Home | History | Annotate | Download | only in dsp
      1 // Copyright 2014 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // NEON variant of methods for lossless decoder
     11 //
     12 // Author: Skal (pascal.massimino (at) gmail.com)
     13 
     14 #include "src/dsp/dsp.h"
     15 
     16 #if defined(WEBP_USE_NEON)
     17 
     18 #include <arm_neon.h>
     19 
     20 #include "src/dsp/lossless.h"
     21 #include "src/dsp/neon.h"
     22 
     23 //------------------------------------------------------------------------------
     24 // Colorspace conversion functions
     25 
     26 #if !defined(WORK_AROUND_GCC)
     27 // gcc 4.6.0 had some trouble (NDK-r9) with this code. We only use it for
     28 // gcc-4.8.x at least.
     29 static void ConvertBGRAToRGBA_NEON(const uint32_t* src,
     30                                    int num_pixels, uint8_t* dst) {
     31   const uint32_t* const end = src + (num_pixels & ~15);
     32   for (; src < end; src += 16) {
     33     uint8x16x4_t pixel = vld4q_u8((uint8_t*)src);
     34     // swap B and R. (VSWP d0,d2 has no intrinsics equivalent!)
     35     const uint8x16_t tmp = pixel.val[0];
     36     pixel.val[0] = pixel.val[2];
     37     pixel.val[2] = tmp;
     38     vst4q_u8(dst, pixel);
     39     dst += 64;
     40   }
     41   VP8LConvertBGRAToRGBA_C(src, num_pixels & 15, dst);  // left-overs
     42 }
     43 
     44 static void ConvertBGRAToBGR_NEON(const uint32_t* src,
     45                                   int num_pixels, uint8_t* dst) {
     46   const uint32_t* const end = src + (num_pixels & ~15);
     47   for (; src < end; src += 16) {
     48     const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src);
     49     const uint8x16x3_t tmp = { { pixel.val[0], pixel.val[1], pixel.val[2] } };
     50     vst3q_u8(dst, tmp);
     51     dst += 48;
     52   }
     53   VP8LConvertBGRAToBGR_C(src, num_pixels & 15, dst);  // left-overs
     54 }
     55 
     56 static void ConvertBGRAToRGB_NEON(const uint32_t* src,
     57                                   int num_pixels, uint8_t* dst) {
     58   const uint32_t* const end = src + (num_pixels & ~15);
     59   for (; src < end; src += 16) {
     60     const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src);
     61     const uint8x16x3_t tmp = { { pixel.val[2], pixel.val[1], pixel.val[0] } };
     62     vst3q_u8(dst, tmp);
     63     dst += 48;
     64   }
     65   VP8LConvertBGRAToRGB_C(src, num_pixels & 15, dst);  // left-overs
     66 }
     67 
     68 #else  // WORK_AROUND_GCC
     69 
     70 // gcc-4.6.0 fallback
     71 
     72 static const uint8_t kRGBAShuffle[8] = { 2, 1, 0, 3, 6, 5, 4, 7 };
     73 
     74 static void ConvertBGRAToRGBA_NEON(const uint32_t* src,
     75                                    int num_pixels, uint8_t* dst) {
     76   const uint32_t* const end = src + (num_pixels & ~1);
     77   const uint8x8_t shuffle = vld1_u8(kRGBAShuffle);
     78   for (; src < end; src += 2) {
     79     const uint8x8_t pixels = vld1_u8((uint8_t*)src);
     80     vst1_u8(dst, vtbl1_u8(pixels, shuffle));
     81     dst += 8;
     82   }
     83   VP8LConvertBGRAToRGBA_C(src, num_pixels & 1, dst);  // left-overs
     84 }
     85 
     86 static const uint8_t kBGRShuffle[3][8] = {
     87   {  0,  1,  2,  4,  5,  6,  8,  9 },
     88   { 10, 12, 13, 14, 16, 17, 18, 20 },
     89   { 21, 22, 24, 25, 26, 28, 29, 30 }
     90 };
     91 
     92 static void ConvertBGRAToBGR_NEON(const uint32_t* src,
     93                                   int num_pixels, uint8_t* dst) {
