Home | History | Annotate | Download | only in base
      1 /*
      2  *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <stdint.h>
     12 
     13 #if defined(WEBRTC_POSIX)
     14 #include <sys/time.h>
     15 #if defined(WEBRTC_MAC)
     16 #include <mach/mach_time.h>
     17 #endif
     18 #endif
     19 
     20 #if defined(WEBRTC_WIN)
     21 #ifndef WIN32_LEAN_AND_MEAN
     22 #define WIN32_LEAN_AND_MEAN
     23 #endif
     24 #include <windows.h>
     25 #include <mmsystem.h>
     26 #endif
     27 
     28 #include "webrtc/base/checks.h"
     29 #include "webrtc/base/timeutils.h"
     30 
     31 #define EFFICIENT_IMPLEMENTATION 1
     32 
     33 namespace rtc {
     34 
     35 const uint32_t HALF = 0x80000000;
     36 
     37 uint64_t TimeNanos() {
     38   int64_t ticks = 0;
     39 #if defined(WEBRTC_MAC)
     40   static mach_timebase_info_data_t timebase;
     41   if (timebase.denom == 0) {
     42     // Get the timebase if this is the first time we run.
     43     // Recommended by Apple's QA1398.
     44     if (mach_timebase_info(&timebase) != KERN_SUCCESS) {
     45       RTC_DCHECK(false);
     46     }
     47   }
     48   // Use timebase to convert absolute time tick units into nanoseconds.
     49   ticks = mach_absolute_time() * timebase.numer / timebase.denom;
     50 #elif defined(WEBRTC_POSIX)
     51   struct timespec ts;
     52   // TODO: Do we need to handle the case when CLOCK_MONOTONIC
     53   // is not supported?
     54   clock_gettime(CLOCK_MONOTONIC, &ts);
     55   ticks = kNumNanosecsPerSec * static_cast<int64_t>(ts.tv_sec) +
     56           static_cast<int64_t>(ts.tv_nsec);
     57 #elif defined(WEBRTC_WIN)
     58   static volatile LONG last_timegettime = 0;
     59   static volatile int64_t num_wrap_timegettime = 0;
     60   volatile LONG* last_timegettime_ptr = &last_timegettime;
     61   DWORD now = timeGetTime();
     62   // Atomically update the last gotten time
     63   DWORD old = InterlockedExchange(last_timegettime_ptr, now);
     64   if (now < old) {
     65     // If now is earlier than old, there may have been a race between
     66     // threads.
     67     // 0x0fffffff ~3.1 days, the code will not take that long to execute
     68     // so it must have been a wrap around.
     69     if (old > 0xf0000000 && now < 0x0fffffff) {
     70       num_wrap_timegettime++;
     71     }
     72   }
     73   ticks = now + (num_wrap_timegettime << 32);
     74   // TODO: Calculate with nanosecond precision.  Otherwise, we're just
     75   // wasting a multiply and divide when doing Time() on Windows.
     76   ticks = ticks * kNumNanosecsPerMillisec;
     77 #endif
     78   return ticks;
     79 }
     80 
     81 uint32_t Time() {
     82   return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec);
     83 }
     84 
     85 uint64_t TimeMicros() {
     86   return static_cast<uint64_t>(TimeNanos() / kNumNanosecsPerMicrosec);
     87 }
     88 
     89 #if defined(WEBRTC_WIN)
     90 static const uint64_t kFileTimeToUnixTimeEpochOffset = 116444736000000000ULL;
     91 
     92 struct timeval {
     93   long tv_sec, tv_usec;  // NOLINT
     94 };
     95 
     96 // Emulate POSIX gettimeofday().
     97 // Based on breakpad/src/third_party/glog/src/utilities.cc
     98 static int gettimeofday(struct timeval *tv, void *tz) {
     99   // FILETIME is measured in tens of microseconds since 1601-01-01 UTC.
    100   FILETIME ft;
    101   GetSystemTimeAsFileTime(&ft);
    102 
    103   LARGE_INTEGER li;
    104   li.LowPart = ft.dwLowDateTime;
    105   li.HighPart = ft.dwHighDateTime;
    106 
    107   // Convert to seconds and microseconds since Unix time Epoch.
    108   int64_t micros = (li.QuadPart - kFileTimeToUnixTimeEpochOffset) / 10;
    109   tv->tv_sec = static_cast<long>(micros / kNumMicrosecsPerSec);  // NOLINT
    110   tv->tv_usec = static_cast<long>(micros % kNumMicrosecsPerSec); // NOLINT
    111 
    112   return 0;
    113 }
    114 
    115 // Emulate POSIX gmtime_r().
    116 static struct tm *gmtime_r(const time_t *timep, struct tm *result) {
    117   // On Windows, gmtime is thread safe.
    118   struct tm *tm = gmtime(timep);  // NOLINT
    119   if (tm == NULL) {
    120     return NULL;
    121   }
    122   *result = *tm;
    123   return result;
    124 }
    125 #endif  // WEBRTC_WIN
    126 
    127 void CurrentTmTime(struct tm *tm, int *microseconds) {
    128   struct timeval timeval;
    129   if (gettimeofday(&timeval, NULL) < 0) {
    130     // Incredibly unlikely code path.
