Home | History | Annotate | Download | only in testlibs
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "EffectReverb"
     18 //#define LOG_NDEBUG 0
     19 
     20 #include <stdbool.h>
     21 #include <stdlib.h>
     22 #include <string.h>
     23 
     24 #include <log/log.h>
     25 
     26 #include "EffectReverb.h"
     27 #include "EffectsMath.h"
     28 
     29 // effect_handle_t interface implementation for reverb effect
     30 const struct effect_interface_s gReverbInterface = {
     31         Reverb_Process,
     32         Reverb_Command,
     33         Reverb_GetDescriptor,
     34         NULL
     35 };
     36 
     37 // Google auxiliary environmental reverb UUID: 1f0ae2e0-4ef7-11df-bc09-0002a5d5c51b
     38 static const effect_descriptor_t gAuxEnvReverbDescriptor = {
     39         {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
     40         {0x1f0ae2e0, 0x4ef7, 0x11df, 0xbc09, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
     41         EFFECT_CONTROL_API_VERSION,
     42         // flags other than EFFECT_FLAG_TYPE_AUXILIARY set for test purpose
     43         EFFECT_FLAG_TYPE_AUXILIARY | EFFECT_FLAG_DEVICE_IND | EFFECT_FLAG_AUDIO_MODE_IND,
     44         0, // TODO
     45         33,
     46         "Aux Environmental Reverb",
     47         "The Android Open Source Project"
     48 };
     49 
     50 // Google insert environmental reverb UUID: aa476040-6342-11df-91a4-0002a5d5c51b
     51 static const effect_descriptor_t gInsertEnvReverbDescriptor = {
     52         {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
     53         {0xaa476040, 0x6342, 0x11df, 0x91a4, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
     54         EFFECT_CONTROL_API_VERSION,
     55         EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
     56         0, // TODO
     57         33,
     58         "Insert Environmental reverb",
     59         "The Android Open Source Project"
     60 };
     61 
     62 // Google auxiliary preset reverb UUID: 63909320-53a6-11df-bdbd-0002a5d5c51b
     63 static const effect_descriptor_t gAuxPresetReverbDescriptor = {
     64         {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
     65         {0x63909320, 0x53a6, 0x11df, 0xbdbd, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
     66         EFFECT_CONTROL_API_VERSION,
     67         EFFECT_FLAG_TYPE_AUXILIARY,
     68         0, // TODO
     69         33,
     70         "Aux Preset Reverb",
     71         "The Android Open Source Project"
     72 };
     73 
     74 // Google insert preset reverb UUID: d93dc6a0-6342-11df-b128-0002a5d5c51b
     75 static const effect_descriptor_t gInsertPresetReverbDescriptor = {
     76         {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
     77         {0xd93dc6a0, 0x6342, 0x11df, 0xb128, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
     78         EFFECT_CONTROL_API_VERSION,
     79         EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
     80         0, // TODO
     81         33,
     82         "Insert Preset Reverb",
     83         "The Android Open Source Project"
     84 };
     85 
     86 // gDescriptors contains pointers to all defined effect descriptor in this library
     87 static const effect_descriptor_t * const gDescriptors[] = {
     88         &gAuxEnvReverbDescriptor,
     89         &gInsertEnvReverbDescriptor,
     90         &gAuxPresetReverbDescriptor,
     91         &gInsertPresetReverbDescriptor
     92 };
     93 
     94 /*----------------------------------------------------------------------------
     95  * Effect API implementation
     96  *--------------------------------------------------------------------------*/
     97 
     98 /*--- Effect Library Interface Implementation ---*/
     99 
    100 int EffectCreate(const effect_uuid_t *uuid,
    101         int32_t sessionId,
    102         int32_t ioId,
    103         effect_handle_t *pHandle) {
    104     int ret;
    105     int i;
    106     reverb_module_t *module;
    107     const effect_descriptor_t *desc;
    108     int aux = 0;
    109     int preset = 0;
    110 
    111     ALOGV("EffectLibCreateEffect start");
    112 
    113     if (pHandle == NULL || uuid == NULL) {
    114         return -EINVAL;
    115     }
    116 
    117     for (i = 0; gDescriptors[i] != NULL; i++) {
    118         desc = gDescriptors[i];
    119         if (memcmp(uuid, &desc->uuid, sizeof(effect_uuid_t))
    120                 == 0) {
    121             break;
    122         }
    123     }
    124 
    125     if (gDescriptors[i] == NULL) {
    126         return -ENOENT;
    127     }
    128 
    129     module = malloc(sizeof(reverb_module_t));
    130 
    131     module->itfe = &gReverbInterface;
    132 
    133     module->context.mState = REVERB_STATE_UNINITIALIZED;
    134 
    135     if (memcmp(&desc->type, SL_IID_PRESETREVERB, sizeof(effect_uuid_t)) == 0) {
    136         preset = 1;
    137     }
    138     if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
    139         aux = 1;
    140     }
    141     ret = Reverb_Init(module, aux, preset);
    142     if (ret < 0) {
    143         ALOGW("EffectLibCreateEffect() init failed");
    144         free(module);
    145         return ret;
    146     }
    147 
    148     *pHandle = (effect_handle_t) module;
    149 
    150     module->context.mState = REVERB_STATE_INITIALIZED;
    151 
    152     ALOGV("EffectLibCreateEffect %p ,size %d", module, sizeof(reverb_module_t));
    153 
    154     return 0;
    155 }
    156 
    157 int EffectRelease(effect_handle_t handle) {
    158     reverb_module_t *pRvbModule = (reverb_module_t *)handle;
    159 
    160     ALOGV("EffectLibReleaseEffect %p", handle);
    161     if (handle == NULL) {
    162         return -EINVAL;
    163     }
    164 
    165     pRvbModule->context.mState = REVERB_STATE_UNINITIALIZED;
    166 
    167     free(pRvbModule);
    168     return 0;
    169 }
    170 
    171 int EffectGetDescriptor(const effect_uuid_t *uuid,
    172                         effect_descriptor_t *pDescriptor) {
    173     int i;
    174     int length = sizeof(gDescriptors) / sizeof(const effect_descriptor_t *);
    175 
    176     if (pDescriptor == NULL || uuid == NULL){
    177         ALOGV("EffectGetDescriptor() called with NULL pointer");
    178         return -EINVAL;
    179     }
    180 
    181     for (i = 0; i < length; i++) {
    182         if (memcmp(uuid, &gDescriptors[i]->uuid, sizeof(effect_uuid_t)) == 0) {
    183             *pDescriptor = *gDescriptors[i];
    184             ALOGV("EffectGetDescriptor - UUID matched Reverb type %d, UUID = %x",
    185                  i, gDescriptors[i]->uuid.timeLow);
    186             return 0;
    187         }
    188     }
    189 
    190     return -EINVAL;
    191 } /* end EffectGetDescriptor */
    192 
    193 /*--- Effect Control Interface Implementation ---*/
    194 
    195 static int Reverb_Process(effect_handle_t self, audio_buffer_t *inBuffer, audio_buffer_t *outBuffer) {
    196     reverb_object_t *pReverb;
    197     int16_t *pSrc, *pDst;
    198     reverb_module_t *pRvbModule = (reverb_module_t *)self;
    199 
    200     if (pRvbModule == NULL) {
    201         return -EINVAL;
    202     }
    203 
    204     if (inBuffer == NULL || inBuffer->raw == NULL ||
    205         outBuffer == NULL || outBuffer->raw == NULL ||
    206         inBuffer->frameCount != outBuffer->frameCount) {
    207         return -EINVAL;
    208     }
    209 
    210     pReverb = (reverb_object_t*) &pRvbModule->context;
    211 
    212     if (pReverb->mState == REVERB_STATE_UNINITIALIZED) {
    213         return -EINVAL;
    214     }
    215     if (pReverb->mState == REVERB_STATE_INITIALIZED) {
    216         return -ENODATA;
    217     }
    218 
    219     //if bypassed or the preset forces the signal to be completely dry
    220     if (pReverb->m_bBypass != 0) {
    221         if (inBuffer->raw != outBuffer->raw) {
    222             int16_t smp;
    223             pSrc = inBuffer->s16;
    224             pDst = outBuffer->s16;
    225             size_t count = inBuffer->frameCount;
    226             if (pRvbModule->config.inputCfg.channels == pRvbModule->config.outputCfg.channels) {
    227                 count *= 2;
    228                 while (count--) {
    229                     *pDst++ = *pSrc++;
    230                 }
    231             } else {
    232                 while (count--) {
    233                     smp = *pSrc++;
    234                     *pDst++ = smp;
    235                     *pDst++ = smp;
    236                 }
    237             }
    238         }
    239         return 0;
    240     }
    241 
    242     if (pReverb->m_nNextRoom != pReverb->m_nCurrentRoom) {
    243         ReverbUpdateRoom(pReverb, true);
    244     }
    245 
    246     pSrc = inBuffer->s16;
    247     pDst = outBuffer->s16;
    248     size_t numSamples = outBuffer->frameCount;
    249     while (numSamples) {
    250         uint32_t processedSamples;
    251         if (numSamples > (uint32_t) pReverb->m_nUpdatePeriodInSamples) {
    252             processedSamples = (uint32_t) pReverb->m_nUpdatePeriodInSamples;
    253         } else {
    254             processedSamples = numSamples;
    255         }
    256 
    257         /* increment update counter */
    258         pReverb->m_nUpdateCounter += (int16_t) processedSamples;
    259         /* check if update counter needs to be reset */
    260         if (pReverb->m_nUpdateCounter >= pReverb->m_nUpdatePeriodInSamples) {
    261             /* update interval has elapsed, so reset counter */
    262             pReverb->m_nUpdateCounter -= pReverb->m_nUpdatePeriodInSamples;
    263             ReverbUpdateXfade(pReverb, pReverb->m_nUpdatePeriodInSamples);
    264 
    265         } /* end if m_nUpdateCounter >= update interval */
    266 
    267         Reverb(pReverb, processedSamples, pDst, pSrc);
    268 
    269         numSamples -= processedSamples;
    270         if (pReverb->m_Aux) {
    271             pSrc += processedSamples;
    272         } else {
    273             pSrc += processedSamples * NUM_OUTPUT_CHANNELS;
