Home | History | Annotate | Download | only in neteq
      1 /*
      2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "webrtc/modules/audio_coding/neteq/normal.h"
     12 
     13 #include <string.h>  // memset, memcpy
     14 
     15 #include <algorithm>  // min
     16 
     17 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
     18 #include "webrtc/modules/audio_coding/codecs/audio_decoder.h"
     19 #include "webrtc/modules/audio_coding/codecs/cng/webrtc_cng.h"
     20 #include "webrtc/modules/audio_coding/neteq/audio_multi_vector.h"
     21 #include "webrtc/modules/audio_coding/neteq/background_noise.h"
     22 #include "webrtc/modules/audio_coding/neteq/decoder_database.h"
     23 #include "webrtc/modules/audio_coding/neteq/expand.h"
     24 
     25 namespace webrtc {
     26 
     27 int Normal::Process(const int16_t* input,
     28                     size_t length,
     29                     Modes last_mode,
     30                     int16_t* external_mute_factor_array,
     31                     AudioMultiVector* output) {
     32   if (length == 0) {
     33     // Nothing to process.
     34     output->Clear();
     35     return static_cast<int>(length);
     36   }
     37 
     38   assert(output->Empty());
     39   // Output should be empty at this point.
     40   if (length % output->Channels() != 0) {
     41     // The length does not match the number of channels.
     42     output->Clear();
     43     return 0;
     44   }
     45   output->PushBackInterleaved(input, length);
     46   int16_t* signal = &(*output)[0][0];
     47 
     48   const int fs_mult = fs_hz_ / 8000;
     49   assert(fs_mult > 0);
     50   // fs_shift = log2(fs_mult), rounded down.
     51   // Note that |fs_shift| is not "exact" for 48 kHz.
     52   // TODO(hlundin): Investigate this further.
     53   const int fs_shift = 30 - WebRtcSpl_NormW32(fs_mult);
     54 
     55   // Check if last RecOut call resulted in an Expand. If so, we have to take
     56   // care of some cross-fading and unmuting.
     57   if (last_mode == kModeExpand) {
     58     // Generate interpolation data using Expand.
     59     // First, set Expand parameters to appropriate values.
     60     expand_->SetParametersForNormalAfterExpand();
     61 
     62     // Call Expand.
     63     AudioMultiVector expanded(output->Channels());
     64     expand_->Process(&expanded);
     65     expand_->Reset();
     66 
     67     for (size_t channel_ix = 0; channel_ix < output->Channels(); ++channel_ix) {
     68       // Adjust muting factor (main muting factor times expand muting factor).
     69       external_mute_factor_array[channel_ix] = static_cast<int16_t>(
     70           (external_mute_factor_array[channel_ix] *
     71           expand_->MuteFactor(channel_ix)) >> 14);
     72 
     73       int16_t* signal = &(*output)[channel_ix][0];
     74       size_t length_per_channel = length / output->Channels();
     75       // Find largest absolute value in new data.
     76       int16_t decoded_max =
     77           WebRtcSpl_MaxAbsValueW16(signal, length_per_channel);
     78       // Adjust muting factor if needed (to BGN level).
     79       size_t energy_length =
     80           std::min(static_cast<size_t>(fs_mult * 64), length_per_channel);
     81       int scaling = 6 + fs_shift
     82           - WebRtcSpl_NormW32(decoded_max * decoded_max);
     83       scaling = std::max(scaling, 0);  // |scaling| should always be >= 0.
     84       int32_t energy = WebRtcSpl_DotProductWithScale(signal, signal,
     85                                                      energy_length, scaling);
     86       int32_t scaled_energy_length =
     87           static_cast<int32_t>(energy_length >> scaling);
     88       if (scaled_energy_length > 0) {
     89         energy = energy / scaled_energy_length;
     90       } else {
     91         energy = 0;
     92       }
     93 
     94       int mute_factor;
     95       if ((energy != 0) &&
     96           (energy > background_noise_.Energy(channel_ix))) {
     97         // Normalize new frame energy to 15 bits.
     98         scaling = WebRtcSpl_NormW32(energy) - 16;
     99         // We want background_noise_.energy() / energy in Q14.
    100         int32_t bgn_energy =
    101             background_noise_.Energy(channel_ix) << (scaling+14);
    102         int16_t energy_scaled = static_cast<int16_t>(energy << scaling);
    103         int32_t ratio = WebRtcSpl_DivW32W16(bgn_energy, energy_scaled);
    104         mute_factor = WebRtcSpl_SqrtFloor(ratio << 14);
    105       } else {
    106         mute_factor = 16384;  // 1.0 in Q14.
    107       }
    108       if (mute_factor > external_mute_factor_array[channel_ix]) {
    109         external_mute_factor_array[channel_ix] =
    110             static_cast<int16_t>(std::min(mute_factor, 16384));
    111       }
    112 
    113       // If muted increase by 0.64 for every 20 ms (NB/WB 0.0040/0.0020 in Q14).
