Home | History | Annotate | Download | only in base
      1 /*
      2  *  Copyright 2012 The WebRTC Project Authors. All rights reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 // To generate bind.h from bind.h.pump, execute:
     12 // /home/build/google3/third_party/gtest/scripts/pump.py bind.h.pump
     13 
     14 // Bind() is an overloaded function that converts method calls into function
     15 // objects (aka functors). The method object is captured as a scoped_refptr<> if
     16 // possible, and as a raw pointer otherwise. Any arguments to the method are
     17 // captured by value. The return value of Bind is a stateful, nullary function
     18 // object. Care should be taken about the lifetime of objects captured by
     19 // Bind(); the returned functor knows nothing about the lifetime of a non
     20 // ref-counted method object or any arguments passed by pointer, and calling the
     21 // functor with a destroyed object will surely do bad things.
     22 //
     23 // Example usage:
     24 //   struct Foo {
     25 //     int Test1() { return 42; }
     26 //     int Test2() const { return 52; }
     27 //     int Test3(int x) { return x*x; }
     28 //     float Test4(int x, float y) { return x + y; }
     29 //   };
     30 //
     31 //   int main() {
     32 //     Foo foo;
     33 //     cout << rtc::Bind(&Foo::Test1, &foo)() << endl;
     34 //     cout << rtc::Bind(&Foo::Test2, &foo)() << endl;
     35 //     cout << rtc::Bind(&Foo::Test3, &foo, 3)() << endl;
     36 //     cout << rtc::Bind(&Foo::Test4, &foo, 7, 8.5f)() << endl;
     37 //   }
     38 //
     39 // Example usage of ref counted objects:
     40 //   struct Bar {
     41 //     int AddRef();
     42 //     int Release();
     43 //
     44 //     void Test() {}
     45 //     void BindThis() {
     46 //       // The functor passed to AsyncInvoke() will keep this object alive.
     47 //       invoker.AsyncInvoke(rtc::Bind(&Bar::Test, this));
     48 //     }
     49 //   };
     50 //
     51 //   int main() {
     52 //     rtc::scoped_refptr<Bar> bar = new rtc::RefCountedObject<Bar>();
     53 //     auto functor = rtc::Bind(&Bar::Test, bar);
     54 //     bar = nullptr;
     55 //     // The functor stores an internal scoped_refptr<Bar>, so this is safe.
     56 //     functor();
     57 //   }
     58 //
     59 
     60 #ifndef WEBRTC_BASE_BIND_H_
     61 #define WEBRTC_BASE_BIND_H_
     62 
     63 #include "webrtc/base/scoped_ref_ptr.h"
     64 #include "webrtc/base/template_util.h"
     65 
     66 #define NONAME
     67 
     68 namespace rtc {
     69 namespace detail {
     70 // This is needed because the template parameters in Bind can't be resolved
     71 // if they're used both as parameters of the function pointer type and as
     72 // parameters to Bind itself: the function pointer parameters are exact
     73 // matches to the function prototype, but the parameters to bind have
     74 // references stripped. This trick allows the compiler to dictate the Bind
     75 // parameter types rather than deduce them.
     76 template <class T> struct identity { typedef T type; };
     77 
     78 // IsRefCounted<T>::value will be true for types that can be used in
     79 // rtc::scoped_refptr<T>, i.e. types that implements nullary functions AddRef()
     80 // and Release(), regardless of their return types. AddRef() and Release() can
     81 // be defined in T or any superclass of T.
     82 template <typename T>
     83 class IsRefCounted {
     84   // This is a complex implementation detail done with SFINAE.
     85 
     86   // Define types such that sizeof(Yes) != sizeof(No).
     87   struct Yes { char dummy[1]; };
     88   struct No { char dummy[2]; };
     89   // Define two overloaded template functions with return types of different
     90   // size. This way, we can use sizeof() on the return type to determine which
     91   // function the compiler would have chosen. One function will be preferred
     92   // over the other if it is possible to create it without compiler errors,
     93   // otherwise the compiler will simply remove it, and default to the less
     94   // preferred function.
     95   template <typename R>
     96   static Yes test(R* r, decltype(r->AddRef(), r->Release(), 42));
     97   template <typename C> static No test(...);
     98 
     99 public:
    100   // Trick the compiler to tell if it's possible to call AddRef() and Release().
    101   static const bool value = sizeof(test<T>((T*)nullptr, 42)) == sizeof(Yes);
    102 };
    103 
    104 // TernaryTypeOperator is a helper class to select a type based on a static bool
    105 // value.