    274         }
    275         pDst += processedSamples * NUM_OUTPUT_CHANNELS;
    276     }
    277 
    278     return 0;
    279 }
    280 
    281 
    282 static int Reverb_Command(effect_handle_t self, uint32_t cmdCode, uint32_t cmdSize,
    283         void *pCmdData, uint32_t *replySize, void *pReplyData) {
    284     reverb_module_t *pRvbModule = (reverb_module_t *) self;
    285     reverb_object_t *pReverb;
    286     int retsize;
    287 
    288     if (pRvbModule == NULL ||
    289             pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
    290         return -EINVAL;
    291     }
    292 
    293     pReverb = (reverb_object_t*) &pRvbModule->context;
    294 
    295     ALOGV("Reverb_Command command %d cmdSize %d",cmdCode, cmdSize);
    296 
    297     switch (cmdCode) {
    298     case EFFECT_CMD_INIT:
    299         if (pReplyData == NULL || *replySize != sizeof(int)) {
    300             return -EINVAL;
    301         }
    302         *(int *) pReplyData = Reverb_Init(pRvbModule, pReverb->m_Aux, pReverb->m_Preset);
    303         if (*(int *) pReplyData == 0) {
    304             pRvbModule->context.mState = REVERB_STATE_INITIALIZED;
    305         }
    306         break;
    307     case EFFECT_CMD_SET_CONFIG:
    308         if (pCmdData == NULL || cmdSize != sizeof(effect_config_t)
    309                 || pReplyData == NULL || *replySize != sizeof(int)) {
    310             return -EINVAL;
    311         }
    312         *(int *) pReplyData = Reverb_setConfig(pRvbModule,
    313                 (effect_config_t *)pCmdData, false);
    314         break;
    315     case EFFECT_CMD_GET_CONFIG:
    316         if (pReplyData == NULL || *replySize != sizeof(effect_config_t)) {
    317             return -EINVAL;
    318         }
    319         Reverb_getConfig(pRvbModule, (effect_config_t *) pCmdData);
    320         break;
    321     case EFFECT_CMD_RESET:
    322         Reverb_Reset(pReverb, false);
    323         break;
    324     case EFFECT_CMD_GET_PARAM:
    325         ALOGV("Reverb_Command EFFECT_CMD_GET_PARAM pCmdData %p, *replySize %d, pReplyData: %p",pCmdData, *replySize, pReplyData);
    326 
    327         if (pCmdData == NULL || cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)) ||
    328             pReplyData == NULL || *replySize < (int) sizeof(effect_param_t)) {
    329             return -EINVAL;
    330         }
    331         effect_param_t *rep = (effect_param_t *) pReplyData;
    332         memcpy(pReplyData, pCmdData, sizeof(effect_param_t) + sizeof(int32_t));
    333         ALOGV("Reverb_Command EFFECT_CMD_GET_PARAM param %d, replySize %d",*(int32_t *)rep->data, rep->vsize);
    334         rep->status = Reverb_getParameter(pReverb, *(int32_t *)rep->data, &rep->vsize,
    335                 rep->data + sizeof(int32_t));
    336         *replySize = sizeof(effect_param_t) + sizeof(int32_t) + rep->vsize;
    337         break;
    338     case EFFECT_CMD_SET_PARAM:
    339         ALOGV("Reverb_Command EFFECT_CMD_SET_PARAM cmdSize %d pCmdData %p, *replySize %d, pReplyData %p",
    340                 cmdSize, pCmdData, *replySize, pReplyData);
    341         if (pCmdData == NULL || (cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)))
    342                 || pReplyData == NULL || *replySize != (int)sizeof(int32_t)) {
    343             return -EINVAL;
    344         }
    345         effect_param_t *cmd = (effect_param_t *) pCmdData;
    346         *(int *)pReplyData = Reverb_setParameter(pReverb, *(int32_t *)cmd->data,
    347                 cmd->vsize, cmd->data + sizeof(int32_t));
    348         break;
    349     case EFFECT_CMD_ENABLE:
    350         if (pReplyData == NULL || *replySize != sizeof(int)) {
    351             return -EINVAL;
    352         }
    353         if (pReverb->mState != REVERB_STATE_INITIALIZED) {
    354             return -ENOSYS;
    355         }
    356         pReverb->mState = REVERB_STATE_ACTIVE;
    357         ALOGV("EFFECT_CMD_ENABLE() OK");
    358         *(int *)pReplyData = 0;
    359         break;
    360     case EFFECT_CMD_DISABLE:
    361         if (pReplyData == NULL || *replySize != sizeof(int)) {
    362             return -EINVAL;
    363         }
    364         if (pReverb->mState != REVERB_STATE_ACTIVE) {
    365             return -ENOSYS;
    366         }
    367         pReverb->mState = REVERB_STATE_INITIALIZED;
    368         ALOGV("EFFECT_CMD_DISABLE() OK");
    369         *(int *)pReplyData = 0;
    370         break;
    371     case EFFECT_CMD_SET_DEVICE:
    372         if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
    373             return -EINVAL;
    374         }
    375         ALOGV("Reverb_Command EFFECT_CMD_SET_DEVICE: 0x%08x", *(uint32_t *)pCmdData);
    376         break;
    377     case EFFECT_CMD_SET_VOLUME: {
    378         // audio output is always stereo => 2 channel volumes
    379         if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t) * 2) {
    380             return -EINVAL;
    381         }
    382         float left = (float)(*(uint32_t *)pCmdData) / (1 << 24);
    383         float right = (float)(*((uint32_t *)pCmdData + 1)) / (1 << 24);
    384         ALOGV("Reverb_Command EFFECT_CMD_SET_VOLUME: left %f, right %f ", left, right);
    385         break;
    386         }
    387     case EFFECT_CMD_SET_AUDIO_MODE:
    388         if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
    389             return -EINVAL;
    390         }
    391         ALOGV("Reverb_Command EFFECT_CMD_SET_AUDIO_MODE: %d", *(uint32_t *)pCmdData);
    392         break;
    393     default:
    394         ALOGW("Reverb_Command invalid command %d",cmdCode);
    395         return -EINVAL;
    396     }
    397 
    398     return 0;
    399 }
    400 
    401 int Reverb_GetDescriptor(effect_handle_t   self,
    402                                     effect_descriptor_t *pDescriptor)
    403 {
    404     reverb_module_t *pRvbModule = (reverb_module_t *) self;
    405     reverb_object_t *pReverb;
    406     const effect_descriptor_t *desc;
    407 
    408     if (pRvbModule == NULL ||
    409             pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
    410         return -EINVAL;
    411     }
    412 
    413     pReverb = (reverb_object_t*) &pRvbModule->context;
    414 
    415     if (pReverb->m_Aux) {
    416         if (pReverb->m_Preset) {
    417             desc = &gAuxPresetReverbDescriptor;
    418         } else {
    419             desc = &gAuxEnvReverbDescriptor;
    420         }
    421     } else {
    422         if (pReverb->m_Preset) {
    423             desc = &gInsertPresetReverbDescriptor;
    424         } else {
    425             desc = &gInsertEnvReverbDescriptor;
    426         }
    427     }
    428 
    429     *pDescriptor = *desc;
    430 
    431     return 0;
    432 }   /* end Reverb_getDescriptor */
    433 
    434 /*----------------------------------------------------------------------------
    435  * Reverb internal functions
    436  *--------------------------------------------------------------------------*/
    437 
    438 /*----------------------------------------------------------------------------
    439  * Reverb_Init()
    440  *----------------------------------------------------------------------------
    441  * Purpose:
    442  * Initialize reverb context and apply default parameters
    443  *
    444  * Inputs:
    445  *  pRvbModule    - pointer to reverb effect module
    446  *  aux           - indicates if the reverb is used as auxiliary (1) or insert (0)
    447  *  preset        - indicates if the reverb is used in preset (1) or environmental (0) mode
    448  *
    449  * Outputs:
    450  *
    451  * Side Effects:
    452  *
    453  *----------------------------------------------------------------------------
    454  */
    455 
    456 int Reverb_Init(reverb_module_t *pRvbModule, int aux, int preset) {
    457     int ret;
    458 
    459     ALOGV("Reverb_Init module %p, aux: %d, preset: %d", pRvbModule,aux, preset);
    460 
    461     memset(&pRvbModule->context, 0, sizeof(reverb_object_t));
    462 
    463     pRvbModule->context.m_Aux = (uint16_t)aux;
    464     pRvbModule->context.m_Preset = (uint16_t)preset;
    465 
    466     pRvbModule->config.inputCfg.samplingRate = 44100;
    467     if (aux) {
    468         pRvbModule->config.inputCfg.channels = AUDIO_CHANNEL_OUT_MONO;
    469     } else {
    470         pRvbModule->config.inputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
    471     }
    472     pRvbModule->config.inputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
    473     pRvbModule->config.inputCfg.bufferProvider.getBuffer = NULL;
    474     pRvbModule->config.inputCfg.bufferProvider.releaseBuffer = NULL;
    475     pRvbModule->config.inputCfg.bufferProvider.cookie = NULL;
    476     pRvbModule->config.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ;
    477     pRvbModule->config.inputCfg.mask = EFFECT_CONFIG_ALL;
    478     pRvbModule->config.outputCfg.samplingRate = 44100;
    479     pRvbModule->config.outputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
    480     pRvbModule->config.outputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
    481     pRvbModule->config.outputCfg.bufferProvider.getBuffer = NULL;
    482     pRvbModule->config.outputCfg.bufferProvider.releaseBuffer = NULL;
    483     pRvbModule->config.outputCfg.bufferProvider.cookie = NULL;
    484     pRvbModule->config.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE;
    485     pRvbModule->config.outputCfg.mask = EFFECT_CONFIG_ALL;
    486 
    487     ret = Reverb_setConfig(pRvbModule, &pRvbModule->config, true);
    488     if (ret < 0) {
    489         ALOGV("Reverb_Init error %d on module %p", ret, pRvbModule);
    490     }
    491 
    492     return ret;
    493 }
    494 
    495 /*----------------------------------------------------------------------------
    496  * Reverb_setConfig()
    497  *----------------------------------------------------------------------------
    498  * Purpose:
    499  *  Set input and output audio configuration.
