1 // Copyright 2014 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // NEON variant of methods for lossless decoder 11 // 12 // Author: Skal (pascal.massimino (at) gmail.com) 13 14 #include "src/dsp/dsp.h" 15 16 #if defined(WEBP_USE_NEON) 17 18 #include <arm_neon.h> 19 20 #include "src/dsp/lossless.h" 21 #include "src/dsp/neon.h" 22 23 //------------------------------------------------------------------------------ 24 // Colorspace conversion functions 25 26 #if !defined(WORK_AROUND_GCC) 27 // gcc 4.6.0 had some trouble (NDK-r9) with this code. We only use it for 28 // gcc-4.8.x at least. 29 static void ConvertBGRAToRGBA_NEON(const uint32_t* src, 30 int num_pixels, uint8_t* dst) { 31 const uint32_t* const end = src + (num_pixels & ~15); 32 for (; src < end; src += 16) { 33 uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); 34 // swap B and R. (VSWP d0,d2 has no intrinsics equivalent!) 35 const uint8x16_t tmp = pixel.val[0]; 36 pixel.val[0] = pixel.val[2]; 37 pixel.val[2] = tmp; 38 vst4q_u8(dst, pixel); 39 dst += 64; 40 } 41 VP8LConvertBGRAToRGBA_C(src, num_pixels & 15, dst); // left-overs 42 } 43 44 static void ConvertBGRAToBGR_NEON(const uint32_t* src, 45 int num_pixels, uint8_t* dst) { 46 const uint32_t* const end = src + (num_pixels & ~15); 47 for (; src < end; src += 16) { 48 const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); 49 const uint8x16x3_t tmp = { { pixel.val[0], pixel.val[1], pixel.val[2] } }; 50 vst3q_u8(dst, tmp); 51 dst += 48; 52 } 53 VP8LConvertBGRAToBGR_C(src, num_pixels & 15, dst); // left-overs 54 } 55 56 static void ConvertBGRAToRGB_NEON(const uint32_t* src, 57 int num_pixels, uint8_t* dst) { 58 const uint32_t* const end = src + (num_pixels & ~15); 59 for (; src < end; src += 16) { 60 const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); 61 const uint8x16x3_t tmp = { { pixel.val[2], pixel.val[1], pixel.val[0] } }; 62 vst3q_u8(dst, tmp); 63 dst += 48; 64 } 65 VP8LConvertBGRAToRGB_C(src, num_pixels & 15, dst); // left-overs 66 } 67 68 #else // WORK_AROUND_GCC 69 70 // gcc-4.6.0 fallback 71 72 static const uint8_t kRGBAShuffle[8] = { 2, 1, 0, 3, 6, 5, 4, 7 }; 73 74 static void ConvertBGRAToRGBA_NEON(const uint32_t* src, 75 int num_pixels, uint8_t* dst) { 76 const uint32_t* const end = src + (num_pixels & ~1); 77 const uint8x8_t shuffle = vld1_u8(kRGBAShuffle); 78 for (; src < end; src += 2) { 79 const uint8x8_t pixels = vld1_u8((uint8_t*)src); 80 vst1_u8(dst, vtbl1_u8(pixels, shuffle)); 81 dst += 8; 82 } 83 VP8LConvertBGRAToRGBA_C(src, num_pixels & 1, dst); // left-overs 84 } 85 86 static const uint8_t kBGRShuffle[3][8] = { 87 { 0, 1, 2, 4, 5, 6, 8, 9 }, 88 { 10, 12, 13, 14, 16, 17, 18, 20 }, 89 { 21, 22, 24, 25, 26, 28, 29, 30 } 90 }; 91 92 static void ConvertBGRAToBGR_NEON(const uint32_t* src, 93 int num_pixels, uint8_t* dst) { 94 const uint32_t* const end = src + (num_pixels & ~7); 95 const uint8x8_t shuffle0 = vld1_u8(kBGRShuffle[0]); 96 const uint8x8_t shuffle1 = vld1_u8(kBGRShuffle[1]); 97 const uint8x8_t shuffle2 = vld1_u8(kBGRShuffle[2]); 98 for (; src < end; src += 8) { 99 uint8x8x4_t pixels; 100 INIT_VECTOR4(pixels, 101 vld1_u8((const uint8_t*)(src + 0)), 102 vld1_u8((const uint8_t*)(src + 2)), 103 vld1_u8((const uint8_t*)(src + 4)), 104 vld1_u8((const uint8_t*)(src + 6))); 105 vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0)); 106 vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1)); 107 vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2)); 108 dst += 8 * 3; 109 } 110 VP8LConvertBGRAToBGR_C(src, num_pixels & 7, dst); // left-overs 111 } 112 113 static const uint8_t kRGBShuffle[3][8] = { 114 { 2, 1, 0, 6, 5, 4, 10, 9 }, 115 { 8, 14, 13, 12, 18, 17, 16, 22 }, 116 { 21, 20, 26, 25, 24, 30, 29, 28 } 117 }; 118 119 static void ConvertBGRAToRGB_NEON(const uint32_t* src, 120 int num_pixels, uint8_t* dst) { 121 const uint32_t* const end = src + (num_pixels & ~7); 122 const uint8x8_t shuffle0 = vld1_u8(kRGBShuffle[0]); 123 const uint8x8_t shuffle1 = vld1_u8(kRGBShuffle[1]); 124 const uint8x8_t shuffle2 = vld1_u8(kRGBShuffle[2]); 125 for (; src < end; src += 8) { 126 uint8x8x4_t pixels; 127 INIT_VECTOR4(pixels, 128 vld1_u8((const uint8_t*)(src + 0)), 129 vld1_u8((const uint8_t*)(src + 2)), 130 vld1_u8((const uint8_t*)(src + 4)), 131 vld1_u8((const uint8_t*)(src + 6))); 132 vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0)); 133 vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1)); 134 vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2)); 135 dst += 8 * 3; 136 } 137 VP8LConvertBGRAToRGB_C(src, num_pixels & 7, dst); // left-overs 138 } 139 140 #endif // !WORK_AROUND_GCC 141 142 //------------------------------------------------------------------------------ 143 // Predictor Transform 144 145 #define LOAD_U32_AS_U8(IN) vreinterpret_u8_u32(vdup_n_u32((IN))) 146 #define LOAD_U32P_AS_U8(IN) vreinterpret_u8_u32(vld1_u32((IN))) 147 #define LOADQ_U32_AS_U8(IN) vreinterpretq_u8_u32(vdupq_n_u32((IN))) 148 #define LOADQ_U32P_AS_U8(IN) vreinterpretq_u8_u32(vld1q_u32((IN))) 149 #define GET_U8_AS_U32(IN) vget_lane_u32(vreinterpret_u32_u8((IN)), 0); 150 #define GETQ_U8_AS_U32(IN) vgetq_lane_u32(vreinterpretq_u32_u8((IN)), 0); 151 #define STOREQ_U8_AS_U32P(OUT, IN) vst1q_u32((OUT), vreinterpretq_u32_u8((IN))); 152 #define ROTATE32_LEFT(L) vextq_u8((L), (L), 12) // D|C|B|A -> C|B|A|D 153 154 static WEBP_INLINE uint8x8_t Average2_u8_NEON(uint32_t a0, uint32_t a1) { 155 const uint8x8_t A0 = LOAD_U32_AS_U8(a0); 156 const uint8x8_t A1 = LOAD_U32_AS_U8(a1); 157 return vhadd_u8(A0, A1); 158 } 159 160 static WEBP_INLINE uint32_t ClampedAddSubtractHalf_NEON(uint32_t c0, 161 uint32_t c1, 162 uint32_t c2) { 163 const uint8x8_t avg = Average2_u8_NEON(c0, c1); 164 // Remove one to c2 when bigger than avg. 165 const uint8x8_t C2 = LOAD_U32_AS_U8(c2); 166 const uint8x8_t cmp = vcgt_u8(C2, avg); 167 const uint8x8_t C2_1 = vadd_u8(C2, cmp); 168 // Compute half of the difference between avg and c2. 169 const int8x8_t diff_avg = vreinterpret_s8_u8(vhsub_u8(avg, C2_1)); 170 // Compute the sum with avg and saturate. 171 const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(avg)); 172 const uint8x8_t res = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); 173 const uint32_t output = GET_U8_AS_U32(res); 174 return output; 175 } 176 177 static WEBP_INLINE uint32_t Average2_NEON(uint32_t a0, uint32_t a1) { 178 const uint8x8_t avg_u8x8 = Average2_u8_NEON(a0, a1); 179 const uint32_t avg = GET_U8_AS_U32(avg_u8x8); 180 return avg; 181 } 182 183 static WEBP_INLINE uint32_t Average3_NEON(uint32_t a0, uint32_t a1, 184 uint32_t a2) { 185 const uint8x8_t avg0 = Average2_u8_NEON(a0, a2); 186 const uint8x8_t A1 = LOAD_U32_AS_U8(a1); 187 const uint32_t avg = GET_U8_AS_U32(vhadd_u8(avg0, A1)); 188 return avg; 189 } 190 191 static uint32_t Predictor5_NEON(uint32_t left, const uint32_t* const top) { 192 return Average3_NEON(left, top[0], top[1]); 193 } 194 static uint32_t Predictor6_NEON(uint32_t left, const uint32_t* const top) { 195 return Average2_NEON(left, top[-1]); 196 } 197 static uint32_t Predictor7_NEON(uint32_t left, const uint32_t* const top) { 198 return Average2_NEON(left, top[0]); 199 } 200 static uint32_t Predictor13_NEON(uint32_t left, const uint32_t* const top) { 201 return ClampedAddSubtractHalf_NEON(left, top[0], top[-1]); 202 } 203 204 // Batch versions of those functions. 