    106 template <bool condition, typename IfTrueT, typename IfFalseT>
    107 struct TernaryTypeOperator {};
    108 
    109 template <typename IfTrueT, typename IfFalseT>
    110 struct TernaryTypeOperator<true, IfTrueT, IfFalseT> {
    111   typedef IfTrueT type;
    112 };
    113 
    114 template <typename IfTrueT, typename IfFalseT>
    115 struct TernaryTypeOperator<false, IfTrueT, IfFalseT> {
    116   typedef IfFalseT type;
    117 };
    118 
    119 // PointerType<T>::type will be scoped_refptr<T> for ref counted types, and T*
    120 // otherwise.
    121 template <class T>
    122 struct PointerType {
    123   typedef typename TernaryTypeOperator<IsRefCounted<T>::value,
    124                                        scoped_refptr<T>,
    125                                        T*>::type type;
    126 };
    127 
    128 }  // namespace detail
    129 
    130 $var n = 9
    131 $range i 0..n
    132 $for i [[
    133 $range j 1..i
    134 
    135 template <class ObjectT, class MethodT, class R$for j [[,
    136           class P$j]]>
    137 class MethodFunctor$i {
    138  public:
    139   MethodFunctor$i(MethodT method, ObjectT* object$for j [[,
    140                  P$j p$j]])
    141       : method_(method), object_(object)$for j [[,
    142       p$(j)_(p$j)]] {}
    143   R operator()() const {
    144     return (object_->*method_)($for j , [[p$(j)_]]); }
    145  private:
    146   MethodT method_;
    147   typename detail::PointerType<ObjectT>::type object_;$for j [[
    148 
    149   typename rtc::remove_reference<P$j>::type p$(j)_;]]
    150 
    151 };
    152 
    153 template <class FunctorT, class R$for j [[,
    154           class P$j]]>
    155 class Functor$i {
    156  public:
    157   $if i == 0 [[explicit ]]
    158 Functor$i(const FunctorT& functor$for j [[, P$j p$j]])
    159       : functor_(functor)$for j [[,
    160       p$(j)_(p$j)]] {}
    161   R operator()() const {
    162     return functor_($for j , [[p$(j)_]]); }
    163  private:
    164   FunctorT functor_;$for j [[
    165 
    166   typename rtc::remove_reference<P$j>::type p$(j)_;]]
    167 
    168 };
    169 
    170 
    171 #define FP_T(x) R (ObjectT::*x)($for j , [[P$j]])
    172 
    173 template <class ObjectT, class R$for j [[,
    174           class P$j]]>
    175 MethodFunctor$i<ObjectT, FP_T(NONAME), R$for j [[, P$j]]>
    176 Bind(FP_T(method), ObjectT* object$for j [[,
    177      typename detail::identity<P$j>::type p$j]]) {
    178   return MethodFunctor$i<ObjectT, FP_T(NONAME), R$for j [[, P$j]]>(
    179       method, object$for j [[, p$j]]);
    180 }
    181 
    182 #undef FP_T
    183 #define FP_T(x) R (ObjectT::*x)($for j , [[P$j]]) const
    184 
    185 template <class ObjectT, class R$for j [[,
    186           class P$j]]>
    187 MethodFunctor$i<const ObjectT, FP_T(NONAME), R$for j [[, P$j]]>
    188 Bind(FP_T(method), const ObjectT* object$for j [[,
    189      typename detail::identity<P$j>::type p$j]]) {
    190   return MethodFunctor$i<const ObjectT, FP_T(NONAME), R$for j [[, P$j]]>(
    191       method, object$for j [[, p$j]]);
    192 }
    193 
    194 #undef FP_T
    195 #define FP_T(x) R (ObjectT::*x)($for j , [[P$j]])
    196 
    197 template <class ObjectT, class R$for j [[,
    198           class P$j]]>
    199 MethodFunctor$i<ObjectT, FP_T(NONAME), R$for j [[, P$j]]>
    200 Bind(FP_T(method), const scoped_refptr<ObjectT>& object$for j [[,
    201      typename detail::identity<P$j>::type p$j]]) {
    202   return MethodFunctor$i<ObjectT, FP_T(NONAME), R$for j [[, P$j]]>(
    203       method, object.get()$for j [[, p$j]]);
    204 }
    205 
    206 #undef FP_T
    207 #define FP_T(x) R (*x)($for j , [[P$j]])
    208 
    209 template <class R$for j [[,
    210           class P$j]]>
    211 Functor$i<FP_T(NONAME), R$for j [[, P$j]]>
    212 Bind(FP_T(function)$for j [[,
    213      typename detail::identity<P$j>::type p$j]]) {
    214   return Functor$i<FP_T(NONAME), R$for j [[, P$j]]>(
    215       function$for j [[, p$j]]);
    216 }
    217 
    218 #undef FP_T
    219 
    220 ]]
    221 
    222 }  // namespace rtc
    223 
    224 #undef NONAME
    225 
    226 #endif  // WEBRTC_BASE_BIND_H_
    227