    500  *
    501  * Inputs:
    502  *  pRvbModule    - pointer to reverb effect module
    503  *  pConfig       - pointer to effect_config_t structure containing input
    504  *              and output audio parameters configuration
    505  *  init          - true if called from init function
    506  * Outputs:
    507  *
    508  * Side Effects:
    509  *
    510  *----------------------------------------------------------------------------
    511  */
    512 
    513 int Reverb_setConfig(reverb_module_t *pRvbModule, effect_config_t *pConfig,
    514         bool init) {
    515     reverb_object_t *pReverb = &pRvbModule->context;
    516     int bufferSizeInSamples;
    517     int updatePeriodInSamples;
    518     int xfadePeriodInSamples;
    519 
    520     // Check configuration compatibility with build options
    521     if (pConfig->inputCfg.samplingRate
    522         != pConfig->outputCfg.samplingRate
    523         || pConfig->outputCfg.channels != OUTPUT_CHANNELS
    524         || pConfig->inputCfg.format != AUDIO_FORMAT_PCM_16_BIT
    525         || pConfig->outputCfg.format != AUDIO_FORMAT_PCM_16_BIT) {
    526         ALOGV("Reverb_setConfig invalid config");
    527         return -EINVAL;
    528     }
    529     if ((pReverb->m_Aux && (pConfig->inputCfg.channels != AUDIO_CHANNEL_OUT_MONO)) ||
    530         (!pReverb->m_Aux && (pConfig->inputCfg.channels != AUDIO_CHANNEL_OUT_STEREO))) {
    531         ALOGV("Reverb_setConfig invalid config");
    532         return -EINVAL;
    533     }
    534 
    535     pRvbModule->config = *pConfig;
    536 
    537     pReverb->m_nSamplingRate = pRvbModule->config.outputCfg.samplingRate;
    538 
    539     switch (pReverb->m_nSamplingRate) {
    540     case 8000:
    541         pReverb->m_nUpdatePeriodInBits = 5;
    542         bufferSizeInSamples = 4096;
    543         pReverb->m_nCosWT_5KHz = -23170;
    544         break;
    545     case 16000:
    546         pReverb->m_nUpdatePeriodInBits = 6;
    547         bufferSizeInSamples = 8192;
    548         pReverb->m_nCosWT_5KHz = -12540;
    549         break;
    550     case 22050:
    551         pReverb->m_nUpdatePeriodInBits = 7;
    552         bufferSizeInSamples = 8192;
    553         pReverb->m_nCosWT_5KHz = 4768;
    554         break;
    555     case 32000:
    556         pReverb->m_nUpdatePeriodInBits = 7;
    557         bufferSizeInSamples = 16384;
    558         pReverb->m_nCosWT_5KHz = 18205;
    559         break;
    560     case 44100:
    561         pReverb->m_nUpdatePeriodInBits = 8;
    562         bufferSizeInSamples = 16384;
    563         pReverb->m_nCosWT_5KHz = 24799;
    564         break;
    565     case 48000:
    566         pReverb->m_nUpdatePeriodInBits = 8;
    567         bufferSizeInSamples = 16384;
    568         pReverb->m_nCosWT_5KHz = 25997;
    569         break;
    570     default:
    571         ALOGV("Reverb_setConfig invalid sampling rate %d", pReverb->m_nSamplingRate);
    572         return -EINVAL;
    573     }
    574 
    575     // Define a mask for circular addressing, so that array index
    576     // can wraparound and stay in array boundary of 0, 1, ..., (buffer size -1)
    577     // The buffer size MUST be a power of two
    578     pReverb->m_nBufferMask = (int32_t) (bufferSizeInSamples - 1);
    579     /* reverb parameters are updated every 2^(pReverb->m_nUpdatePeriodInBits) samples */
    580     updatePeriodInSamples = (int32_t) (0x1L << pReverb->m_nUpdatePeriodInBits);
    581     /*
    582      calculate the update counter by bitwise ANDING with this value to
    583      generate a 2^n modulo value
    584      */
    585     pReverb->m_nUpdatePeriodInSamples = (int32_t) updatePeriodInSamples;
    586 
    587     xfadePeriodInSamples = (int32_t) (REVERB_XFADE_PERIOD_IN_SECONDS
    588             * (double) pReverb->m_nSamplingRate);
    589 
    590     // set xfade parameters
    591     pReverb->m_nPhaseIncrement
    592             = (int16_t) (65536 / ((int16_t) xfadePeriodInSamples
    593                     / (int16_t) updatePeriodInSamples));
    594 
    595     if (init) {
    596         ReverbReadInPresets(pReverb);
    597 
    598         // for debugging purposes, allow noise generator
    599         pReverb->m_bUseNoise = true;
    600 
    601         // for debugging purposes, allow bypass
    602         pReverb->m_bBypass = 0;
    603 
    604         pReverb->m_nNextRoom = 1;
    605 
    606         pReverb->m_nNoise = (int16_t) 0xABCD;
    607     }
    608 
    609     Reverb_Reset(pReverb, init);
    610 
    611     return 0;
    612 }
    613 
    614 /*----------------------------------------------------------------------------
    615  * Reverb_getConfig()
    616  *----------------------------------------------------------------------------
    617  * Purpose:
    618  *  Get input and output audio configuration.
    619  *
    620  * Inputs:
    621  *  pRvbModule    - pointer to reverb effect module
    622  *  pConfig       - pointer to effect_config_t structure containing input
    623  *              and output audio parameters configuration
    624  * Outputs:
    625  *
    626  * Side Effects:
    627  *
    628  *----------------------------------------------------------------------------
    629  */
    630 
    631 void Reverb_getConfig(reverb_module_t *pRvbModule, effect_config_t *pConfig)
    632 {
    633     *pConfig = pRvbModule->config;
    634 }
    635 
    636 /*----------------------------------------------------------------------------
    637  * Reverb_Reset()
    638  *----------------------------------------------------------------------------
    639  * Purpose:
    640  *  Reset internal states and clear delay lines.