205 206 // Predictor0: ARGB_BLACK. 207 static void PredictorAdd0_NEON(const uint32_t* in, const uint32_t* upper, 208 int num_pixels, uint32_t* out) { 209 int i; 210 const uint8x16_t black = vreinterpretq_u8_u32(vdupq_n_u32(ARGB_BLACK)); 211 for (i = 0; i + 4 <= num_pixels; i += 4) { 212 const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); 213 const uint8x16_t res = vaddq_u8(src, black); 214 STOREQ_U8_AS_U32P(&out[i], res); 215 } 216 VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i); 217 } 218 219 // Predictor1: left. 220 static void PredictorAdd1_NEON(const uint32_t* in, const uint32_t* upper, 221 int num_pixels, uint32_t* out) { 222 int i; 223 const uint8x16_t zero = LOADQ_U32_AS_U8(0); 224 for (i = 0; i + 4 <= num_pixels; i += 4) { 225 // a | b | c | d 226 const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); 227 // 0 | a | b | c 228 const uint8x16_t shift0 = vextq_u8(zero, src, 12); 229 // a | a + b | b + c | c + d 230 const uint8x16_t sum0 = vaddq_u8(src, shift0); 231 // 0 | 0 | a | a + b 232 const uint8x16_t shift1 = vextq_u8(zero, sum0, 8); 233 // a | a + b | a + b + c | a + b + c + d 234 const uint8x16_t sum1 = vaddq_u8(sum0, shift1); 235 const uint8x16_t prev = LOADQ_U32_AS_U8(out[i - 1]); 236 const uint8x16_t res = vaddq_u8(sum1, prev); 237 STOREQ_U8_AS_U32P(&out[i], res); 238 } 239 VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i); 240 } 241 242 // Macro that adds 32-bit integers from IN using mod 256 arithmetic 243 // per 8 bit channel. 244 #define GENERATE_PREDICTOR_1(X, IN) \ 245 static void PredictorAdd##X##_NEON(const uint32_t* in, \ 246 const uint32_t* upper, int num_pixels, \ 247 uint32_t* out) { \ 248 int i; \ 249 for (i = 0; i + 4 <= num_pixels; i += 4) { \ 250 const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \ 251 const uint8x16_t other = LOADQ_U32P_AS_U8(&(IN)); \ 252 const uint8x16_t res = vaddq_u8(src, other); \ 253 STOREQ_U8_AS_U32P(&out[i], res); \ 254 } \ 255 VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ 256 } 257 // Predictor2: Top. 258 GENERATE_PREDICTOR_1(2, upper[i]) 259 // Predictor3: Top-right. 260 GENERATE_PREDICTOR_1(3, upper[i + 1]) 261 // Predictor4: Top-left. 262 GENERATE_PREDICTOR_1(4, upper[i - 1]) 263 #undef GENERATE_PREDICTOR_1 264 265 // Predictor5: average(average(left, TR), T) 266 #define DO_PRED5(LANE) do { \ 267 const uint8x16_t avgLTR = vhaddq_u8(L, TR); \ 268 const uint8x16_t avg = vhaddq_u8(avgLTR, T); \ 269 const uint8x16_t res = vaddq_u8(avg, src); \ 270 vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ 271 L = ROTATE32_LEFT(res); \ 272 } while (0) 273 274 static void PredictorAdd5_NEON(const uint32_t* in, const uint32_t* upper, 275 int num_pixels, uint32_t* out) { 276 int i; 277 uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); 278 for (i = 0; i + 4 <= num_pixels; i += 4) { 279 const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); 280 const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i + 0]); 281 const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]); 282 DO_PRED5(0); 283 DO_PRED5(1); 284 DO_PRED5(2); 285 DO_PRED5(3); 286 } 287 VP8LPredictorsAdd_C[5](in + i, upper + i, num_pixels - i, out + i); 288 } 289 #undef DO_PRED5 290 291 #define DO_PRED67(LANE) do { \ 292 const uint8x16_t avg = vhaddq_u8(L, top); \ 293 const uint8x16_t res = vaddq_u8(avg, src); \ 294 vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ 295 L = ROTATE32_LEFT(res); \ 296 } while (0) 297 298 // Predictor6: average(left, TL) 299 static void PredictorAdd6_NEON(const uint32_t* in, const uint32_t* upper, 300 int num_pixels, uint32_t* out) { 301 int i; 302 uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); 303 for (i = 0; i + 4 <= num_pixels; i += 4) { 304 const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); 305 const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i - 1]); 306 DO_PRED67(0); 307 DO_PRED67(1); 308 DO_PRED67(2); 309 DO_PRED67(3); 310 } 311 VP8LPredictorsAdd_C[6](in + i, upper + i, num_pixels - i, out + i); 312 } 313 314 // Predictor7: average(left, T) 315 static void PredictorAdd7_NEON(const uint32_t* in, const uint32_t* upper, 316 int num_pixels, uint32_t* out) { 317 int i; 318 uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); 319 for (i = 0; i + 4 <= num_pixels; i += 4) { 320 const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); 321 const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i]); 322 DO_PRED67(0); 323 DO_PRED67(1); 324 DO_PRED67(2); 325 DO_PRED67(3); 326 } 327 VP8LPredictorsAdd_C[7](in + i, upper + i, num_pixels - i, out + i); 328 } 329 #undef DO_PRED67 330 331 #define GENERATE_PREDICTOR_2(X, IN) \ 332 static void PredictorAdd##X##_NEON(const uint32_t* in, \ 333 const uint32_t* upper, int num_pixels, \ 334 uint32_t* out) { \ 335 int i; \ 336 for (i = 0; i + 4 <= num_pixels; i += 4) { \ 337 const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \ 338 const uint8x16_t Tother = LOADQ_U32P_AS_U8(&(IN)); \ 339 const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); \ 340 const uint8x16_t avg = vhaddq_u8(T, Tother); \ 341 const uint8x16_t res = vaddq_u8(avg, src); \ 342 STOREQ_U8_AS_U32P(&out[i], res); \ 343 } \ 344 VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ 345 } 346 // Predictor8: average TL T. 347 GENERATE_PREDICTOR_2(8, upper[i - 1]) 348 // Predictor9: average T TR. 349 GENERATE_PREDICTOR_2(9, upper[i + 1]) 350 #undef GENERATE_PREDICTOR_2 351 352 // Predictor10: average of (average of (L,TL), average of (T, TR)). 353 #define DO_PRED10(LANE) do { \ 354 const uint8x16_t avgLTL = vhaddq_u8(L, TL); \ 355 const uint8x16_t avg = vhaddq_u8(avgTTR, avgLTL); \ 356 const uint8x16_t res = vaddq_u8(avg, src); \ 357 vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ 358 L = ROTATE32_LEFT(res); \ 359 } while (0) 360 361 static void PredictorAdd10_NEON(const uint32_t* in, const uint32_t* upper, 362 int num_pixels, uint32_t* out) { 363 int i; 364 uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); 365 for (i = 0; i + 4 <= num_pixels; i += 4) { 366 const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); 367 const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); 368 const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); 369 const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]); 370 const uint8x16_t avgTTR = vhaddq_u8(T, TR); 371 DO_PRED10(0); 372 DO_PRED10(1); 373 DO_PRED10(2); 374 DO_PRED10(3); 375 } 376 VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i); 377 } 378 #undef DO_PRED10 379 380 // Predictor11: select. 