     94   const uint32_t* const end = src + (num_pixels & ~7);
     95   const uint8x8_t shuffle0 = vld1_u8(kBGRShuffle[0]);
     96   const uint8x8_t shuffle1 = vld1_u8(kBGRShuffle[1]);
     97   const uint8x8_t shuffle2 = vld1_u8(kBGRShuffle[2]);
     98   for (; src < end; src += 8) {
     99     uint8x8x4_t pixels;
    100     INIT_VECTOR4(pixels,
    101                  vld1_u8((const uint8_t*)(src + 0)),
    102                  vld1_u8((const uint8_t*)(src + 2)),
    103                  vld1_u8((const uint8_t*)(src + 4)),
    104                  vld1_u8((const uint8_t*)(src + 6)));
    105     vst1_u8(dst +  0, vtbl4_u8(pixels, shuffle0));
    106     vst1_u8(dst +  8, vtbl4_u8(pixels, shuffle1));
    107     vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2));
    108     dst += 8 * 3;
    109   }
    110   VP8LConvertBGRAToBGR_C(src, num_pixels & 7, dst);  // left-overs
    111 }
    112 
    113 static const uint8_t kRGBShuffle[3][8] = {
    114   {  2,  1,  0,  6,  5,  4, 10,  9 },
    115   {  8, 14, 13, 12, 18, 17, 16, 22 },
    116   { 21, 20, 26, 25, 24, 30, 29, 28 }
    117 };
    118 
    119 static void ConvertBGRAToRGB_NEON(const uint32_t* src,
    120                                   int num_pixels, uint8_t* dst) {
    121   const uint32_t* const end = src + (num_pixels & ~7);
    122   const uint8x8_t shuffle0 = vld1_u8(kRGBShuffle[0]);
    123   const uint8x8_t shuffle1 = vld1_u8(kRGBShuffle[1]);
    124   const uint8x8_t shuffle2 = vld1_u8(kRGBShuffle[2]);
    125   for (; src < end; src += 8) {
    126     uint8x8x4_t pixels;
    127     INIT_VECTOR4(pixels,
    128                  vld1_u8((const uint8_t*)(src + 0)),
    129                  vld1_u8((const uint8_t*)(src + 2)),
    130                  vld1_u8((const uint8_t*)(src + 4)),
    131                  vld1_u8((const uint8_t*)(src + 6)));
    132     vst1_u8(dst +  0, vtbl4_u8(pixels, shuffle0));
    133     vst1_u8(dst +  8, vtbl4_u8(pixels, shuffle1));
    134     vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2));
    135     dst += 8 * 3;
    136   }
    137   VP8LConvertBGRAToRGB_C(src, num_pixels & 7, dst);  // left-overs
    138 }
    139 
    140 #endif   // !WORK_AROUND_GCC
    141 
    142 //------------------------------------------------------------------------------
    143 // Predictor Transform
    144 
    145 #define LOAD_U32_AS_U8(IN) vreinterpret_u8_u32(vdup_n_u32((IN)))
    146 #define LOAD_U32P_AS_U8(IN) vreinterpret_u8_u32(vld1_u32((IN)))
    147 #define LOADQ_U32_AS_U8(IN) vreinterpretq_u8_u32(vdupq_n_u32((IN)))
    148 #define LOADQ_U32P_AS_U8(IN) vreinterpretq_u8_u32(vld1q_u32((IN)))
    149 #define GET_U8_AS_U32(IN) vget_lane_u32(vreinterpret_u32_u8((IN)), 0);
    150 #define GETQ_U8_AS_U32(IN) vgetq_lane_u32(vreinterpretq_u32_u8((IN)), 0);
    151 #define STOREQ_U8_AS_U32P(OUT, IN) vst1q_u32((OUT), vreinterpretq_u32_u8((IN)));
    152 #define ROTATE32_LEFT(L) vextq_u8((L), (L), 12)    // D|C|B|A -> C|B|A|D
    153 
    154 static WEBP_INLINE uint8x8_t Average2_u8_NEON(uint32_t a0, uint32_t a1) {
    155   const uint8x8_t A0 = LOAD_U32_AS_U8(a0);
    156   const uint8x8_t A1 = LOAD_U32_AS_U8(a1);
    157   return vhadd_u8(A0, A1);
    158 }
    159 
    160 static WEBP_INLINE uint32_t ClampedAddSubtractHalf_NEON(uint32_t c0,
    161                                                         uint32_t c1,
    162                                                         uint32_t c2) {
    163   const uint8x8_t avg = Average2_u8_NEON(c0, c1);
    164   // Remove one to c2 when bigger than avg.
