Home | History | Annotate | Download | only in base
      1 /*
      2  * This code implements the MD5 message-digest algorithm.
      3  * The algorithm is due to Ron Rivest.  This code was
      4  * written by Colin Plumb in 1993, no copyright is claimed.
      5  * This code is in the public domain; do with it what you wish.
      6  *
      7  * Equivalent code is available from RSA Data Security, Inc.
      8  * This code has been tested against that, and is equivalent,
      9  * except that you don't need to include two pages of legalese
     10  * with every copy.
     11  *
     12  * To compute the message digest of a chunk of bytes, declare an
     13  * MD5Context structure, pass it to MD5Init, call MD5Update as
     14  * needed on buffers full of bytes, and then call MD5Final, which
     15  * will fill a supplied 16-byte array with the digest.
     16  */
     17 
     18 // Changes from original C code:
     19 // Ported to C++, type casting, Google code style.
     20 
     21 #include "webrtc/base/md5.h"
     22 
     23 // TODO: Avoid memcmpy - hash directly from memory.
     24 #include <string.h>  // for memcpy().
     25 
     26 #include "webrtc/base/byteorder.h"  // for RTC_ARCH_CPU_LITTLE_ENDIAN.
     27 
     28 namespace rtc {
     29 
     30 #ifdef RTC_ARCH_CPU_LITTLE_ENDIAN
     31 #define ByteReverse(buf, len)  // Nothing.
     32 #else  // RTC_ARCH_CPU_BIG_ENDIAN
     33 static void ByteReverse(uint32_t* buf, int len) {
     34   for (int i = 0; i < len; ++i) {
     35     buf[i] = rtc::GetLE32(&buf[i]);
     36   }
     37 }
     38 #endif
     39 
     40 // Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
     41 // initialization constants.
     42 void MD5Init(MD5Context* ctx) {
     43   ctx->buf[0] = 0x67452301;
     44   ctx->buf[1] = 0xefcdab89;
     45   ctx->buf[2] = 0x98badcfe;
     46   ctx->buf[3] = 0x10325476;
     47   ctx->bits[0] = 0;
     48   ctx->bits[1] = 0;
     49 }
     50 
     51 // Update context to reflect the concatenation of another buffer full of bytes.
     52 void MD5Update(MD5Context* ctx, const uint8_t* buf, size_t len) {
     53   // Update bitcount.
     54   uint32_t t = ctx->bits[0];
     55   if ((ctx->bits[0] = t + (static_cast<uint32_t>(len) << 3)) < t) {
     56     ctx->bits[1]++;  // Carry from low to high.
     57   }
     58   ctx->bits[1] += static_cast<uint32_t>(len >> 29);
     59   t = (t >> 3) & 0x3f;  // Bytes already in shsInfo->data.
     60 
     61   // Handle any leading odd-sized chunks.
     62   if (t) {
     63     uint8_t* p = reinterpret_cast<uint8_t*>(ctx->in) + t;
     64 
     65     t = 64-t;
     66     if (len < t) {
     67       memcpy(p, buf, len);
     68       return;
     69     }
     70     memcpy(p, buf, t);
     71     ByteReverse(ctx->in, 16);
     72     MD5Transform(ctx->buf, ctx->in);
     73     buf += t;
     74     len -= t;
     75   }
     76 
     77   // Process data in 64-byte chunks.
     78   while (len >= 64) {
     79     memcpy(ctx->in, buf, 64);
     80     ByteReverse(ctx->in, 16);
     81     MD5Transform(ctx->buf, ctx->in);
     82     buf += 64;
     83     len -= 64;
     84   }
     85 
     86   // Handle any remaining bytes of data.
     87   memcpy(ctx->in, buf, len);
     88 }
     89 
     90 // Final wrapup - pad to 64-byte boundary with the bit pattern.
     91 // 1 0* (64-bit count of bits processed, MSB-first)
     92 void MD5Final(MD5Context* ctx, uint8_t digest[16]) {
     93   // Compute number of bytes mod 64.
     94   uint32_t count = (ctx->bits[0] >> 3) & 0x3F;
     95 
     96   // Set the first char of padding to 0x80.  This is safe since there is
     97   // always at least one byte free.
