Home | History | Annotate | Download | only in resampler
      1 /*
      2  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 // Modified from the Chromium original:
     12 // src/media/base/sinc_resampler_unittest.cc
     13 
     14 // MSVC++ requires this to be set before any other includes to get M_PI.
     15 #define _USE_MATH_DEFINES
     16 
     17 #include <math.h>
     18 
     19 #include "testing/gmock/include/gmock/gmock.h"
     20 #include "testing/gtest/include/gtest/gtest.h"
     21 #include "webrtc/base/scoped_ptr.h"
     22 #include "webrtc/common_audio/resampler/sinc_resampler.h"
     23 #include "webrtc/common_audio/resampler/sinusoidal_linear_chirp_source.h"
     24 #include "webrtc/system_wrappers/include/cpu_features_wrapper.h"
     25 #include "webrtc/system_wrappers/include/stringize_macros.h"
     26 #include "webrtc/system_wrappers/include/tick_util.h"
     27 #include "webrtc/test/test_suite.h"
     28 
     29 using testing::_;
     30 
     31 namespace webrtc {
     32 
     33 static const double kSampleRateRatio = 192000.0 / 44100.0;
     34 static const double kKernelInterpolationFactor = 0.5;
     35 
     36 // Helper class to ensure ChunkedResample() functions properly.
     37 class MockSource : public SincResamplerCallback {
     38  public:
     39   MOCK_METHOD2(Run, void(size_t frames, float* destination));
     40 };
     41 
     42 ACTION(ClearBuffer) {
     43   memset(arg1, 0, arg0 * sizeof(float));
     44 }
     45 
     46 ACTION(FillBuffer) {
     47   // Value chosen arbitrarily such that SincResampler resamples it to something
     48   // easily representable on all platforms; e.g., using kSampleRateRatio this
     49   // becomes 1.81219.
     50   memset(arg1, 64, arg0 * sizeof(float));
     51 }
     52 
     53 // Test requesting multiples of ChunkSize() frames results in the proper number
     54 // of callbacks.
     55 TEST(SincResamplerTest, ChunkedResample) {
     56   MockSource mock_source;
     57 
     58   // Choose a high ratio of input to output samples which will result in quick
     59   // exhaustion of SincResampler's internal buffers.
     60   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
     61                           &mock_source);
     62 
     63   static const int kChunks = 2;
     64   size_t max_chunk_size = resampler.ChunkSize() * kChunks;
     65   rtc::scoped_ptr<float[]> resampled_destination(new float[max_chunk_size]);
     66 
     67   // Verify requesting ChunkSize() frames causes a single callback.
     68   EXPECT_CALL(mock_source, Run(_, _))
     69       .Times(1).WillOnce(ClearBuffer());
     70   resampler.Resample(resampler.ChunkSize(), resampled_destination.get());
     71 
     72   // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
     73   testing::Mock::VerifyAndClear(&mock_source);
     74   EXPECT_CALL(mock_source, Run(_, _))
     75       .Times(kChunks).WillRepeatedly(ClearBuffer());
     76   resampler.Resample(max_chunk_size, resampled_destination.get());
     77 }
     78 
     79 // Test flush resets the internal state properly.
     80 TEST(SincResamplerTest, Flush) {
     81   MockSource mock_source;
     82   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
     83                           &mock_source);
     84   rtc::scoped_ptr<float[]> resampled_destination(
     85       new float[resampler.ChunkSize()]);
     86 
     87   // Fill the resampler with junk data.
     88   EXPECT_CALL(mock_source, Run(_, _))
     89       .Times(1).WillOnce(FillBuffer());
     90   resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
     91   ASSERT_NE(resampled_destination[0], 0);
     92 
     93   // Flush and request more data, which should all be zeros now.
     94   resampler.Flush();
     95   testing::Mock::VerifyAndClear(&mock_source);
     96   EXPECT_CALL(mock_source, Run(_, _))
     97       .Times(1).WillOnce(ClearBuffer());
     98   resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
     99   for (size_t i = 0; i < resampler.ChunkSize() / 2; ++i)
    100     ASSERT_FLOAT_EQ(resampled_destination[i], 0);
    101 }
    102 
    103 // Test flush resets the internal state properly.
