Home | History | Annotate | Download | only in src
      1 /* adler32.c -- compute the Adler-32 checksum of a data stream
      2  * Copyright (C) 1995-2011, 2016 Mark Adler
      3  * For conditions of distribution and use, see copyright notice in zlib.h
      4  */
      5 
      6 /* @(#) $Id$ */
      7 
      8 #include "zutil.h"
      9 
     10 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
     11 
     12 #define BASE 65521U     /* largest prime smaller than 65536 */
     13 #define NMAX 5552
     14 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
     15 
     16 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
     17 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
     18 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
     19 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
     20 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
     21 
     22 /* use NO_DIVIDE if your processor does not do division in hardware --
     23    try it both ways to see which is faster */
     24 #ifdef NO_DIVIDE
     25 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
     26    (thank you to John Reiser for pointing this out) */
     27 #  define CHOP(a) \
     28     do { \
     29         unsigned long tmp = a >> 16; \
     30         a &= 0xffffUL; \
     31         a += (tmp << 4) - tmp; \
     32     } while (0)
     33 #  define MOD28(a) \
     34     do { \
     35         CHOP(a); \
     36         if (a >= BASE) a -= BASE; \
     37     } while (0)
     38 #  define MOD(a) \
     39     do { \
     40         CHOP(a); \
     41         MOD28(a); \
     42     } while (0)
     43 #  define MOD63(a) \
     44     do { /* this assumes a is not negative */ \
     45         z_off64_t tmp = a >> 32; \
     46         a &= 0xffffffffL; \
     47         a += (tmp << 8) - (tmp << 5) + tmp; \
     48         tmp = a >> 16; \
     49         a &= 0xffffL; \
     50         a += (tmp << 4) - tmp; \
     51         tmp = a >> 16; \
     52         a &= 0xffffL; \
     53         a += (tmp << 4) - tmp; \
     54         if (a >= BASE) a -= BASE; \
     55     } while (0)
     56 #else
     57 #  define MOD(a) a %= BASE
     58 #  define MOD28(a) a %= BASE
     59 #  define MOD63(a) a %= BASE
     60 #endif
     61 
     62 /* ========================================================================= */
     63 uLong ZEXPORT adler32_z(adler, buf, len)
     64     uLong adler;
     65     const Bytef *buf;
     66     z_size_t len;
     67 {
     68     unsigned long sum2;
     69     unsigned n;
     70 
     71     /* split Adler-32 into component sums */
     72     sum2 = (adler >> 16) & 0xffff;
     73     adler &= 0xffff;
     74 
     75     /* in case user likes doing a byte at a time, keep it fast */
     76     if (len == 1) {
     77         adler += buf[0];
     78         if (adler >= BASE)
     79             adler -= BASE;
     80         sum2 += adler;
     81         if (sum2 >= BASE)
     82             sum2 -= BASE;
     83         return adler | (sum2 << 16);
     84     }
     85 
     86     /* initial Adler-32 value (deferred check for len == 1 speed) */
     87     if (buf == Z_NULL)
     88         return 1L;
     89 
     90     /* in case short lengths are provided, keep it somewhat fast */
     91     if (len < 16) {
     92         while (len--) {
     93             adler += *buf++;
     94             sum2 += adler;
     95         }
     96         if (adler >= BASE)
     97             adler -= BASE;
     98         MOD28(sum2);            /* only added so many BASE's */
     99         return adler | (sum2 << 16);
    100     }
    101 
    102     /* do length NMAX blocks -- requires just one modulo operation */
    103     while (len >= NMAX) {
    104         len -= NMAX;
    105         n = NMAX / 16;          /* NMAX is divisible by 16 */
    106         do {
    107             DO16(buf);          /* 16 sums unrolled */
    108             buf += 16;
    109         } while (--n);
    110         MOD(adler);
    111         MOD(sum2);
    112     }
    113 
    114     /* do remaining bytes (less than NMAX, still just one modulo) */
    115     if (len) {                  /* avoid modulos if none remaining */
    116         while (len >= 16) {
    117             len -= 16;
    118             DO16(buf);
    119             buf += 16;
    120         }
    121         while (len--) {
    122             adler += *buf++;
    123             sum2 += adler;
    124         }
    125         MOD(adler);
    126         MOD(sum2);
    127     }
    128 
    129     /* return recombined sums */
    130     return adler | (sum2 << 16);
    131 }
    132 
    133 /* ========================================================================= */
    134 uLong ZEXPORT adler32(adler, buf, len)
    135     uLong adler;
    136     const Bytef *buf;
    137     uInt len;
    138 {
    139     return adler32_z(adler, buf, len);
    140 }
    141 
    142 /* ========================================================================= */
    143 local uLong adler32_combine_(adler1, adler2, len2)
    144     uLong adler1;
    145     uLong adler2;
    146     z_off64_t len2;
    147 {
    148     unsigned long sum1;
    149     unsigned long sum2;
    150     unsigned rem;
    151 
    152     /* for negative len, return invalid adler32 as a clue for debugging */
    153     if (len2 < 0)
    154         return 0xffffffffUL;
    155 
    156     /* the derivation of this formula is left as an exercise for the reader */
    157     MOD63(len2);                /* assumes len2 >= 0 */
    158     rem = (unsigned)len2;
    159     sum1 = adler1 & 0xffff;
    160     sum2 = rem * sum1;
    161     MOD(sum2);
    162     sum1 += (adler2 & 0xffff) + BASE - 1;
    163     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
    164     if (sum1 >= BASE) sum1 -= BASE;
    165     if (sum1 >= BASE) sum1 -= BASE;
    166     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
    167     if (sum2 >= BASE) sum2 -= BASE;
    168     return sum1 | (sum2 << 16);
    169 }
    170 
    171 /* ========================================================================= */
    172 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
    173     uLong adler1;
    174     uLong adler2;
    175     z_off_t len2;
    176 {
    177     return adler32_combine_(adler1, adler2, len2);
    178 }
    179 
    180 uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
    181     uLong adler1;
    182     uLong adler2;
    183     z_off64_t len2;
    184 {
    185     return adler32_combine_(adler1, adler2, len2);
    186 }
    187