    641  *
    642  * Inputs:
    643  *  pReverb    - pointer to reverb context
    644  *  init       - true if called from init function
    645  *
    646  * Outputs:
    647  *
    648  * Side Effects:
    649  *
    650  *----------------------------------------------------------------------------
    651  */
    652 
    653 void Reverb_Reset(reverb_object_t *pReverb, bool init) {
    654     int bufferSizeInSamples = (int32_t) (pReverb->m_nBufferMask + 1);
    655     int maxApSamples;
    656     int maxDelaySamples;
    657     int maxEarlySamples;
    658     int ap1In;
    659     int delay0In;
    660     int delay1In;
    661     int32_t i;
    662     uint16_t nOffset;
    663 
    664     maxApSamples = ((int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16);
    665     maxDelaySamples = ((int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
    666             >> 16);
    667     maxEarlySamples = ((int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
    668             >> 16);
    669 
    670     ap1In = (AP0_IN + maxApSamples + GUARD);
    671     delay0In = (ap1In + maxApSamples + GUARD);
    672     delay1In = (delay0In + maxDelaySamples + GUARD);
    673     // Define the max offsets for the end points of each section
    674     // i.e., we don't expect a given section's taps to go beyond
    675     // the following limits
    676 
    677     pReverb->m_nEarly0in = (delay1In + maxDelaySamples + GUARD);
    678     pReverb->m_nEarly1in = (pReverb->m_nEarly0in + maxEarlySamples + GUARD);
    679 
    680     pReverb->m_sAp0.m_zApIn = AP0_IN;
    681 
    682     pReverb->m_zD0In = delay0In;
    683 
    684     pReverb->m_sAp1.m_zApIn = ap1In;
    685 
    686     pReverb->m_zD1In = delay1In;
    687 
    688     pReverb->m_zOutLpfL = 0;
    689     pReverb->m_zOutLpfR = 0;
    690 
    691     pReverb->m_nRevFbkR = 0;
    692     pReverb->m_nRevFbkL = 0;
    693 
    694     // set base index into circular buffer
    695     pReverb->m_nBaseIndex = 0;
    696 
    697     // clear the reverb delay line
    698     for (i = 0; i < bufferSizeInSamples; i++) {
    699         pReverb->m_nDelayLine[i] = 0;
    700     }
    701 
    702     ReverbUpdateRoom(pReverb, init);
    703 
    704     pReverb->m_nUpdateCounter = 0;
    705 
    706     pReverb->m_nPhase = -32768;
    707 
    708     pReverb->m_nSin = 0;
    709     pReverb->m_nCos = 0;
    710     pReverb->m_nSinIncrement = 0;
    711     pReverb->m_nCosIncrement = 0;
    712 
    713     // set delay tap lengths
    714     nOffset = ReverbCalculateNoise(pReverb);
    715 
    716     pReverb->m_zD1Cross = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
    717             + nOffset;
    718 
    719     nOffset = ReverbCalculateNoise(pReverb);
    720 
    721     pReverb->m_zD0Cross = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
    722             - nOffset;
    723 
    724     nOffset = ReverbCalculateNoise(pReverb);
    725 
    726     pReverb->m_zD0Self = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
    727             - nOffset;
    728 
    729     nOffset = ReverbCalculateNoise(pReverb);
    730 
    731     pReverb->m_zD1Self = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
    732             + nOffset;
    733 }
    734 
    735 /*----------------------------------------------------------------------------
    736  * Reverb_getParameter()
    737  *----------------------------------------------------------------------------
    738  * Purpose:
    739  * Get a Reverb parameter
    740  *
    741  * Inputs:
    742  *  pReverb       - handle to instance data
    743  *  param         - parameter
    744  *  pValue        - pointer to variable to hold retrieved value
    745  *  pSize         - pointer to value size: maximum size as input
    746  *
    747  * Outputs:
    748  *  *pValue updated with parameter value
    749  *  *pSize updated with actual value size
    750  *
    751  *
    752  * Side Effects:
    753  *
    754  *----------------------------------------------------------------------------
    755  */
    756 int Reverb_getParameter(reverb_object_t *pReverb, int32_t param, uint32_t *pSize,
    757         void *pValue) {
    758     int32_t *pValue32;
    759     int16_t *pValue16;
    760     t_reverb_settings *pProperties;
    761     int32_t i;
    762     int32_t temp;
    763     int32_t temp2;
    764     uint32_t size;
    765 
    766     if (pReverb->m_Preset) {
    767         if (param != REVERB_PARAM_PRESET || *pSize < sizeof(int16_t)) {
    768             return -EINVAL;
    769         }
    770         size = sizeof(int16_t);
    771         pValue16 = (int16_t *)pValue;
    772         // REVERB_PRESET_NONE is mapped to bypass
    773         if (pReverb->m_bBypass != 0) {
    774             *pValue16 = (int16_t)REVERB_PRESET_NONE;
    775         } else {
    776             *pValue16 = (int16_t)(pReverb->m_nNextRoom + 1);
    777         }
    778         ALOGV("get REVERB_PARAM_PRESET, preset %d", *pValue16);
    779     } else {
    780         switch (param) {
    781         case REVERB_PARAM_ROOM_LEVEL:
    782         case REVERB_PARAM_ROOM_HF_LEVEL:
    783         case REVERB_PARAM_DECAY_HF_RATIO:
    784         case REVERB_PARAM_REFLECTIONS_LEVEL:
    785         case REVERB_PARAM_REVERB_LEVEL:
    786         case REVERB_PARAM_DIFFUSION:
    787         case REVERB_PARAM_DENSITY:
    788             size = sizeof(int16_t);
    789             break;
    790 
    791         case REVERB_PARAM_BYPASS:
    792         case REVERB_PARAM_DECAY_TIME:
    793         case REVERB_PARAM_REFLECTIONS_DELAY:
    794         case REVERB_PARAM_REVERB_DELAY:
    795             size = sizeof(int32_t);
    796             break;
    797 
    798         case REVERB_PARAM_PROPERTIES:
    799             size = sizeof(t_reverb_settings);
    800             break;
    801 
    802         default:
    803             return -EINVAL;
    804         }
    805 
    806         if (*pSize < size) {
    807             return -EINVAL;
    808         }
    809 
    810         pValue32 = (int32_t *) pValue;
    811         pValue16 = (int16_t *) pValue;
    812         pProperties = (t_reverb_settings *) pValue;
    813 
    814         switch (param) {
    815         case REVERB_PARAM_BYPASS:
    816             *pValue32 = (int32_t) pReverb->m_bBypass;
    817             break;
    818 
    819         case REVERB_PARAM_PROPERTIES:
    820             pValue16 = &pProperties->roomLevel;
    821             /* FALL THROUGH */
    822 
    823         case REVERB_PARAM_ROOM_LEVEL:
    824             // Convert m_nRoomLpfFwd to millibels
    825             temp = (pReverb->m_nRoomLpfFwd << 15)
    826                     / (32767 - pReverb->m_nRoomLpfFbk);
    827             *pValue16 = Effects_Linear16ToMillibels(temp);
    828 
    829             ALOGV("get REVERB_PARAM_ROOM_LEVEL %d, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", *pValue16, temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
    830 
    831             if (param == REVERB_PARAM_ROOM_LEVEL) {
    832                 break;
    833             }
    834             pValue16 = &pProperties->roomHFLevel;
    835             /* FALL THROUGH */
    836 
    837         case REVERB_PARAM_ROOM_HF_LEVEL:
    838             // The ratio between linear gain at 0Hz and at 5000Hz for the room low pass is:
    839             // (1 + a1) / sqrt(a1^2 + 2*C*a1 + 1) where:
    840             // - a1 is minus the LP feedback gain: -pReverb->m_nRoomLpfFbk
    841             // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
    842 
    843             temp = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFbk);
    844             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 %d", temp);
    845             temp2 = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nCosWT_5KHz)
    846                     << 1;
    847             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, 2 Cos a1 %d", temp2);
    848             temp = 32767 + temp - temp2;
    849             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 + 2 Cos a1 + 1 %d", temp);
    850             temp = Effects_Sqrt(temp) * 181;
    851             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, SQRT(a1^2 + 2 Cos a1 + 1) %d", temp);
    852             temp = ((32767 - pReverb->m_nRoomLpfFbk) << 15) / temp;
    853 
    854             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
    855 
    856             *pValue16 = Effects_Linear16ToMillibels(temp);
    857 
    858             if (param == REVERB_PARAM_ROOM_HF_LEVEL) {
    859                 break;
    860             }
    861             pValue32 = (int32_t *)&pProperties->decayTime;
    862             /* FALL THROUGH */
    863 
    864         case REVERB_PARAM_DECAY_TIME:
    865             // Calculate reverb feedback path gain
    866             temp = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
    867             temp = Effects_Linear16ToMillibels(temp);
    868 
    869             // Calculate decay time: g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
    870             temp = (-6000 * pReverb->m_nLateDelay) / temp;
    871 
    872             // Convert samples to ms
    873             *pValue32 = (temp * 1000) / pReverb->m_nSamplingRate;
    874 
    875             ALOGV("get REVERB_PARAM_DECAY_TIME, samples %d, ms %d", temp, *pValue32);
    876 
    877             if (param == REVERB_PARAM_DECAY_TIME) {
    878                 break;
    879             }
    880             pValue16 = &pProperties->decayHFRatio;
    881             /* FALL THROUGH */
    882 
    883         case REVERB_PARAM_DECAY_HF_RATIO:
    884             // If r is the decay HF ratio  (r = REVERB_PARAM_DECAY_HF_RATIO/1000) we have:
    885             //       DT_5000Hz = DT_0Hz * r
    886             //  and  G_5000Hz = -6000 * d / DT_5000Hz and G_0Hz = -6000 * d / DT_0Hz in millibels so :
    887             // r = G_0Hz/G_5000Hz in millibels
    888             // The linear gain at 5000Hz is b0 / sqrt(a1^2 + 2*C*a1 + 1) where:
    889             // - a1 is minus the LP feedback gain: -pReverb->m_nRvbLpfFbk
    890             // - b0 is the LP forward gain: pReverb->m_nRvbLpfFwd
    891             // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
    892             if (pReverb->m_nRvbLpfFbk == 0) {
    893                 *pValue16 = 1000;
    894                 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, pReverb->m_nRvbLpfFbk == 0, ratio %d", *pValue16);
    895             } else {
    896                 temp = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFbk);
    897                 temp2 = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nCosWT_5KHz)
    898                         << 1;
    899                 temp = 32767 + temp - temp2;
    900                 temp = Effects_Sqrt(temp) * 181;
    901                 temp = (pReverb->m_nRvbLpfFwd << 15) / temp;
    902                 // The linear gain at 0Hz is b0 / (a1 + 1)
    903                 temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767
    904                         - pReverb->m_nRvbLpfFbk);
    905 
    906                 temp = Effects_Linear16ToMillibels(temp);
    907                 temp2 = Effects_Linear16ToMillibels(temp2);
    908                 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, gain 5KHz %d mB, gain DC %d mB", temp, temp2);
    909 
    910                 if (temp == 0)
    911                     temp = 1;
    912                 temp = (int16_t) ((1000 * temp2) / temp);
    913                 if (temp > 1000)
    914                     temp = 1000;
    915 
    916                 *pValue16 = temp;
    917                 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, ratio %d", *pValue16);
    918             }
    919 
    920             if (param == REVERB_PARAM_DECAY_HF_RATIO) {
    921                 break;
    922             }
    923             pValue16 = &pProperties->reflectionsLevel;
    924             /* FALL THROUGH */