    165   const uint8x8_t C2 = LOAD_U32_AS_U8(c2);
    166   const uint8x8_t cmp = vcgt_u8(C2, avg);
    167   const uint8x8_t C2_1 = vadd_u8(C2, cmp);
    168   // Compute half of the difference between avg and c2.
    169   const int8x8_t diff_avg = vreinterpret_s8_u8(vhsub_u8(avg, C2_1));
    170   // Compute the sum with avg and saturate.
    171   const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(avg));
    172   const uint8x8_t res = vqmovun_s16(vaddw_s8(avg_16, diff_avg));
    173   const uint32_t output = GET_U8_AS_U32(res);
    174   return output;
    175 }
    176 
    177 static WEBP_INLINE uint32_t Average2_NEON(uint32_t a0, uint32_t a1) {
    178   const uint8x8_t avg_u8x8 = Average2_u8_NEON(a0, a1);
    179   const uint32_t avg = GET_U8_AS_U32(avg_u8x8);
    180   return avg;
    181 }
    182 
    183 static WEBP_INLINE uint32_t Average3_NEON(uint32_t a0, uint32_t a1,
    184                                           uint32_t a2) {
    185   const uint8x8_t avg0 = Average2_u8_NEON(a0, a2);
    186   const uint8x8_t A1 = LOAD_U32_AS_U8(a1);
    187   const uint32_t avg = GET_U8_AS_U32(vhadd_u8(avg0, A1));
    188   return avg;
    189 }
    190 
    191 static uint32_t Predictor5_NEON(uint32_t left, const uint32_t* const top) {
    192   return Average3_NEON(left, top[0], top[1]);
    193 }
    194 static uint32_t Predictor6_NEON(uint32_t left, const uint32_t* const top) {
    195   return Average2_NEON(left, top[-1]);
    196 }
    197 static uint32_t Predictor7_NEON(uint32_t left, const uint32_t* const top) {
    198   return Average2_NEON(left, top[0]);
    199 }
    200 static uint32_t Predictor13_NEON(uint32_t left, const uint32_t* const top) {
    201   return ClampedAddSubtractHalf_NEON(left, top[0], top[-1]);
    202 }
    203 
    204 // Batch versions of those functions.
    205 
    206 // Predictor0: ARGB_BLACK.
    207 static void PredictorAdd0_NEON(const uint32_t* in, const uint32_t* upper,
    208                                int num_pixels, uint32_t* out) {
    209   int i;
    210   const uint8x16_t black = vreinterpretq_u8_u32(vdupq_n_u32(ARGB_BLACK));
    211   for (i = 0; i + 4 <= num_pixels; i += 4) {
    212     const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
    213     const uint8x16_t res = vaddq_u8(src, black);
    214     STOREQ_U8_AS_U32P(&out[i], res);
    215   }
    216   VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i);
    217 }
    218 
    219 // Predictor1: left.