    114       int increment = 64 / fs_mult;
    115       for (size_t i = 0; i < length_per_channel; i++) {
    116         // Scale with mute factor.
    117         assert(channel_ix < output->Channels());
    118         assert(i < output->Size());
    119         int32_t scaled_signal = (*output)[channel_ix][i] *
    120             external_mute_factor_array[channel_ix];
    121         // Shift 14 with proper rounding.
    122         (*output)[channel_ix][i] =
    123             static_cast<int16_t>((scaled_signal + 8192) >> 14);
    124         // Increase mute_factor towards 16384.
    125         external_mute_factor_array[channel_ix] = static_cast<int16_t>(std::min(
    126             external_mute_factor_array[channel_ix] + increment, 16384));
    127       }
    128 
    129       // Interpolate the expanded data into the new vector.
    130       // (NB/WB/SWB32/SWB48 8/16/32/48 samples.)
    131       assert(fs_shift < 3);  // Will always be 0, 1, or, 2.
    132       increment = 4 >> fs_shift;
    133       int fraction = increment;
    134       for (size_t i = 0; i < static_cast<size_t>(8 * fs_mult); i++) {
    135         // TODO(hlundin): Add 16 instead of 8 for correct rounding. Keeping 8
    136         // now for legacy bit-exactness.
    137         assert(channel_ix < output->Channels());
    138         assert(i < output->Size());
    139         (*output)[channel_ix][i] =
    140             static_cast<int16_t>((fraction * (*output)[channel_ix][i] +
    141                 (32 - fraction) * expanded[channel_ix][i] + 8) >> 5);
    142         fraction += increment;
    143       }
    144     }
    145   } else if (last_mode == kModeRfc3389Cng) {
    146     assert(output->Channels() == 1);  // Not adapted for multi-channel yet.
    147     static const size_t kCngLength = 32;
    148     int16_t cng_output[kCngLength];
    149     // Reset mute factor and start up fresh.
    150     external_mute_factor_array[0] = 16384;
    151     AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
    152 
    153     if (cng_decoder) {
    154       // Generate long enough for 32kHz.
    155       if (WebRtcCng_Generate(cng_decoder->CngDecoderInstance(), cng_output,
    156                              kCngLength, 0) < 0) {
    157         // Error returned; set return vector to all zeros.
    158         memset(cng_output, 0, sizeof(cng_output));
    159       }
    160     } else {
    161       // If no CNG instance is defined, just copy from the decoded data.
    162       // (This will result in interpolating the decoded with itself.)
    163       memcpy(cng_output, signal, fs_mult * 8 * sizeof(int16_t));
    164     }
    165     // Interpolate the CNG into the new vector.
    166     // (NB/WB/SWB32/SWB48 8/16/32/48 samples.)
    167     assert(fs_shift < 3);  // Will always be 0, 1, or, 2.
    168     int16_t increment = 4 >> fs_shift;
    169     int16_t fraction = increment;
    170     for (size_t i = 0; i < static_cast<size_t>(8 * fs_mult); i++) {
    171       // TODO(hlundin): Add 16 instead of 8 for correct rounding. Keeping 8 now
    172       // for legacy bit-exactness.
    173       signal[i] =
    174           (fraction * signal[i] + (32 - fraction) * cng_output[i] + 8) >> 5;
    175       fraction += increment;
    176     }
    177   } else if (external_mute_factor_array[0] < 16384) {
    178     // Previous was neither of Expand, FadeToBGN or RFC3389_CNG, but we are
    179     // still ramping up from previous muting.
    180     // If muted increase by 0.64 for every 20 ms (NB/WB 0.0040/0.0020 in Q14).
    181     int increment = 64 / fs_mult;
    182     size_t length_per_channel = length / output->Channels();
    183     for (size_t i = 0; i < length_per_channel; i++) {
    184       for (size_t channel_ix = 0; channel_ix < output->Channels();
    185           ++channel_ix) {
    186         // Scale with mute factor.
    187         assert(channel_ix < output->Channels());
    188         assert(i < output->Size());
    189         int32_t scaled_signal = (*output)[channel_ix][i] *
    190             external_mute_factor_array[channel_ix];
    191         // Shift 14 with proper rounding.
    192         (*output)[channel_ix][i] =
    193             static_cast<int16_t>((scaled_signal + 8192) >> 14);
    194         // Increase mute_factor towards 16384.
    195         external_mute_factor_array[channel_ix] = static_cast<int16_t>(std::min(
    196             16384, external_mute_factor_array[channel_ix] + increment));
    197       }
    198     }
    199   }
    200 
    201   return static_cast<int>(length);
    202 }
    203 
    204 }  // namespace webrtc
    205