    925 
    926         case REVERB_PARAM_REFLECTIONS_LEVEL:
    927             *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nEarlyGain);
    928 
    929             ALOGV("get REVERB_PARAM_REFLECTIONS_LEVEL, %d", *pValue16);
    930             if (param == REVERB_PARAM_REFLECTIONS_LEVEL) {
    931                 break;
    932             }
    933             pValue32 = (int32_t *)&pProperties->reflectionsDelay;
    934             /* FALL THROUGH */
    935 
    936         case REVERB_PARAM_REFLECTIONS_DELAY:
    937             // convert samples to ms
    938             *pValue32 = (pReverb->m_nEarlyDelay * 1000) / pReverb->m_nSamplingRate;
    939 
    940             ALOGV("get REVERB_PARAM_REFLECTIONS_DELAY, samples %d, ms %d", pReverb->m_nEarlyDelay, *pValue32);
    941 
    942             if (param == REVERB_PARAM_REFLECTIONS_DELAY) {
    943                 break;
    944             }
    945             pValue16 = &pProperties->reverbLevel;
    946             /* FALL THROUGH */
    947 
    948         case REVERB_PARAM_REVERB_LEVEL:
    949             // Convert linear gain to millibels
    950             *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nLateGain << 2);
    951 
    952             ALOGV("get REVERB_PARAM_REVERB_LEVEL %d", *pValue16);
    953 
    954             if (param == REVERB_PARAM_REVERB_LEVEL) {
    955                 break;
    956             }
    957             pValue32 = (int32_t *)&pProperties->reverbDelay;
    958             /* FALL THROUGH */
    959 
    960         case REVERB_PARAM_REVERB_DELAY:
    961             // convert samples to ms
    962             *pValue32 = (pReverb->m_nLateDelay * 1000) / pReverb->m_nSamplingRate;
    963 
    964             ALOGV("get REVERB_PARAM_REVERB_DELAY, samples %d, ms %d", pReverb->m_nLateDelay, *pValue32);
    965 
    966             if (param == REVERB_PARAM_REVERB_DELAY) {
    967                 break;
    968             }
    969             pValue16 = &pProperties->diffusion;
    970             /* FALL THROUGH */
    971 
    972         case REVERB_PARAM_DIFFUSION:
    973             temp = (int16_t) ((1000 * (pReverb->m_sAp0.m_nApGain - AP0_GAIN_BASE))
    974                     / AP0_GAIN_RANGE);
    975 
    976             if (temp < 0)
    977                 temp = 0;
    978             if (temp > 1000)
    979                 temp = 1000;
    980 
    981             *pValue16 = temp;
    982             ALOGV("get REVERB_PARAM_DIFFUSION, %d, AP0 gain %d", *pValue16, pReverb->m_sAp0.m_nApGain);
    983 
    984             if (param == REVERB_PARAM_DIFFUSION) {
    985                 break;
    986             }
    987             pValue16 = &pProperties->density;
    988             /* FALL THROUGH */
    989 
    990         case REVERB_PARAM_DENSITY:
    991             // Calculate AP delay in time units
    992             temp = ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn) << 16)
    993                     / pReverb->m_nSamplingRate;
    994 
    995             temp = (int16_t) ((1000 * (temp - AP0_TIME_BASE)) / AP0_TIME_RANGE);
    996 
    997             if (temp < 0)
    998                 temp = 0;
    999             if (temp > 1000)
   1000                 temp = 1000;
   1001 
   1002             *pValue16 = temp;
   1003 
   1004             ALOGV("get REVERB_PARAM_DENSITY, %d, AP0 delay smps %d", *pValue16, pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn);
   1005             break;
   1006 
   1007         default:
   1008             break;
   1009         }
   1010     }
   1011 
   1012     *pSize = size;
   1013 
   1014     ALOGV("Reverb_getParameter, context %p, param %d, value %d",
   1015             pReverb, param, *(int *)pValue);
   1016 
   1017     return 0;
   1018 } /* end Reverb_getParameter */
   1019 
   1020 /*----------------------------------------------------------------------------
   1021  * Reverb_setParameter()
   1022  *----------------------------------------------------------------------------
   1023  * Purpose:
   1024  * Set a Reverb parameter
   1025  *
   1026  * Inputs:
   1027  *  pReverb       - handle to instance data
   1028  *  param         - parameter
   1029  *  pValue        - pointer to parameter value
   1030  *  size          - value size
   1031  *
   1032  * Outputs:
   1033  *
   1034  *
   1035  * Side Effects:
   1036  *
   1037  *----------------------------------------------------------------------------
   1038  */
   1039 int Reverb_setParameter(reverb_object_t *pReverb, int32_t param, uint32_t size,
   1040         void *pValue) {
   1041     int32_t value32;
   1042     int16_t value16;
   1043     t_reverb_settings *pProperties;
   1044     int32_t i;
   1045     int32_t temp;
   1046     int32_t temp2;
   1047     reverb_preset_t *pPreset;
   1048     int maxSamples;
   1049     int32_t averageDelay;
   1050     uint32_t paramSize;
   1051 
   1052     ALOGV("Reverb_setParameter, context %p, param %d, value16 %d, value32 %d",
   1053             pReverb, param, *(int16_t *)pValue, *(int32_t *)pValue);
   1054 
   1055     if (pReverb->m_Preset) {
   1056         if (param != REVERB_PARAM_PRESET || size != sizeof(int16_t)) {
   1057             return -EINVAL;
   1058         }
   1059         value16 = *(int16_t *)pValue;
   1060         ALOGV("set REVERB_PARAM_PRESET, preset %d", value16);
   1061         if (value16 < REVERB_PRESET_NONE || value16 > REVERB_PRESET_PLATE) {
   1062             return -EINVAL;
   1063         }
   1064         // REVERB_PRESET_NONE is mapped to bypass
   1065         if (value16 == REVERB_PRESET_NONE) {
   1066             pReverb->m_bBypass = 1;
   1067         } else {
   1068             pReverb->m_bBypass = 0;
   1069             pReverb->m_nNextRoom = value16 - 1;
   1070         }
   1071     } else {
   1072         switch (param) {
   1073         case REVERB_PARAM_ROOM_LEVEL:
   1074         case REVERB_PARAM_ROOM_HF_LEVEL:
   1075         case REVERB_PARAM_DECAY_HF_RATIO:
   1076         case REVERB_PARAM_REFLECTIONS_LEVEL:
   1077         case REVERB_PARAM_REVERB_LEVEL:
   1078         case REVERB_PARAM_DIFFUSION:
   1079         case REVERB_PARAM_DENSITY:
   1080             paramSize = sizeof(int16_t);
   1081             break;
   1082 
   1083         case REVERB_PARAM_BYPASS:
   1084         case REVERB_PARAM_DECAY_TIME:
   1085         case REVERB_PARAM_REFLECTIONS_DELAY:
   1086         case REVERB_PARAM_REVERB_DELAY:
   1087             paramSize = sizeof(int32_t);
   1088             break;
   1089 
   1090         case REVERB_PARAM_PROPERTIES:
   1091             paramSize = sizeof(t_reverb_settings);
   1092             break;
   1093 
   1094         default:
   1095             return -EINVAL;
   1096         }
   1097 
   1098         if (size != paramSize) {
   1099             return -EINVAL;
   1100         }
   1101 
   1102         if (paramSize == sizeof(int16_t)) {
   1103             value16 = *(int16_t *) pValue;
   1104         } else if (paramSize == sizeof(int32_t)) {
   1105             value32 = *(int32_t *) pValue;
   1106         } else {
   1107             pProperties = (t_reverb_settings *) pValue;
   1108         }
   1109 
   1110         pPreset = &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
   1111 
   1112         switch (param) {
   1113         case REVERB_PARAM_BYPASS:
   1114             pReverb->m_bBypass = (uint16_t)value32;
   1115             break;
   1116 
   1117         case REVERB_PARAM_PROPERTIES:
   1118             value16 = pProperties->roomLevel;
   1119             /* FALL THROUGH */
   1120 
   1121         case REVERB_PARAM_ROOM_LEVEL:
   1122             // Convert millibels to linear 16 bit signed => m_nRoomLpfFwd
   1123             if (value16 > 0)
   1124                 return -EINVAL;
   1125 
   1126             temp = Effects_MillibelsToLinear16(value16);
   1127 
   1128             pReverb->m_nRoomLpfFwd
   1129                     = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRoomLpfFbk));
   1130 
   1131             ALOGV("REVERB_PARAM_ROOM_LEVEL, gain %d, new m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
   1132             if (param == REVERB_PARAM_ROOM_LEVEL)
   1133                 break;
   1134             value16 = pProperties->roomHFLevel;
   1135             /* FALL THROUGH */
   1136 
   1137         case REVERB_PARAM_ROOM_HF_LEVEL:
   1138 
   1139             // Limit to 0 , -40dB range because of low pass implementation
   1140             if (value16 > 0 || value16 < -4000)
   1141                 return -EINVAL;
   1142             // Convert attenuation @ 5000H expressed in millibels to => m_nRoomLpfFbk
   1143             // m_nRoomLpfFbk is -a1 where a1 is the solution of:
   1144             // a1^2 + 2*(C-dG^2)/(1-dG^2)*a1 + 1 = 0 where:
   1145             // - C is cos(2*pi*5000/Fs) (pReverb->m_nCosWT_5KHz)
   1146             // - dG is G0/Gf (G0 is the linear gain at DC and Gf is the wanted gain at 5000Hz)
   1147 
   1148             // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
   1149             // while changing HF level
   1150             temp2 = (pReverb->m_nRoomLpfFwd << 15) / (32767
   1151                     - pReverb->m_nRoomLpfFbk);
   1152             if (value16 == 0) {
   1153                 pReverb->m_nRoomLpfFbk = 0;
   1154             } else {
   1155                 int32_t dG2, b, delta;
   1156 
   1157                 // dG^2
   1158                 temp = Effects_MillibelsToLinear16(value16);
   1159                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, HF gain %d", temp);
   1160                 temp = (1 << 30) / temp;
   1161                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain %d", temp);
   1162                 dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
   1163                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain ^ 2 %d", dG2);
   1164                 // b = 2*(C-dG^2)/(1-dG^2)
   1165                 b = (int32_t) ((((int64_t) 1 << (15 + 1))
   1166                         * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
   1167                         / ((int64_t) 32767 - (int64_t) dG2));
   1168 
   1169                 // delta = b^2 - 4
   1170                 delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
   1171                         + 2)));
   1172 
   1173                 ALOGV_IF(delta > (1<<30), " delta overflow %d", delta);
   1174 
   1175                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, dG2 %d, b %d, delta %d, m_nCosWT_5KHz %d", dG2, b, delta, pReverb->m_nCosWT_5KHz);
   1176                 // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
   1177                 pReverb->m_nRoomLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
   1178             }
   1179             ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, olg DC gain %d new m_nRoomLpfFbk %d, old m_nRoomLpfFwd %d",
   1180                     temp2, pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFwd);
   1181 
   1182             pReverb->m_nRoomLpfFwd
   1183                     = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRoomLpfFbk));
   1184             ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, new m_nRoomLpfFwd %d", pReverb->m_nRoomLpfFwd);
   1185 
   1186             if (param == REVERB_PARAM_ROOM_HF_LEVEL)
   1187                 break;
   1188             value32 = pProperties->decayTime;
   1189             /* FALL THROUGH */
   1190 
   1191         case REVERB_PARAM_DECAY_TIME:
   1192 
   1193             // Convert milliseconds to => m_nRvbLpfFwd (function of m_nRvbLpfFbk)
   1194             // convert ms to samples
   1195             value32 = (value32 * pReverb->m_nSamplingRate) / 1000;
   1196 
   1197             // calculate valid decay time range as a function of current reverb delay and
   1198             // max feed back gain. Min value <=> -40dB in one pass, Max value <=> feedback gain = -1 dB
   1199             // Calculate attenuation for each round in late reverb given a total attenuation of -6000 millibels.