    104 TEST(SincResamplerTest, DISABLED_SetRatioBench) {
    105   MockSource mock_source;
    106   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
    107                           &mock_source);
    108 
    109   TickTime start = TickTime::Now();
    110   for (int i = 1; i < 10000; ++i)
    111     resampler.SetRatio(1.0 / i);
    112   double total_time_c_us = (TickTime::Now() - start).Microseconds();
    113   printf("SetRatio() took %.2fms.\n", total_time_c_us / 1000);
    114 }
    115 
    116 
    117 // Define platform independent function name for Convolve* tests.
    118 #if defined(WEBRTC_ARCH_X86_FAMILY)
    119 #define CONVOLVE_FUNC Convolve_SSE
    120 #elif defined(WEBRTC_ARCH_ARM_V7)
    121 #define CONVOLVE_FUNC Convolve_NEON
    122 #endif
    123 
    124 // Ensure various optimized Convolve() methods return the same value.  Only run
    125 // this test if other optimized methods exist, otherwise the default Convolve()
    126 // will be tested by the parameterized SincResampler tests below.
    127 #if defined(CONVOLVE_FUNC)
    128 TEST(SincResamplerTest, Convolve) {
    129 #if defined(WEBRTC_ARCH_X86_FAMILY)
    130   ASSERT_TRUE(WebRtc_GetCPUInfo(kSSE2));
    131 #elif defined(WEBRTC_ARCH_ARM_V7)
    132   ASSERT_TRUE(WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON);
    133 #endif
    134 
    135   // Initialize a dummy resampler.
    136   MockSource mock_source;
    137   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
    138                           &mock_source);
    139 
    140   // The optimized Convolve methods are slightly more precise than Convolve_C(),
    141   // so comparison must be done using an epsilon.
    142   static const double kEpsilon = 0.00000005;
    143 
    144   // Use a kernel from SincResampler as input and kernel data, this has the
    145   // benefit of already being properly sized and aligned for Convolve_SSE().
    146   double result = resampler.Convolve_C(
    147       resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
    148       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    149   double result2 = resampler.CONVOLVE_FUNC(
    150       resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
    151       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    152   EXPECT_NEAR(result2, result, kEpsilon);
    153 
    154   // Test Convolve() w/ unaligned input pointer.
    155   result = resampler.Convolve_C(
    156       resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
    157       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    158   result2 = resampler.CONVOLVE_FUNC(
    159       resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
    160       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    161   EXPECT_NEAR(result2, result, kEpsilon);
    162 }
    163 #endif
    164 
    165 // Benchmark for the various Convolve() methods.  Make sure to build with
    166 // branding=Chrome so that RTC_DCHECKs are compiled out when benchmarking.
    167 // Original benchmarks were run with --convolve-iterations=50000000.
    168 TEST(SincResamplerTest, ConvolveBenchmark) {
    169   // Initialize a dummy resampler.
    170   MockSource mock_source;
    171   SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
    172                           &mock_source);
    173 
    174   // Retrieve benchmark iterations from command line.
    175   // TODO(ajm): Reintroduce this as a command line option.
    176   const int kConvolveIterations = 1000000;
    177 
    178   printf("Benchmarking %d iterations:\n", kConvolveIterations);
    179 
    180   // Benchmark Convolve_C().
    181   TickTime start = TickTime::Now();
    182   for (int i = 0; i < kConvolveIterations; ++i) {
    183     resampler.Convolve_C(
    184         resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
    185         resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    186   }
    187   double total_time_c_us = (TickTime::Now() - start).Microseconds();
    188   printf("Convolve_C took %.2fms.\n", total_time_c_us / 1000);
    189 
    190 #if defined(CONVOLVE_FUNC)
    191 #if defined(WEBRTC_ARCH_X86_FAMILY)
    192   ASSERT_TRUE(WebRtc_GetCPUInfo(kSSE2));
    193 #elif defined(WEBRTC_ARCH_ARM_V7)
    194   ASSERT_TRUE(WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON);
    195 #endif
    196 
    197   // Benchmark with unaligned input pointer.