381 #define DO_PRED11(LANE) do { \ 382 const uint8x16_t sumLin = vaddq_u8(L, src); /* in + L */ \ 383 const uint8x16_t pLTL = vabdq_u8(L, TL); /* |L - TL| */ \ 384 const uint16x8_t sum_LTL = vpaddlq_u8(pLTL); \ 385 const uint32x4_t pa = vpaddlq_u16(sum_LTL); \ 386 const uint32x4_t mask = vcleq_u32(pa, pb); \ 387 const uint8x16_t res = vbslq_u8(vreinterpretq_u8_u32(mask), sumTin, sumLin); \ 388 vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ 389 L = ROTATE32_LEFT(res); \ 390 } while (0) 391 392 static void PredictorAdd11_NEON(const uint32_t* in, const uint32_t* upper, 393 int num_pixels, uint32_t* out) { 394 int i; 395 uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); 396 for (i = 0; i + 4 <= num_pixels; i += 4) { 397 const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); 398 const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); 399 const uint8x16_t pTTL = vabdq_u8(T, TL); // |T - TL| 400 const uint16x8_t sum_TTL = vpaddlq_u8(pTTL); 401 const uint32x4_t pb = vpaddlq_u16(sum_TTL); 402 const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); 403 const uint8x16_t sumTin = vaddq_u8(T, src); // in + T 404 DO_PRED11(0); 405 DO_PRED11(1); 406 DO_PRED11(2); 407 DO_PRED11(3); 408 } 409 VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i); 410 } 411 #undef DO_PRED11 412 413 // Predictor12: ClampedAddSubtractFull. 414 #define DO_PRED12(DIFF, LANE) do { \ 415 const uint8x8_t pred = \ 416 vqmovun_s16(vaddq_s16(vreinterpretq_s16_u16(L), (DIFF))); \ 417 const uint8x8_t res = \ 418 vadd_u8(pred, (LANE <= 1) ? vget_low_u8(src) : vget_high_u8(src)); \ 419 const uint16x8_t res16 = vmovl_u8(res); \ 420 vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \ 421 /* rotate in the left predictor for next iteration */ \ 422 L = vextq_u16(res16, res16, 4); \ 423 } while (0) 424 425 static void PredictorAdd12_NEON(const uint32_t* in, const uint32_t* upper, 426 int num_pixels, uint32_t* out) { 427 int i; 428 uint16x8_t L = vmovl_u8(LOAD_U32_AS_U8(out[-1])); 429 for (i = 0; i + 4 <= num_pixels; i += 4) { 430 // load four pixels of source 431 const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); 432 // precompute the difference T - TL once for all, stored as s16 433 const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); 434 const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); 435 const int16x8_t diff_lo = 436 vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(T), vget_low_u8(TL))); 437 const int16x8_t diff_hi = 438 vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(T), vget_high_u8(TL))); 439 // loop over the four reconstructed pixels 440 DO_PRED12(diff_lo, 0); 441 DO_PRED12(diff_lo, 1); 442 DO_PRED12(diff_hi, 2); 443 DO_PRED12(diff_hi, 3); 444 } 445 VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i); 446 } 447 #undef DO_PRED12 448 449 // Predictor13: ClampedAddSubtractHalf 450 #define DO_PRED13(LANE, LOW_OR_HI) do { \ 451 const uint8x16_t avg = vhaddq_u8(L, T); \ 452 const uint8x16_t cmp = vcgtq_u8(TL, avg); \ 453 const uint8x16_t TL_1 = vaddq_u8(TL, cmp); \ 454 /* Compute half of the difference between avg and TL'. */ \ 455 const int8x8_t diff_avg = \ 456 vreinterpret_s8_u8(LOW_OR_HI(vhsubq_u8(avg, TL_1))); \ 457 /* Compute the sum with avg and saturate. */ \ 458 