   1200             // g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
   1201             averageDelay = pReverb->m_nLateDelay - pReverb->m_nMaxExcursion;
   1202             averageDelay += ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn)
   1203                     + (pReverb->m_sAp1.m_zApOut - pReverb->m_sAp1.m_zApIn)) >> 1;
   1204 
   1205             temp = (-6000 * averageDelay) / value32;
   1206             ALOGV("REVERB_PARAM_DECAY_TIME, delay smps %d, DT smps %d, gain mB %d",averageDelay, value32, temp);
   1207             if (temp < -4000 || temp > -100)
   1208                 return -EINVAL;
   1209 
   1210             // calculate low pass gain by adding reverb input attenuation (pReverb->m_nLateGain) and substrating output
   1211             // xfade and sum gain (max +9dB)
   1212             temp -= Effects_Linear16ToMillibels(pReverb->m_nLateGain) + 900;
   1213             temp = Effects_MillibelsToLinear16(temp);
   1214 
   1215             // DC gain (temp) = b0 / (1 + a1) = pReverb->m_nRvbLpfFwd / (32767 - pReverb->m_nRvbLpfFbk)
   1216             pReverb->m_nRvbLpfFwd
   1217                     = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRvbLpfFbk));
   1218 
   1219             ALOGV("REVERB_PARAM_DECAY_TIME, gain %d, new m_nRvbLpfFwd %d, old m_nRvbLpfFbk %d, reverb gain %d", temp, pReverb->m_nRvbLpfFwd, pReverb->m_nRvbLpfFbk, Effects_Linear16ToMillibels(pReverb->m_nLateGain));
   1220 
   1221             if (param == REVERB_PARAM_DECAY_TIME)
   1222                 break;
   1223             value16 = pProperties->decayHFRatio;
   1224             /* FALL THROUGH */
   1225 
   1226         case REVERB_PARAM_DECAY_HF_RATIO:
   1227 
   1228             // We limit max value to 1000 because reverb filter is lowpass only
   1229             if (value16 < 100 || value16 > 1000)
   1230                 return -EINVAL;
   1231             // Convert per mille to => m_nLpfFwd, m_nLpfFbk
   1232 
   1233             // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
   1234             // while changing HF level
   1235             temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
   1236 
   1237             if (value16 == 1000) {
   1238                 pReverb->m_nRvbLpfFbk = 0;
   1239             } else {
   1240                 int32_t dG2, b, delta;
   1241 
   1242                 temp = Effects_Linear16ToMillibels(temp2);
   1243                 // G_5000Hz = G_DC * (1000/REVERB_PARAM_DECAY_HF_RATIO) in millibels
   1244 
   1245                 value32 = ((int32_t) 1000 << 15) / (int32_t) value16;
   1246                 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, DC gain %d, DC gain mB %d, 1000/R %d", temp2, temp, value32);
   1247 
   1248                 temp = (int32_t) (((int64_t) temp * (int64_t) value32) >> 15);
   1249 
   1250                 if (temp < -4000) {
   1251                     ALOGV("REVERB_PARAM_DECAY_HF_RATIO HF gain overflow %d mB", temp);
   1252                     temp = -4000;
   1253                 }
   1254 
   1255                 temp = Effects_MillibelsToLinear16(temp);
   1256                 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, HF gain %d", temp);
   1257                 // dG^2
   1258                 temp = (temp2 << 15) / temp;
   1259                 dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
   1260 
   1261                 // b = 2*(C-dG^2)/(1-dG^2)
   1262                 b = (int32_t) ((((int64_t) 1 << (15 + 1))
   1263                         * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
   1264                         / ((int64_t) 32767 - (int64_t) dG2));
   1265 
   1266                 // delta = b^2 - 4
   1267                 delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
   1268                         + 2)));
   1269 
   1270                 // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
   1271                 pReverb->m_nRvbLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
   1272 
   1273                 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, dG2 %d, b %d, delta %d", dG2, b, delta);
   1274 
   1275             }
   1276 
   1277             ALOGV("REVERB_PARAM_DECAY_HF_RATIO, gain %d, m_nRvbLpfFbk %d, m_nRvbLpfFwd %d", temp2, pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFwd);
   1278 
   1279             pReverb->m_nRvbLpfFwd
   1280                     = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRvbLpfFbk));
   1281 
   1282             if (param == REVERB_PARAM_DECAY_HF_RATIO)
   1283                 break;
   1284             value16 = pProperties->reflectionsLevel;
   1285             /* FALL THROUGH */
   1286 
   1287         case REVERB_PARAM_REFLECTIONS_LEVEL:
   1288             // We limit max value to 0 because gain is limited to 0dB
   1289             if (value16 > 0 || value16 < -6000)
   1290                 return -EINVAL;
   1291 
   1292             // Convert millibels to linear 16 bit signed and recompute m_sEarlyL.m_nGain[i] and m_sEarlyR.m_nGain[i].
   1293             value16 = Effects_MillibelsToLinear16(value16);
   1294             for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
   1295                 pReverb->m_sEarlyL.m_nGain[i]
   1296                         = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],value16);
   1297                 pReverb->m_sEarlyR.m_nGain[i]
   1298                         = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],value16);
   1299             }
   1300             pReverb->m_nEarlyGain = value16;
   1301             ALOGV("REVERB_PARAM_REFLECTIONS_LEVEL, m_nEarlyGain %d", pReverb->m_nEarlyGain);
   1302 
   1303             if (param == REVERB_PARAM_REFLECTIONS_LEVEL)
   1304                 break;
   1305             value32 = pProperties->reflectionsDelay;
   1306             /* FALL THROUGH */
   1307 
   1308         case REVERB_PARAM_REFLECTIONS_DELAY:
   1309             // We limit max value MAX_EARLY_TIME
   1310             // convert ms to time units
   1311             temp = (value32 * 65536) / 1000;
   1312             if (temp < 0 || temp > MAX_EARLY_TIME)
   1313                 return -EINVAL;
   1314 
   1315             maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
   1316                     >> 16;
   1317             temp = (temp * pReverb->m_nSamplingRate) >> 16;
   1318             for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
   1319                 temp2 = temp + (((int32_t) pPreset->m_sEarlyL.m_zDelay[i]
   1320                         * pReverb->m_nSamplingRate) >> 16);
   1321                 if (temp2 > maxSamples)
   1322                     temp2 = maxSamples;
   1323                 pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp2;
   1324                 temp2 = temp + (((int32_t) pPreset->m_sEarlyR.m_zDelay[i]
   1325                         * pReverb->m_nSamplingRate) >> 16);
   1326                 if (temp2 > maxSamples)
   1327                     temp2 = maxSamples;
   1328                 pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp2;
   1329             }
   1330             pReverb->m_nEarlyDelay = temp;
   1331 
   1332             ALOGV("REVERB_PARAM_REFLECTIONS_DELAY, m_nEarlyDelay smps %d max smp delay %d", pReverb->m_nEarlyDelay, maxSamples);
   1333 
   1334             // Convert milliseconds to sample count => m_nEarlyDelay
   1335             if (param == REVERB_PARAM_REFLECTIONS_DELAY)
   1336                 break;
   1337             value16 = pProperties->reverbLevel;
   1338             /* FALL THROUGH */
   1339 
   1340         case REVERB_PARAM_REVERB_LEVEL:
   1341             // We limit max value to 0 because gain is limited to 0dB
   1342             if (value16 > 0 || value16 < -6000)
   1343                 return -EINVAL;
   1344             // Convert millibels to linear 16 bits (gange 0 - 8191) => m_nLateGain.