     98   uint8_t* p = reinterpret_cast<uint8_t*>(ctx->in) + count;
     99   *p++ = 0x80;
    100 
    101   // Bytes of padding needed to make 64 bytes.
    102   count = 64 - 1 - count;
    103 
    104   // Pad out to 56 mod 64.
    105   if (count < 8) {
    106     // Two lots of padding:  Pad the first block to 64 bytes.
    107     memset(p, 0, count);
    108     ByteReverse(ctx->in, 16);
    109     MD5Transform(ctx->buf, ctx->in);
    110 
    111     // Now fill the next block with 56 bytes.
    112     memset(ctx->in, 0, 56);
    113   } else {
    114     // Pad block to 56 bytes.
    115     memset(p, 0, count - 8);
    116   }
    117   ByteReverse(ctx->in, 14);
    118 
    119   // Append length in bits and transform.
    120   ctx->in[14] = ctx->bits[0];
    121   ctx->in[15] = ctx->bits[1];
    122 
    123   MD5Transform(ctx->buf, ctx->in);
    124   ByteReverse(ctx->buf, 4);
    125   memcpy(digest, ctx->buf, 16);
    126   memset(ctx, 0, sizeof(*ctx));  // In case it's sensitive.
    127 }
    128 
    129 // The four core functions - F1 is optimized somewhat.
    130 // #define F1(x, y, z) (x & y | ~x & z)
    131 #define F1(x, y, z) (z ^ (x & (y ^ z)))
    132 #define F2(x, y, z) F1(z, x, y)
    133 #define F3(x, y, z) (x ^ y ^ z)
    134 #define F4(x, y, z) (y ^ (x | ~z))
    135 
    136 // This is the central step in the MD5 algorithm.
    137 #define MD5STEP(f, w, x, y, z, data, s) \
    138     (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x)
    139 
    140 // The core of the MD5 algorithm, this alters an existing MD5 hash to
    141 // reflect the addition of 16 longwords of new data.  MD5Update blocks
    142 // the data and converts bytes into longwords for this routine.
    143 void MD5Transform(uint32_t buf[4], const uint32_t in[16]) {
    144   uint32_t a = buf[0];
    145   uint32_t b = buf[1];
    146   uint32_t c = buf[2];
    147   uint32_t d = buf[3];
    148 
    149   MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7);
    150   MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
    151   MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
    152   MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
    153   MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7);
    154   MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
    155   MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
    156   MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
    157   MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7);
    158   MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
    159   MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    160   MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    161   MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
    162   MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    163   MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    164   MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
    165 
    166   MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5);
    167   MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9);
    168   MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    169   MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
    170   MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5);
    171   MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
    172   MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    173   MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
    174   MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5);
    175   MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    176   MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
    177   MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
    178   MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    179   MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9);
    180   MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
    181   MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
    182 
    183   MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4);
    184   MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
    185   MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    186   MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    187   MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4);
    188   MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
    189   MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
    190   MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    191   MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    192   MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
    193   MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
    194   MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
    195   MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4);
    196   MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    197   MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    198   MD5STEP(F3, b, c, d, a, in[ 2] + 0xc4ac5665, 23);
    199 
    200   MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6);
    201   MD5STEP(F4, d, a, b, c, in[ 7] + 0x432aff97, 10);
    202   MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    203   MD5STEP(F4, b, c, d, a, in[ 5] + 0xfc93a039, 21);
    204   MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    205   MD5STEP(F4, d, a, b, c, in[ 3] + 0x8f0ccc92, 10);
    206   MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    207   MD5STEP(F4, b, c, d, a, in[ 1] + 0x85845dd1, 21);
    208   MD5STEP(F4, a, b, c, d, in[ 8] + 0x6fa87e4f, 6);
    209   MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    210   MD5STEP(F4, c, d, a, b, in[ 6] + 0xa3014314, 15);
    211   MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    212   MD5STEP(F4, a, b, c, d, in[ 4] + 0xf7537e82, 6);
    213   MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    214   MD5STEP(F4, c, d, a, b, in[ 2] + 0x2ad7d2bb, 15);
    215   MD5STEP(F4, b, c, d, a, in[ 9] + 0xeb86d391, 21);
    216   buf[0] += a;
    217   buf[1] += b;
    218   buf[2] += c;
    219   buf[3] += d;
    220 }
    221 
    222 }  // namespace rtc
    223