    220 static void PredictorAdd1_NEON(const uint32_t* in, const uint32_t* upper,
    221                                int num_pixels, uint32_t* out) {
    222   int i;
    223   const uint8x16_t zero = LOADQ_U32_AS_U8(0);
    224   for (i = 0; i + 4 <= num_pixels; i += 4) {
    225     // a | b | c | d
    226     const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
    227     // 0 | a | b | c
    228     const uint8x16_t shift0 = vextq_u8(zero, src, 12);
    229     // a | a + b | b + c | c + d
    230     const uint8x16_t sum0 = vaddq_u8(src, shift0);
    231     // 0 | 0 | a | a + b
    232     const uint8x16_t shift1 = vextq_u8(zero, sum0, 8);
    233     // a | a + b | a + b + c | a + b + c + d
    234     const uint8x16_t sum1 = vaddq_u8(sum0, shift1);
    235     const uint8x16_t prev = LOADQ_U32_AS_U8(out[i - 1]);
    236     const uint8x16_t res = vaddq_u8(sum1, prev);
    237     STOREQ_U8_AS_U32P(&out[i], res);
    238   }
    239   VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
    240 }
    241 
    242 // Macro that adds 32-bit integers from IN using mod 256 arithmetic
    243 // per 8 bit channel.
    244 #define GENERATE_PREDICTOR_1(X, IN)                                       \
    245 static void PredictorAdd##X##_NEON(const uint32_t* in,                    \
    246                                    const uint32_t* upper, int num_pixels, \
    247                                    uint32_t* out) {                       \
    248   int i;                                                                  \
    249   for (i = 0; i + 4 <= num_pixels; i += 4) {                              \
    250     const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);                      \
    251     const uint8x16_t other = LOADQ_U32P_AS_U8(&(IN));                     \
    252     const uint8x16_t res = vaddq_u8(src, other);                          \
    253     STOREQ_U8_AS_U32P(&out[i], res);                                      \
    254   }                                                                       \
    255   VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i);   \
    256 }
    257 // Predictor2: Top.
    258 GENERATE_PREDICTOR_1(2, upper[i])
    259 // Predictor3: Top-right.
    260 GENERATE_PREDICTOR_1(3, upper[i + 1])
    261 // Predictor4: Top-left.
    262 GENERATE_PREDICTOR_1(4, upper[i - 1])
    263 #undef GENERATE_PREDICTOR_1
    264 
    265 // Predictor5: average(average(left, TR), T)
    266 #define DO_PRED5(LANE) do {                                              \
    267   const uint8x16_t avgLTR = vhaddq_u8(L, TR);                            \
    268   const uint8x16_t avg = vhaddq_u8(avgLTR, T);                           \
    269   const uint8x16_t res = vaddq_u8(avg, src);                             \
    270   vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE));   \
    271   L = ROTATE32_LEFT(res);                                                \
    272 } while (0)
    273 
    274 static void PredictorAdd5_NEON(const uint32_t* in, const uint32_t* upper,
    275                                int num_pixels, uint32_t* out) {
    276   int i;
    277   uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
    278   for (i = 0; i + 4 <= num_pixels; i += 4) {
    279     const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
    280     const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i + 0]);
    281     const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]);
    282     DO_PRED5(0);
    283     DO_PRED5(1);
    284     DO_PRED5(2);
    285     DO_PRED5(3);
    286   }
    287   VP8LPredictorsAdd_C[5](in + i, upper + i, num_pixels - i, out + i);
    288 }
    289 #undef DO_PRED5
    290 
    291 #define DO_PRED67(LANE) do {                                             \
    292   const uint8x16_t avg = vhaddq_u8(L, top);                              \
    293   const uint8x16_t res = vaddq_u8(avg, src);                             \
    294   vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE));   \
    295   L = ROTATE32_LEFT(res);                                                \
    296 } while (0)
    297 
    298 // Predictor6: average(left, TL)
    299 static void PredictorAdd6_NEON(const uint32_t* in, const uint32_t* upper,
    300                                int num_pixels, uint32_t* out) {
    301   int i;
    302   uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
    303   for (i = 0; i + 4 <= num_pixels; i += 4) {
    304     const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
    305     const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i - 1]);
    306     DO_PRED67(0);
    307     DO_PRED67(1);
    308     DO_PRED67(2);
    309     DO_PRED67(3);
    310   }
    311   VP8LPredictorsAdd_C[6](in + i, upper + i, num_pixels - i, out + i);
    312 }
    313 
    314 // Predictor7: average(left, T)
    315 static void PredictorAdd7_NEON(const uint32_t* in, const uint32_t* upper,
    316                                int num_pixels, uint32_t* out) {
    317   int i;
    318   uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