   1345             pReverb->m_nLateGain = Effects_MillibelsToLinear16(value16) >> 2;
   1346 
   1347             ALOGV("REVERB_PARAM_REVERB_LEVEL, m_nLateGain %d", pReverb->m_nLateGain);
   1348 
   1349             if (param == REVERB_PARAM_REVERB_LEVEL)
   1350                 break;
   1351             value32 = pProperties->reverbDelay;
   1352             /* FALL THROUGH */
   1353 
   1354         case REVERB_PARAM_REVERB_DELAY:
   1355             // We limit max value to MAX_DELAY_TIME
   1356             // convert ms to time units
   1357             temp = (value32 * 65536) / 1000;
   1358             if (temp < 0 || temp > MAX_DELAY_TIME)
   1359                 return -EINVAL;
   1360 
   1361             maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
   1362                     >> 16;
   1363             temp = (temp * pReverb->m_nSamplingRate) >> 16;
   1364             if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
   1365                 temp = maxSamples - pReverb->m_nMaxExcursion;
   1366             }
   1367             if (temp < pReverb->m_nMaxExcursion) {
   1368                 temp = pReverb->m_nMaxExcursion;
   1369             }
   1370 
   1371             temp -= pReverb->m_nLateDelay;
   1372             pReverb->m_nDelay0Out += temp;
   1373             pReverb->m_nDelay1Out += temp;
   1374             pReverb->m_nLateDelay += temp;
   1375 
   1376             ALOGV("REVERB_PARAM_REVERB_DELAY, m_nLateDelay smps %d max smp delay %d", pReverb->m_nLateDelay, maxSamples);
   1377 
   1378             // Convert milliseconds to sample count => m_nDelay1Out + m_nMaxExcursion
   1379             if (param == REVERB_PARAM_REVERB_DELAY)
   1380                 break;
   1381 
   1382             value16 = pProperties->diffusion;
   1383             /* FALL THROUGH */
   1384 
   1385         case REVERB_PARAM_DIFFUSION:
   1386             if (value16 < 0 || value16 > 1000)
   1387                 return -EINVAL;
   1388 
   1389             // Convert per mille to m_sAp0.m_nApGain, m_sAp1.m_nApGain
   1390             pReverb->m_sAp0.m_nApGain = AP0_GAIN_BASE + ((int32_t) value16
   1391                     * AP0_GAIN_RANGE) / 1000;
   1392             pReverb->m_sAp1.m_nApGain = AP1_GAIN_BASE + ((int32_t) value16
   1393                     * AP1_GAIN_RANGE) / 1000;
   1394 
   1395             ALOGV("REVERB_PARAM_DIFFUSION, m_sAp0.m_nApGain %d m_sAp1.m_nApGain %d", pReverb->m_sAp0.m_nApGain, pReverb->m_sAp1.m_nApGain);
   1396 
   1397             if (param == REVERB_PARAM_DIFFUSION)
   1398                 break;
   1399 
   1400             value16 = pProperties->density;
   1401             /* FALL THROUGH */
   1402 
   1403         case REVERB_PARAM_DENSITY:
   1404             if (value16 < 0 || value16 > 1000)
   1405                 return -EINVAL;
   1406 
   1407             // Convert per mille to m_sAp0.m_zApOut, m_sAp1.m_zApOut
   1408             maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
   1409 
   1410             temp = AP0_TIME_BASE + ((int32_t) value16 * AP0_TIME_RANGE) / 1000;
   1411             /*lint -e{702} shift for performance */
   1412             temp = (temp * pReverb->m_nSamplingRate) >> 16;
   1413             if (temp > maxSamples)
   1414                 temp = maxSamples;
   1415             pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
   1416 
   1417             ALOGV("REVERB_PARAM_DENSITY, Ap0 delay smps %d", temp);
   1418 
   1419             temp = AP1_TIME_BASE + ((int32_t) value16 * AP1_TIME_RANGE) / 1000;
   1420             /*lint -e{702} shift for performance */
   1421             temp = (temp * pReverb->m_nSamplingRate) >> 16;
   1422             if (temp > maxSamples)
   1423                 temp = maxSamples;
   1424             pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
   1425 
   1426             ALOGV("Ap1 delay smps %d", temp);
   1427 
   1428             break;
   1429 
   1430         default:
   1431             break;
   1432         }
   1433     }
   1434 
   1435     return 0;
   1436 } /* end Reverb_setParameter */
   1437 
   1438 /*----------------------------------------------------------------------------
   1439  * ReverbUpdateXfade
   1440  *----------------------------------------------------------------------------
   1441  * Purpose:
   1442  * Update the xfade parameters as required
   1443  *
   1444  * Inputs:
   1445  * nNumSamplesToAdd - number of samples to write to buffer
   1446  *
   1447  * Outputs:
   1448  *
   1449  *
   1450  * Side Effects:
   1451  * - xfade parameters will be changed
   1452  *
   1453  *----------------------------------------------------------------------------
   1454  */
   1455 static int ReverbUpdateXfade(reverb_object_t *pReverb, int nNumSamplesToAdd) {
   1456     uint16_t nOffset;
   1457     int16_t tempCos;
   1458     int16_t tempSin;
   1459 
   1460     if (pReverb->m_nXfadeCounter >= pReverb->m_nXfadeInterval) {
   1461         /* update interval has elapsed, so reset counter */
   1462         pReverb->m_nXfadeCounter = 0;
   1463 
   1464         // Pin the sin,cos values to min / max values to ensure that the
   1465         // modulated taps' coefs are zero (thus no clicks)
   1466         if (pReverb->m_nPhaseIncrement > 0) {
   1467             // if phase increment > 0, then sin -> 1, cos -> 0
   1468             pReverb->m_nSin = 32767;
   1469             pReverb->m_nCos = 0;
   1470 
   1471             // reset the phase to match the sin, cos values
   1472             pReverb->m_nPhase = 32767;
   1473 
   1474             // modulate the cross taps because their tap coefs are zero
   1475             nOffset = ReverbCalculateNoise(pReverb);
   1476 
   1477             pReverb->m_zD1Cross = pReverb->m_nDelay1Out
   1478                     - pReverb->m_nMaxExcursion + nOffset;
   1479 
   1480             nOffset = ReverbCalculateNoise(pReverb);
   1481 
   1482             pReverb->m_zD0Cross = pReverb->m_nDelay0Out
   1483                     - pReverb->m_nMaxExcursion - nOffset;
   1484         } else {
   1485             // if phase increment < 0, then sin -> 0, cos -> 1
   1486             pReverb->m_nSin = 0;
   1487             pReverb->m_nCos = 32767;
   1488 
   1489             // reset the phase to match the sin, cos values
   1490             pReverb->m_nPhase = -32768;
   1491 
   1492             // modulate the self taps because their tap coefs are zero
   1493             nOffset = ReverbCalculateNoise(pReverb);
   1494 
   1495             pReverb->m_zD0Self = pReverb->m_nDelay0Out
   1496                     - pReverb->m_nMaxExcursion - nOffset;
   1497 
   1498             nOffset = ReverbCalculateNoise(pReverb);
   1499 
   1500             pReverb->m_zD1Self = pReverb->m_nDelay1Out
   1501                     - pReverb->m_nMaxExcursion + nOffset;
   1502 
   1503         } // end if-else (pReverb->m_nPhaseIncrement > 0)
   1504 
   1505         // Reverse the direction of the sin,cos so that the
   1506         // tap whose coef was previously increasing now decreases
   1507         // and vice versa
   1508         pReverb->m_nPhaseIncrement = -pReverb->m_nPhaseIncrement;
   1509 
   1510     } // end if counter >= update interval
   1511 
   1512     //compute what phase will be next time
   1513     pReverb->m_nPhase += pReverb->m_nPhaseIncrement;
   1514 
   1515     //calculate what the new sin and cos need to reach by the next update
   1516     ReverbCalculateSinCos(pReverb->m_nPhase, &tempSin, &tempCos);
   1517 
   1518     //calculate the per-sample increment required to get there by the next update
   1519     /*lint -e{702} shift for performance */
   1520     pReverb->m_nSinIncrement = (tempSin - pReverb->m_nSin)
   1521             >> pReverb->m_nUpdatePeriodInBits;
   1522 
   1523     /*lint -e{702} shift for performance */
   1524     pReverb->m_nCosIncrement = (tempCos - pReverb->m_nCos)
   1525             >> pReverb->m_nUpdatePeriodInBits;
   1526 
   1527     /* increment update counter */
   1528     pReverb->m_nXfadeCounter += (uint16_t) nNumSamplesToAdd;
   1529 
   1530     return 0;
   1531 
   1532 } /* end ReverbUpdateXfade */
   1533 
   1534 /*----------------------------------------------------------------------------
   1535  * ReverbCalculateNoise
   1536  *----------------------------------------------------------------------------
   1537  * Purpose:
   1538  * Calculate a noise sample and limit its value
   1539  *
   1540  * Inputs:
   1541  * nMaxExcursion - noise value is limited to this value
   1542  * pnNoise - return new noise sample in this (not limited)
   1543  *
   1544  * Outputs:
   1545  * new limited noise value
   1546  *
   1547  * Side Effects:
   1548  * - *pnNoise noise value is updated
   1549  *
   1550  *----------------------------------------------------------------------------
   1551  */
   1552 static uint16_t ReverbCalculateNoise(reverb_object_t *pReverb) {
   1553     int16_t nNoise = pReverb->m_nNoise;
   1554 
   1555     // calculate new noise value
   1556     if (pReverb->m_bUseNoise) {
   1557         nNoise = (int16_t) (nNoise * 5 + 1);
   1558     } else {
   1559         nNoise = 0;
   1560     }
   1561 