const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(LOW_OR_HI(avg))); \ 459 const uint8x8_t delta = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); \ 460 const uint8x8_t res = vadd_u8(LOW_OR_HI(src), delta); \ 461 const uint8x16_t res2 = vcombine_u8(res, res); \ 462 vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \ 463 L = ROTATE32_LEFT(res2); \ 464 } while (0) 465 466 static void PredictorAdd13_NEON(const uint32_t* in, const uint32_t* upper, 467 int num_pixels, uint32_t* out) { 468 int i; 469 uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); 470 for (i = 0; i + 4 <= num_pixels; i += 4) { 471 const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); 472 const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); 473 const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); 474 DO_PRED13(0, vget_low_u8); 475 DO_PRED13(1, vget_low_u8); 476 DO_PRED13(2, vget_high_u8); 477 DO_PRED13(3, vget_high_u8); 478 } 479 VP8LPredictorsAdd_C[13](in + i, upper + i, num_pixels - i, out + i); 480 } 481 #undef DO_PRED13 482 483 #undef LOAD_U32_AS_U8 484 #undef LOAD_U32P_AS_U8 485 #undef LOADQ_U32_AS_U8 486 #undef LOADQ_U32P_AS_U8 487 #undef GET_U8_AS_U32 488 #undef GETQ_U8_AS_U32 489 #undef STOREQ_U8_AS_U32P 490 #undef ROTATE32_LEFT 491 492 //------------------------------------------------------------------------------ 493 // Subtract-Green Transform 494 495 // vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use 496 // non-standard versions there. 497 #if defined(__APPLE__) && defined(__aarch64__) && \ 498 defined(__apple_build_version__) && (__apple_build_version__< 6020037) 499 #define USE_VTBLQ 500 #endif 501 502 #ifdef USE_VTBLQ 503 // 255 = byte will be zeroed 504 static const uint8_t kGreenShuffle[16] = { 505 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13, 255 506 }; 507 508 static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb, 509 const uint8x16_t shuffle) { 510 return vcombine_u8(vtbl1q_u8(argb, vget_low_u8(shuffle)), 511 vtbl1q_u8(argb, vget_high_u8(shuffle))); 512 } 513 #else // !USE_VTBLQ 514 // 255 = byte will be zeroed 515 static const uint8_t kGreenShuffle[8] = { 1, 255, 1, 255, 5, 255, 5, 255 }; 516 517 static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb, 518 const uint8x8_t shuffle) { 519 return vcombine_u8(vtbl1_u8(vget_low_u8(argb), shuffle), 520 vtbl1_u8(vget_high_u8(argb), shuffle)); 521 } 522 #endif // USE_VTBLQ 523 524 static void AddGreenToBlueAndRed_NEON(const uint32_t* src, int num_pixels, 525 uint32_t* dst) { 526 const uint32_t* const end = src + (num_pixels & ~3); 527 #ifdef USE_VTBLQ 528 const uint8x16_t shuffle = vld1q_u8(kGreenShuffle); 529 #else 530 const uint8x8_t shuffle = vld1_u8(kGreenShuffle); 531 #endif 532 for (; src < end; src += 4, dst += 4) { 533 const uint8x16_t argb = vld1q_u8((const uint8_t*)src); 534 const uint8x16_t greens = DoGreenShuffle_NEON(argb, shuffle); 535 vst1q_u8((uint8_t*)dst, vaddq_u8(argb, greens)); 536 } 537 // fallthrough and finish off with plain-C 538 VP8LAddGreenToBlueAndRed_C(src, num_pixels & 3, dst); 539 } 540 541 //------------------------------------------------------------------------------ 542 // Color Transform 543 544 static void TransformColorInverse_NEON(const VP8LMultipliers* const m, 545 const uint32_t* const src, 546 int num_pixels, uint32_t* dst) { 547 // sign-extended multiplying constants, pre-shifted by 6. 