    319   for (i = 0; i + 4 <= num_pixels; i += 4) {
    320     const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
    321     const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i]);
    322     DO_PRED67(0);
    323     DO_PRED67(1);
    324     DO_PRED67(2);
    325     DO_PRED67(3);
    326   }
    327   VP8LPredictorsAdd_C[7](in + i, upper + i, num_pixels - i, out + i);
    328 }
    329 #undef DO_PRED67
    330 
    331 #define GENERATE_PREDICTOR_2(X, IN)                                       \
    332 static void PredictorAdd##X##_NEON(const uint32_t* in,                    \
    333                                    const uint32_t* upper, int num_pixels, \
    334                                    uint32_t* out) {                       \
    335   int i;                                                                  \
    336   for (i = 0; i + 4 <= num_pixels; i += 4) {                              \
    337     const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);                      \
    338     const uint8x16_t Tother = LOADQ_U32P_AS_U8(&(IN));                    \
    339     const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);                     \
    340     const uint8x16_t avg = vhaddq_u8(T, Tother);                          \
    341     const uint8x16_t res = vaddq_u8(avg, src);                            \
    342     STOREQ_U8_AS_U32P(&out[i], res);                                      \
    343   }                                                                       \
    344   VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i);   \
    345 }
    346 // Predictor8: average TL T.
    347 GENERATE_PREDICTOR_2(8, upper[i - 1])
    348 // Predictor9: average T TR.
    349 GENERATE_PREDICTOR_2(9, upper[i + 1])
    350 #undef GENERATE_PREDICTOR_2
    351 
    352 // Predictor10: average of (average of (L,TL), average of (T, TR)).
    353 #define DO_PRED10(LANE) do {                                             \
    354   const uint8x16_t avgLTL = vhaddq_u8(L, TL);                            \
    355   const uint8x16_t avg = vhaddq_u8(avgTTR, avgLTL);                      \
    356   const uint8x16_t res = vaddq_u8(avg, src);                             \
    357   vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE));   \
    358   L = ROTATE32_LEFT(res);                                                \
    359 } while (0)
    360 
    361 static void PredictorAdd10_NEON(const uint32_t* in, const uint32_t* upper,
    362                                 int num_pixels, uint32_t* out) {
    363   int i;
    364   uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
    365   for (i = 0; i + 4 <= num_pixels; i += 4) {
    366     const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
    367     const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
    368     const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
    369     const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]);
    370     const uint8x16_t avgTTR = vhaddq_u8(T, TR);
    371     DO_PRED10(0);
    372     DO_PRED10(1);
    373     DO_PRED10(2);
    374     DO_PRED10(3);
    375   }
    376   VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
    377 }
    378 #undef DO_PRED10
    379 
    380 // Predictor11: select.
    381 #define DO_PRED11(LANE) do {                                                   \
    382   const uint8x16_t sumLin = vaddq_u8(L, src);  /* in + L */                    \
    383   const uint8x16_t pLTL = vabdq_u8(L, TL);  /* |L - TL| */                     \
    384   const uint16x8_t sum_LTL = vpaddlq_u8(pLTL);                                 \
    385   const uint32x4_t pa = vpaddlq_u16(sum_LTL);                                  \
    386   const uint32x4_t mask = vcleq_u32(pa, pb);                                   \
    387   const uint8x16_t res = vbslq_u8(vreinterpretq_u8_u32(mask), sumTin, sumLin); \
    388   vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE));         \
    389   L = ROTATE32_LEFT(res);                                                      \
    390 } while (0)
    391 
    392 static void PredictorAdd11_NEON(const uint32_t* in, const uint32_t* upper,
    393                                 int num_pixels, uint32_t* out) {
    394   int i;
    395   uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
    396   for (i = 0; i + 4 <= num_pixels; i += 4) {
    397     const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
    398     const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
    399     const uint8x16_t pTTL = vabdq_u8(T, TL);   // |T - TL|
    400     const uint16x8_t sum_TTL = vpaddlq_u8(pTTL);
    401     const uint32x4_t pb = vpaddlq_u16(sum_TTL);
    402     const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
    403     const uint8x16_t sumTin = vaddq_u8(T, src);   // in + T
    404     DO_PRED11(0);
    405     DO_PRED11(1);
    406     DO_PRED11(2);
    407     DO_PRED11(3);
    408   }
    409   VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
    410 }
    411 #undef DO_PRED11
    412 
    413 // Predictor12: ClampedAddSubtractFull.