    131     timeval.tv_sec = timeval.tv_usec = 0;
    132   }
    133   time_t secs = timeval.tv_sec;
    134   gmtime_r(&secs, tm);
    135   *microseconds = timeval.tv_usec;
    136 }
    137 
    138 uint32_t TimeAfter(int32_t elapsed) {
    139   RTC_DCHECK_GE(elapsed, 0);
    140   RTC_DCHECK_LT(static_cast<uint32_t>(elapsed), HALF);
    141   return Time() + elapsed;
    142 }
    143 
    144 bool TimeIsBetween(uint32_t earlier, uint32_t middle, uint32_t later) {
    145   if (earlier <= later) {
    146     return ((earlier <= middle) && (middle <= later));
    147   } else {
    148     return !((later < middle) && (middle < earlier));
    149   }
    150 }
    151 
    152 bool TimeIsLaterOrEqual(uint32_t earlier, uint32_t later) {
    153 #if EFFICIENT_IMPLEMENTATION
    154   int32_t diff = later - earlier;
    155   return (diff >= 0 && static_cast<uint32_t>(diff) < HALF);
    156 #else
    157   const bool later_or_equal = TimeIsBetween(earlier, later, earlier + HALF);
    158   return later_or_equal;
    159 #endif
    160 }
    161 
    162 bool TimeIsLater(uint32_t earlier, uint32_t later) {
    163 #if EFFICIENT_IMPLEMENTATION
    164   int32_t diff = later - earlier;
    165   return (diff > 0 && static_cast<uint32_t>(diff) < HALF);
    166 #else
    167   const bool earlier_or_equal = TimeIsBetween(later, earlier, later + HALF);
    168   return !earlier_or_equal;
    169 #endif
    170 }
    171 
    172 int32_t TimeDiff(uint32_t later, uint32_t earlier) {
    173 #if EFFICIENT_IMPLEMENTATION
    174   return later - earlier;
    175 #else
    176   const bool later_or_equal = TimeIsBetween(earlier, later, earlier + HALF);
    177   if (later_or_equal) {
    178     if (earlier <= later) {
    179       return static_cast<long>(later - earlier);
    180     } else {
    181       return static_cast<long>(later + (UINT32_MAX - earlier) + 1);
    182     }
    183   } else {
    184     if (later <= earlier) {
    185       return -static_cast<long>(earlier - later);
    186     } else {
    187       return -static_cast<long>(earlier + (UINT32_MAX - later) + 1);
    188     }
    189   }
    190 #endif
    191 }
    192 
    193 TimestampWrapAroundHandler::TimestampWrapAroundHandler()
    194     : last_ts_(0), num_wrap_(0) {}
    195 
    196 int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) {
    197   if (ts < last_ts_) {
    198     if (last_ts_ > 0xf0000000 && ts < 0x0fffffff) {
    199       ++num_wrap_;
    200     }
    201   }
    202   last_ts_ = ts;
    203   int64_t unwrapped_ts = ts + (num_wrap_ << 32);
    204   return unwrapped_ts;
    205 }
    206 
    207 int64_t TmToSeconds(const std::tm& tm) {
    208   static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    209   static short int cumul_mdays[12] = {0,   31,  59,  90,  120, 151,
    210                                       181, 212, 243, 273, 304, 334};
    211   int year = tm.tm_year + 1900;
    212   int month = tm.tm_mon;
    213   int day = tm.tm_mday - 1;  // Make 0-based like the rest.
    214   int hour = tm.tm_hour;
    215   int min = tm.tm_min;
    216   int sec = tm.tm_sec;
    217 
    218   bool expiry_in_leap_year = (year % 4 == 0 &&
    219                               (year % 100 != 0 || year % 400 == 0));
    220 
    221   if (year < 1970)
    222     return -1;
    223   if (month < 0 || month > 11)
    224     return -1;
    225   if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1))
    226     return -1;
    227   if (hour < 0 || hour > 23)
    228     return -1;
    229   if (min < 0 || min > 59)
    230     return -1;
    231   if (sec < 0 || sec > 59)
    232     return -1;
    233 
    234   day += cumul_mdays[month];
    235 
    236   // Add number of leap days between 1970 and the expiration year, inclusive.
    237   day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) +
    238           (year / 400 - 1970 / 400));
    239 
    240   // We will have added one day too much above if expiration is during a leap
    241   // year, and expiration is in January or February.
    242   if (expiry_in_leap_year && month <= 2 - 1) // |month| is zero based.
    243     day -= 1;
    244 
    245   // Combine all variables into seconds from 1970-01-01 00:00 (except |month|
    246   // which was accumulated into |day| above).
    247   return (((static_cast<int64_t>
    248             (year - 1970) * 365 + day) * 24 + hour) * 60 + min) * 60 + sec;
    249 }
    250 
    251 } // namespace rtc
    252