548 #define CST(X) (((int16_t)(m->X << 8)) >> 6) 549 const int16_t rb[8] = { 550 CST(green_to_blue_), CST(green_to_red_), 551 CST(green_to_blue_), CST(green_to_red_), 552 CST(green_to_blue_), CST(green_to_red_), 553 CST(green_to_blue_), CST(green_to_red_) 554 }; 555 const int16x8_t mults_rb = vld1q_s16(rb); 556 const int16_t b2[8] = { 557 0, CST(red_to_blue_), 0, CST(red_to_blue_), 558 0, CST(red_to_blue_), 0, CST(red_to_blue_), 559 }; 560 const int16x8_t mults_b2 = vld1q_s16(b2); 561 #undef CST 562 #ifdef USE_VTBLQ 563 static const uint8_t kg0g0[16] = { 564 255, 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13 565 }; 566 const uint8x16_t shuffle = vld1q_u8(kg0g0); 567 #else 568 static const uint8_t k0g0g[8] = { 255, 1, 255, 1, 255, 5, 255, 5 }; 569 const uint8x8_t shuffle = vld1_u8(k0g0g); 570 #endif 571 const uint32x4_t mask_ag = vdupq_n_u32(0xff00ff00u); 572 int i; 573 for (i = 0; i + 4 <= num_pixels; i += 4) { 574 const uint8x16_t in = vld1q_u8((const uint8_t*)(src + i)); 575 const uint32x4_t a0g0 = vandq_u32(vreinterpretq_u32_u8(in), mask_ag); 576 // 0 g 0 g 577 const uint8x16_t greens = DoGreenShuffle_NEON(in, shuffle); 578 // x dr x db1 579 const int16x8_t A = vqdmulhq_s16(vreinterpretq_s16_u8(greens), mults_rb); 580 // x r' x b' 581 const int8x16_t B = vaddq_s8(vreinterpretq_s8_u8(in), 582 vreinterpretq_s8_s16(A)); 583 // r' 0 b' 0 584 const int16x8_t C = vshlq_n_s16(vreinterpretq_s16_s8(B), 8); 585 // x db2 0 0 586 const int16x8_t D = vqdmulhq_s16(C, mults_b2); 587 // 0 x db2 0 588 const uint32x4_t E = vshrq_n_u32(vreinterpretq_u32_s16(D), 8); 589 // r' x b'' 0 590 const int8x16_t F = vaddq_s8(vreinterpretq_s8_u32(E), 591 vreinterpretq_s8_s16(C)); 592 // 0 r' 0 b'' 593 const uint16x8_t G = vshrq_n_u16(vreinterpretq_u16_s8(F), 8); 594 const uint32x4_t out = vorrq_u32(vreinterpretq_u32_u16(G), a0g0); 595 vst1q_u32(dst + i, out); 596 } 597 // Fall-back to C-version for left-overs. 598 VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i); 599 } 600 601 #undef USE_VTBLQ 602 603 //------------------------------------------------------------------------------ 604 // Entry point 605 606 extern void VP8LDspInitNEON(void); 607 608 WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitNEON(void) { 609 VP8LPredictors[5] = Predictor5_NEON; 610 VP8LPredictors[6] = Predictor6_NEON; 611 VP8LPredictors[7] = Predictor7_NEON; 612 VP8LPredictors[13] = Predictor13_NEON; 613 614 VP8LPredictorsAdd[0] = PredictorAdd0_NEON; 615 VP8LPredictorsAdd[1] = PredictorAdd1_NEON; 616 VP8LPredictorsAdd[2] = PredictorAdd2_NEON; 617 VP8LPredictorsAdd[3] = PredictorAdd3_NEON; 618 VP8LPredictorsAdd[4] = PredictorAdd4_NEON; 619 VP8LPredictorsAdd[5] = PredictorAdd5_NEON; 620 VP8LPredictorsAdd[6] = PredictorAdd6_NEON; 621 VP8LPredictorsAdd[7] = PredictorAdd7_NEON; 622 VP8LPredictorsAdd[8] = PredictorAdd8_NEON; 623 VP8LPredictorsAdd[9] = PredictorAdd9_NEON; 624 VP8LPredictorsAdd[10] = PredictorAdd10_NEON; 625 VP8LPredictorsAdd[11] = PredictorAdd11_NEON; 626 VP8LPredictorsAdd[12] = PredictorAdd12_NEON; 627 VP8LPredictorsAdd[13] = PredictorAdd13_NEON; 628 629 VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_NEON; 630 VP8LConvertBGRAToBGR = ConvertBGRAToBGR_NEON; 631 VP8LConvertBGRAToRGB = ConvertBGRAToRGB_NEON; 632 633 VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_NEON; 634 VP8LTransformColorInverse = TransformColorInverse_NEON; 635 } 636 637 #else // !WEBP_USE_NEON 638 639 WEBP_DSP_INIT_STUB(VP8LDspInitNEON) 640 641 #endif // WEBP_USE_NEON 642