    198   start = TickTime::Now();
    199   for (int j = 0; j < kConvolveIterations; ++j) {
    200     resampler.CONVOLVE_FUNC(
    201         resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
    202         resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    203   }
    204   double total_time_optimized_unaligned_us =
    205       (TickTime::Now() - start).Microseconds();
    206   printf(STRINGIZE(CONVOLVE_FUNC) "(unaligned) took %.2fms; which is %.2fx "
    207          "faster than Convolve_C.\n", total_time_optimized_unaligned_us / 1000,
    208          total_time_c_us / total_time_optimized_unaligned_us);
    209 
    210   // Benchmark with aligned input pointer.
    211   start = TickTime::Now();
    212   for (int j = 0; j < kConvolveIterations; ++j) {
    213     resampler.CONVOLVE_FUNC(
    214         resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
    215         resampler.kernel_storage_.get(), kKernelInterpolationFactor);
    216   }
    217   double total_time_optimized_aligned_us =
    218       (TickTime::Now() - start).Microseconds();
    219   printf(STRINGIZE(CONVOLVE_FUNC) " (aligned) took %.2fms; which is %.2fx "
    220          "faster than Convolve_C and %.2fx faster than "
    221          STRINGIZE(CONVOLVE_FUNC) " (unaligned).\n",
    222          total_time_optimized_aligned_us / 1000,
    223          total_time_c_us / total_time_optimized_aligned_us,
    224          total_time_optimized_unaligned_us / total_time_optimized_aligned_us);
    225 #endif
    226 }
    227 
    228 #undef CONVOLVE_FUNC
    229 
    230 typedef std::tr1::tuple<int, int, double, double> SincResamplerTestData;
    231 class SincResamplerTest
    232     : public testing::TestWithParam<SincResamplerTestData> {
    233  public:
    234   SincResamplerTest()
    235       : input_rate_(std::tr1::get<0>(GetParam())),
    236         output_rate_(std::tr1::get<1>(GetParam())),
    237         rms_error_(std::tr1::get<2>(GetParam())),
    238         low_freq_error_(std::tr1::get<3>(GetParam())) {
    239   }
    240 
    241   virtual ~SincResamplerTest() {}
    242 
    243  protected:
    244   int input_rate_;
    245   int output_rate_;
    246   double rms_error_;
    247   double low_freq_error_;
    248 };
    249 
    250 // Tests resampling using a given input and output sample rate.
    251 TEST_P(SincResamplerTest, Resample) {
    252   // Make comparisons using one second of data.
    253   static const double kTestDurationSecs = 1;
    254   const size_t input_samples =
    255       static_cast<size_t>(kTestDurationSecs * input_rate_);
    256   const size_t output_samples =
    257       static_cast<size_t>(kTestDurationSecs * output_rate_);
    258 
    259   // Nyquist frequency for the input sampling rate.
    260   const double input_nyquist_freq = 0.5 * input_rate_;
    261 
    262   // Source for data to be resampled.
    263   SinusoidalLinearChirpSource resampler_source(
    264       input_rate_, input_samples, input_nyquist_freq, 0);
    265 
    266   const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
    267   SincResampler resampler(io_ratio, SincResampler::kDefaultRequestSize,
    268                           &resampler_source);
    269 
    270   // Force an update to the sample rate ratio to ensure dyanmic sample rate
    271   // changes are working correctly.
    272   rtc::scoped_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]);
    273   memcpy(kernel.get(), resampler.get_kernel_for_testing(),
    274          SincResampler::kKernelStorageSize);
    275   resampler.SetRatio(M_PI);
    276   ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
    277                       SincResampler::kKernelStorageSize));
    278   resampler.SetRatio(io_ratio);
    279   ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
    280                       SincResampler::kKernelStorageSize));
    281 
    282   // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
    283   // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
    284   rtc::scoped_ptr<float[]> resampled_destination(new float[output_samples]);
    285   rtc::scoped_ptr<float[]> pure_destination(new float[output_samples]);
    286 
    287   // Generate resampled signal.
    288   resampler.Resample(output_samples, resampled_destination.get());
    289 
    290   // Generate pure signal.
    291   SinusoidalLinearChirpSource pure_source(
    292       output_rate_, output_samples, input_nyquist_freq, 0);
    293   pure_source.Run(output_samples, pure_destination.get());
    294 
    295   // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
    296   // we refer to as low and high.
