   VP8LCollectColorRedTransforms = CollectColorRedTransforms_SSE2;
    685   VP8LHistogramAdd = HistogramAdd_SSE2;
    686   VP8LCombinedShannonEntropy = CombinedShannonEntropy_SSE2;
    687   VP8LVectorMismatch = VectorMismatch_SSE2;
    688   VP8LBundleColorMap = BundleColorMap_SSE2;
    689 
    690   VP8LPredictorsSub[0] = PredictorSub0_SSE2;
    691   VP8LPredictorsSub[1] = PredictorSub1_SSE2;
    692   VP8LPredictorsSub[2] = PredictorSub2_SSE2;
    693   VP8LPredictorsSub[3] = PredictorSub3_SSE2;
    694   VP8LPredictorsSub[4] = PredictorSub4_SSE2;
    695   VP8LPredictorsSub[5] = PredictorSub5_SSE2;
    696   VP8LPredictorsSub[6] = PredictorSub6_SSE2;
    697   VP8LPredictorsSub[7] = PredictorSub7_SSE2;
    698   VP8LPredictorsSub[8] = PredictorSub8_SSE2;
    699   VP8LPredictorsSub[9] = PredictorSub9_SSE2;
    700   VP8LPredictorsSub[10] = PredictorSub10_SSE2;
    701   VP8LPredictorsSub[11] = PredictorSub11_SSE2;
    702   VP8LPredictorsSub[12] = PredictorSub12_SSE2;
    703   VP8LPredictorsSub[13] = PredictorSub13_SSE2;
    704   VP8LPredictorsSub[14] = PredictorSub0_SSE2;  // <- padding security sentinels
    705   VP8LPredictorsSub[15] = PredictorSub0_SSE2;
    706 }
    707 
    708 #else  // !WEBP_USE_SSE2
    709 
    710 WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2)
    711 
    712 #endif  // WEBP_USE_SSE2
    713