    414 #define DO_PRED12(DIFF, LANE) do {                                       \
    415   const uint8x8_t pred =                                                 \
    416       vqmovun_s16(vaddq_s16(vreinterpretq_s16_u16(L), (DIFF)));          \
    417   const uint8x8_t res =                                                  \
    418       vadd_u8(pred, (LANE <= 1) ? vget_low_u8(src) : vget_high_u8(src)); \
    419   const uint16x8_t res16 = vmovl_u8(res);                                \
    420   vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \
    421   /* rotate in the left predictor for next iteration */                  \
    422   L = vextq_u16(res16, res16, 4);                                        \
    423 } while (0)
    424 
    425 static void PredictorAdd12_NEON(const uint32_t* in, const uint32_t* upper,
    426                                 int num_pixels, uint32_t* out) {
    427   int i;
    428   uint16x8_t L = vmovl_u8(LOAD_U32_AS_U8(out[-1]));
    429   for (i = 0; i + 4 <= num_pixels; i += 4) {
    430     // load four pixels of source
    431     const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
    432     // precompute the difference T - TL once for all, stored as s16
    433     const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
    434     const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
    435     const int16x8_t diff_lo =
    436         vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(T), vget_low_u8(TL)));
    437     const int16x8_t diff_hi =
    438         vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(T), vget_high_u8(TL)));
    439     // loop over the four reconstructed pixels
    440     DO_PRED12(diff_lo, 0);
    441     DO_PRED12(diff_lo, 1);
    442     DO_PRED12(diff_hi, 2);
    443     DO_PRED12(diff_hi, 3);
    444   }
    445   VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
    446 }
    447 #undef DO_PRED12
    448 
    449 // Predictor13: ClampedAddSubtractHalf
    450 #define DO_PRED13(LANE, LOW_OR_HI) do {                                        \
    451   const uint8x16_t avg = vhaddq_u8(L, T);                                      \
    452   const uint8x16_t cmp = vcgtq_u8(TL, avg);                                    \
    453   const uint8x16_t TL_1 = vaddq_u8(TL, cmp);                                   \
    454   /* Compute half of the difference between avg and TL'. */                    \
    455   const int8x8_t diff_avg =                                                    \
    456       vreinterpret_s8_u8(LOW_OR_HI(vhsubq_u8(avg, TL_1)));                     \
    457   /* Compute the sum with avg and saturate. */                                 \
    458   const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(LOW_OR_HI(avg)));    \
    459   const uint8x8_t delta = vqmovun_s16(vaddw_s8(avg_16, diff_avg));             \
    460   const uint8x8_t res = vadd_u8(LOW_OR_HI(src), delta);                        \
    461   const uint8x16_t res2 = vcombine_u8(res, res);                               \
    462   vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1);       \
    463   L = ROTATE32_LEFT(res2);                                                     \
    464 } while (0)
    465 
    466 static void PredictorAdd13_NEON(const uint32_t* in, const uint32_t* upper,
    467                                 int num_pixels, uint32_t* out) {
    468   int i;
    469   uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
    470   for (i = 0; i + 4 <= num_pixels; i += 4) {
    471     const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
    472     const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
    473     const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
    474     DO_PRED13(0, vget_low_u8);
    475     DO_PRED13(1, vget_low_u8);
    476     DO_PRED13(2, vget_high_u8);
    477     DO_PRED13(3, vget_high_u8);
    478   }
    479   VP8LPredictorsAdd_C[13](in + i, upper + i, num_pixels - i, out + i);
    480 }
    481 #undef DO_PRED13
    482 
    483 #undef LOAD_U32_AS_U8
    484 #undef LOAD_U32P_AS_U8
    485 #undef LOADQ_U32_AS_U8
    486 #undef LOADQ_U32P_AS_U8
    487 #undef GET_U8_AS_U32
    488 #undef GETQ_U8_AS_U32
    489 #undef STOREQ_U8_AS_U32P
    490 #undef ROTATE32_LEFT
    491 
    492 //------------------------------------------------------------------------------
    493 // Subtract-Green Transform
    494 
    495 // vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use
    496 // non-standard versions there.