    297   static const double kLowFrequencyNyquistRange = 0.7;
    298   static const double kHighFrequencyNyquistRange = 0.9;
    299 
    300   // Calculate Root-Mean-Square-Error and maximum error for the resampling.
    301   double sum_of_squares = 0;
    302   double low_freq_max_error = 0;
    303   double high_freq_max_error = 0;
    304   int minimum_rate = std::min(input_rate_, output_rate_);
    305   double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
    306   double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
    307   for (size_t i = 0; i < output_samples; ++i) {
    308     double error = fabs(resampled_destination[i] - pure_destination[i]);
    309 
    310     if (pure_source.Frequency(i) < low_frequency_range) {
    311       if (error > low_freq_max_error)
    312         low_freq_max_error = error;
    313     } else if (pure_source.Frequency(i) < high_frequency_range) {
    314       if (error > high_freq_max_error)
    315         high_freq_max_error = error;
    316     }
    317     // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
    318 
    319     sum_of_squares += error * error;
    320   }
    321 
    322   double rms_error = sqrt(sum_of_squares / output_samples);
    323 
    324   // Convert each error to dbFS.
    325   #define DBFS(x) 20 * log10(x)
    326   rms_error = DBFS(rms_error);
    327   low_freq_max_error = DBFS(low_freq_max_error);
    328   high_freq_max_error = DBFS(high_freq_max_error);
    329 
    330   EXPECT_LE(rms_error, rms_error_);
    331   EXPECT_LE(low_freq_max_error, low_freq_error_);
    332 
    333   // All conversions currently have a high frequency error around -6 dbFS.
    334   static const double kHighFrequencyMaxError = -6.02;
    335   EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
    336 }
    337 
    338 // Almost all conversions have an RMS error of around -14 dbFS.
    339 static const double kResamplingRMSError = -14.58;
    340 
    341 // Thresholds chosen arbitrarily based on what each resampling reported during
    342 // testing.  All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
    343 INSTANTIATE_TEST_CASE_P(
    344     SincResamplerTest, SincResamplerTest, testing::Values(
    345         // To 44.1kHz
    346         std::tr1::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
    347         std::tr1::make_tuple(11025, 44100, kResamplingRMSError, -72.19),
    348         std::tr1::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
    349         std::tr1::make_tuple(22050, 44100, kResamplingRMSError, -73.53),
    350         std::tr1::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
    351         std::tr1::make_tuple(44100, 44100, kResamplingRMSError, -73.53),
    352         std::tr1::make_tuple(48000, 44100, -15.01, -64.04),
    353         std::tr1::make_tuple(96000, 44100, -18.49, -25.51),
    354         std::tr1::make_tuple(192000, 44100, -20.50, -13.31),
    355 
    356         // To 48kHz
    357         std::tr1::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
    358         std::tr1::make_tuple(11025, 48000, kResamplingRMSError, -62.61),
    359         std::tr1::make_tuple(16000, 48000, kResamplingRMSError, -63.96),
    360         std::tr1::make_tuple(22050, 48000, kResamplingRMSError, -62.42),
    361         std::tr1::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
    362         std::tr1::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
    363         std::tr1::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
    364         std::tr1::make_tuple(96000, 48000, -18.40, -28.44),
    365         std::tr1::make_tuple(192000, 48000, -20.43, -14.11),
    366 
    367         // To 96kHz
    368         std::tr1::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
    369         std::tr1::make_tuple(11025, 96000, kResamplingRMSError, -62.61),
    370         std::tr1::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
    371         std::tr1::make_tuple(22050, 96000, kResamplingRMSError, -62.42),
    372         std::tr1::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
    373         std::tr1::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
    374         std::tr1::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
    375         std::tr1::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
    376         std::tr1::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
    377 
    378         // To 192kHz
    379         std::tr1::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
    380         std::tr1::make_tuple(11025, 192000, kResamplingRMSError, -62.61),
    381         std::tr1::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
    382         std::tr1::make_tuple(22050, 192000, kResamplingRMSError, -62.42),
    383         std::tr1::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
    384         std::tr1::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
    385         std::tr1::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
    386         std::tr1::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
    387         std::tr1::make_tuple(192000, 192000, kResamplingRMSError, -73.52)));
    388 
    389 }  // namespace webrtc
    390