    497 #if defined(__APPLE__) && defined(__aarch64__) && \
    498     defined(__apple_build_version__) && (__apple_build_version__< 6020037)
    499 #define USE_VTBLQ
    500 #endif
    501 
    502 #ifdef USE_VTBLQ
    503 // 255 = byte will be zeroed
    504 static const uint8_t kGreenShuffle[16] = {
    505   1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13, 255
    506 };
    507 
    508 static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb,
    509                                                   const uint8x16_t shuffle) {
    510   return vcombine_u8(vtbl1q_u8(argb, vget_low_u8(shuffle)),
    511                      vtbl1q_u8(argb, vget_high_u8(shuffle)));
    512 }
    513 #else  // !USE_VTBLQ
    514 // 255 = byte will be zeroed
    515 static const uint8_t kGreenShuffle[8] = { 1, 255, 1, 255, 5, 255, 5, 255  };
    516 
    517 static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb,
    518                                                   const uint8x8_t shuffle) {
    519   return vcombine_u8(vtbl1_u8(vget_low_u8(argb), shuffle),
    520                      vtbl1_u8(vget_high_u8(argb), shuffle));
    521 }
    522 #endif  // USE_VTBLQ
    523 
    524 static void AddGreenToBlueAndRed_NEON(const uint32_t* src, int num_pixels,
    525                                       uint32_t* dst) {
    526   const uint32_t* const end = src + (num_pixels & ~3);
    527 #ifdef USE_VTBLQ
    528   const uint8x16_t shuffle = vld1q_u8(kGreenShuffle);
    529 #else
    530   const uint8x8_t shuffle = vld1_u8(kGreenShuffle);
    531 #endif
    532   for (; src < end; src += 4, dst += 4) {
    533     const uint8x16_t argb = vld1q_u8((const uint8_t*)src);
    534     const uint8x16_t greens = DoGreenShuffle_NEON(argb, shuffle);
    535     vst1q_u8((uint8_t*)dst, vaddq_u8(argb, greens));
    536   }
    537   // fallthrough and finish off with plain-C
    538   VP8LAddGreenToBlueAndRed_C(src, num_pixels & 3, dst);
    539 }
    540 
    541 //------------------------------------------------------------------------------
    542 // Color Transform
    543 
    544 static void TransformColorInverse_NEON(const VP8LMultipliers* const m,
    545                                        const uint32_t* const src,
    546                                        int num_pixels, uint32_t* dst) {
    547 // sign-extended multiplying constants, pre-shifted by 6.
    548 #define CST(X)  (((int16_t)(m->X << 8)) >> 6)
    549   const int16_t rb[8] = {
    550     CST(green_to_blue_), CST(green_to_red_),
    551     CST(green_to_blue_), CST(green_to_red_),
    552     CST(green_to_blue_), CST(green_to_red_),
    553     CST(green_to_blue_), CST(green_to_red_)
    554   };
    555   const int16x8_t mults_rb = vld1q_s16(rb);
    556   const int16_t b2[8] = {
    557     0, CST(red_to_blue_), 0, CST(red_to_blue_),
    558     0, CST(red_to_blue_), 0, CST(red_to_blue_),
    559   };
    560   const int16x8_t mults_b2 = vld1q_s16(b2);
    561 #undef CST
    562 #ifdef USE_VTBLQ
    563   static const uint8_t kg0g0[16] = {
    564     255, 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13
    565   };
    566   const uint8x16_t shuffle = vld1q_u8(kg0g0);
    567 #else
    568   static const uint8_t k0g0g[8] = { 255, 1, 255, 1, 255, 5, 255, 5 };
    569   const uint8x8_t shuffle = vld1_u8(k0g0g);
    570 #endif
    571   const uint32x4_t mask_ag = vdupq_n_u32(0xff00ff00u);
    572   int i;
    573   for (i = 0; i + 4 <= num_pixels; i += 4) {
    574     const uint8x16_t in = vld1q_u8((const uint8_t*)(src + i));
    575     const uint32x4_t a0g0 = vandq_u32(vreinterpretq_u32_u8(in), mask_ag);
    576     // 0 g 0 g
    577     const uint8x16_t greens = DoGreenShuffle_NEON(in, shuffle);
    578     // x dr  x db1
    579     const int16x8_t A = vqdmulhq_s16(vreinterpretq_s16_u8(greens), mults_rb);
    580     // x r'  x   b'
    581     const int8x16_t B = vaddq_s8(vreinterpretq_s8_u8(in),
    582                                  vreinterpretq_s8_s16(A));
    583     // r' 0   b' 0
    584     const int16x8_t C = vshlq_n_s16(vreinterpretq_s16_s8(B), 8);
    585     // x db2  0  0
    586     const int16x8_t D = vqdmulhq_s16(C, mults_b2);
    587     // 0  x db2  0
    588     const uint32x4_t E = vshrq_n_u32(vreinterpretq_u32_s16(D), 8);
    589     // r' x  b'' 0
    590     const int8x16_t F = vaddq_s8(vreinterpretq_s8_u32(E),
    591                                  vreinterpretq_s8_s16(C));
    592     // 0  r'  0  b''
    593     const uint16x8_t G = vshrq_n_u16(vreinterpretq_u16_s8(F), 8);
    594     const uint32x4_t out = vorrq_u32(vreinterpretq_u32_u16(G), a0g0);
    595     vst1q_u32(dst + i, out);
    596   }
    597   // Fall-back to C-version for left-overs.
    598   VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
    599 }
    600 
    601 #undef USE_VTBLQ
    602 
    603 //------------------------------------------------------------------------------
    604 // Entry point
    605 
    606 extern void VP8LDspInitNEON(void);
    607 
    608 WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitNEON(void) {
    609   VP8LPredictors[5] = Predictor5_NEON;
    610   VP8LPredictors[6] = Predictor6_NEON;
    611   VP8LPredictors[7] = Predictor7_NEON;
    612   VP8LPredictors[13] = Predictor13_NEON;
    613 
    614   VP8LPredictorsAdd[0] = PredictorAdd0_NEON;
    615   VP8LPredictorsAdd[1] = PredictorAdd1_NEON;
    616   VP8LPredictorsAdd[2] = PredictorAdd2_NEON;
    617   VP8LPredictorsAdd[3] = PredictorAdd3_NEON;
    618   VP8LPredictorsAdd[4] = PredictorAdd4_NEON;
    619   VP8LPredictorsAdd[5] = PredictorAdd5_NEON;
    620   VP8LPredictorsAdd[6] = PredictorAdd6_NEON;
    621   VP8LPredictorsAdd[7] = PredictorAdd7_NEON;
    622   VP8LPredictorsAdd[8] = PredictorAdd8_NEON;
    623   VP8LPredictorsAdd[9] = PredictorAdd9_NEON;
    624   VP8LPredictorsAdd[10] = PredictorAdd10_NEON;
    625   VP8LPredictorsAdd[11] = PredictorAdd11_NEON;
    626   VP8LPredictorsAdd[12] = PredictorAdd12_NEON;
    627   VP8LPredictorsAdd[13] = PredictorAdd13_NEON;
    628 
    629   VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_NEON;
    630   VP8LConvertBGRAToBGR = ConvertBGRAToBGR_NEON;
    631   VP8LConvertBGRAToRGB = ConvertBGRAToRGB_NEON;
    632 
    633   VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_NEON;
    634   VP8LTransformColorInverse = TransformColorInverse_NEON;
    635 }
    636 
    637 #else  // !WEBP_USE_NEON
    638 
    639 WEBP_DSP_INIT_STUB(VP8LDspInitNEON)
    640 
    641 #endif  // WEBP_USE_NEON
    642