   1562     pReverb->m_nNoise = nNoise;
   1563     // return the limited noise value
   1564     return (pReverb->m_nMaxExcursion & nNoise);
   1565 
   1566 } /* end ReverbCalculateNoise */
   1567 
   1568 /*----------------------------------------------------------------------------
   1569  * ReverbCalculateSinCos
   1570  *----------------------------------------------------------------------------
   1571  * Purpose:
   1572  * Calculate a new sin and cosine value based on the given phase
   1573  *
   1574  * Inputs:
   1575  * nPhase   - phase angle
   1576  * pnSin    - input old value, output new value
   1577  * pnCos    - input old value, output new value
   1578  *
   1579  * Outputs:
   1580  *
   1581  * Side Effects:
   1582  * - *pnSin, *pnCos are updated
   1583  *
   1584  *----------------------------------------------------------------------------
   1585  */
   1586 static int ReverbCalculateSinCos(int16_t nPhase, int16_t *pnSin, int16_t *pnCos) {
   1587     int32_t nTemp;
   1588     int32_t nNetAngle;
   1589 
   1590     //  -1 <=  nPhase  < 1
   1591     // However, for the calculation, we need a value
   1592     // that ranges from -1/2 to +1/2, so divide the phase by 2
   1593     /*lint -e{702} shift for performance */
   1594     nNetAngle = nPhase >> 1;
   1595 
   1596     /*
   1597      Implement the following
   1598      sin(x) = (2-4*c)*x^2 + c + x
   1599      cos(x) = (2-4*c)*x^2 + c - x
   1600 
   1601      where  c = 1/sqrt(2)
   1602      using the a0 + x*(a1 + x*a2) approach
   1603      */
   1604 
   1605     /* limit the input "angle" to be between -0.5 and +0.5 */
   1606     if (nNetAngle > EG1_HALF) {
   1607         nNetAngle = EG1_HALF;
   1608     } else if (nNetAngle < EG1_MINUS_HALF) {
   1609         nNetAngle = EG1_MINUS_HALF;
   1610     }
   1611 
   1612     /* calculate sin */
   1613     nTemp = EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
   1614     nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
   1615     *pnSin = (int16_t) SATURATE_EG1(nTemp);
   1616 
   1617     /* calculate cos */
   1618     nTemp = -EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
   1619     nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
   1620     *pnCos = (int16_t) SATURATE_EG1(nTemp);
   1621 
   1622     return 0;
   1623 } /* end ReverbCalculateSinCos */
   1624 
   1625 /*----------------------------------------------------------------------------
   1626  * Reverb
   1627  *----------------------------------------------------------------------------
   1628  * Purpose:
   1629  * apply reverb to the given signal
   1630  *
   1631  * Inputs:
   1632  * nNu
   1633  * pnSin    - input old value, output new value
   1634  * pnCos    - input old value, output new value
   1635  *
   1636  * Outputs:
   1637  * number of samples actually reverberated
   1638  *
   1639  * Side Effects:
   1640  *
   1641  *----------------------------------------------------------------------------
   1642  */
   1643 static int Reverb(reverb_object_t *pReverb, int nNumSamplesToAdd,
   1644         short *pOutputBuffer, short *pInputBuffer) {
   1645     int32_t i;
   1646     int32_t nDelayOut0;
   1647     int32_t nDelayOut1;
   1648     uint16_t nBase;
   1649 
   1650     uint32_t nAddr;
   1651     int32_t nTemp1;
   1652     int32_t nTemp2;
   1653     int32_t nApIn;
   1654     int32_t nApOut;
   1655 
   1656     int32_t j;
   1657     int32_t nEarlyOut;
   1658 
   1659     int32_t tempValue;
   1660 
   1661     // get the base address
   1662     nBase = pReverb->m_nBaseIndex;
   1663 
   1664     for (i = 0; i < nNumSamplesToAdd; i++) {
   1665         // ********** Left Allpass - start
   1666         nApIn = *pInputBuffer;
   1667         if (!pReverb->m_Aux) {
   1668             pInputBuffer++;
   1669         }
   1670         // store to early delay line
   1671         nAddr = CIRCULAR(nBase, pReverb->m_nEarly0in, pReverb->m_nBufferMask);
   1672         pReverb->m_nDelayLine[nAddr] = (short) nApIn;
   1673 
   1674         // left input = (left dry * m_nLateGain) + right feedback from previous period
   1675 
   1676         nApIn = SATURATE(nApIn + pReverb->m_nRevFbkR);
   1677         nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
   1678 
   1679         // fetch allpass delay line out
   1680         //nAddr = CIRCULAR(nBase, psAp0->m_zApOut, pReverb->m_nBufferMask);
   1681         nAddr
   1682                 = CIRCULAR(nBase, pReverb->m_sAp0.m_zApOut, pReverb->m_nBufferMask);
   1683         nDelayOut0 = pReverb->m_nDelayLine[nAddr];
   1684 
   1685         // calculate allpass feedforward; subtract the feedforward result
   1686         nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp0.m_nApGain);
   1687         nApOut = SATURATE(nDelayOut0 - nTemp1); // allpass output
   1688 
   1689         // calculate allpass feedback; add the feedback result
   1690         nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp0.m_nApGain);
   1691         nTemp1 = SATURATE(nApIn + nTemp1);
   1692 
   1693         // inject into allpass delay
   1694         nAddr
   1695                 = CIRCULAR(nBase, pReverb->m_sAp0.m_zApIn, pReverb->m_nBufferMask);
   1696         pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
   1697 
   1698         // inject allpass output into delay line
   1699         nAddr = CIRCULAR(nBase, pReverb->m_zD0In, pReverb->m_nBufferMask);
   1700         pReverb->m_nDelayLine[nAddr] = (short) nApOut;
   1701 
   1702         // ********** Left Allpass - end
   1703 
   1704         // ********** Right Allpass - start
   1705         nApIn = (*pInputBuffer++);
   1706         // store to early delay line
   1707         nAddr = CIRCULAR(nBase, pReverb->m_nEarly1in, pReverb->m_nBufferMask);
   1708         pReverb->m_nDelayLine[nAddr] = (short) nApIn;
   1709 
   1710         // right input = (right dry * m_nLateGain) + left feedback from previous period
   1711         /*lint -e{702} use shift for performance */
   1712         nApIn = SATURATE(nApIn + pReverb->m_nRevFbkL);
   1713         nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
   1714 
   1715         // fetch allpass delay line out
   1716         nAddr
   1717                 = CIRCULAR(nBase, pReverb->m_sAp1.m_zApOut, pReverb->m_nBufferMask);
   1718         nDelayOut1 = pReverb->m_nDelayLine[nAddr];
   1719 
   1720         // calculate allpass feedforward; subtract the feedforward result
   1721         nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp1.m_nApGain);
   1722         nApOut = SATURATE(nDelayOut1 - nTemp1); // allpass output
   1723 
   1724         // calculate allpass feedback; add the feedback result
   1725         nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp1.m_nApGain);
   1726         nTemp1 = SATURATE(nApIn + nTemp1);
   1727 
   1728         // inject into allpass delay
   1729         nAddr
   1730                 = CIRCULAR(nBase, pReverb->m_sAp1.m_zApIn, pReverb->m_nBufferMask);
   1731         pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
   1732 
   1733         // inject allpass output into delay line
   1734         nAddr = CIRCULAR(nBase, pReverb->m_zD1In, pReverb->m_nBufferMask);
   1735         pReverb->m_nDelayLine[nAddr] = (short) nApOut;
   1736 
   1737         // ********** Right Allpass - end
   1738 
   1739         // ********** D0 output - start
   1740         // fetch delay line self out
   1741         nAddr = CIRCULAR(nBase, pReverb->m_zD0Self, pReverb->m_nBufferMask);
   1742         nDelayOut0 = pReverb->m_nDelayLine[nAddr];
   1743 
   1744         // calculate delay line self out
   1745         nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nSin);
   1746 
   1747         // fetch delay line cross out
   1748         nAddr = CIRCULAR(nBase, pReverb->m_zD1Cross, pReverb->m_nBufferMask);
   1749         nDelayOut0 = pReverb->m_nDelayLine[nAddr];
   1750 
   1751         // calculate delay line self out
   1752         nTemp2 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nCos);
   1753 
   1754         // calculate unfiltered delay out
   1755         nDelayOut0 = SATURATE(nTemp1 + nTemp2);
   1756 
   1757         // ********** D0 output - end
   1758 
   1759         // ********** D1 output - start
   1760         // fetch delay line self out
   1761         nAddr = CIRCULAR(nBase, pReverb->m_zD1Self, pReverb->m_nBufferMask);
   1762         nDelayOut1 = pReverb->m_nDelayLine[nAddr];
   1763 
   1764         // calculate delay line self out
   1765         nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nSin);
   1766 
   1767         // fetch delay line cross out
   1768         nAddr = CIRCULAR(nBase, pReverb->m_zD0Cross, pReverb->m_nBufferMask);
   1769         nDelayOut1 = pReverb->m_nDelayLine[nAddr];
   1770 
   1771         // calculate delay line self out
   1772         nTemp2 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nCos);
   1773 
   1774         // calculate unfiltered delay out
   1775         nDelayOut1 = SATURATE(nTemp1 + nTemp2);
   1776 
   1777         // ********** D1 output - end
   1778 
   1779         // ********** mixer and feedback - start
   1780         // sum is fedback to right input (R + L)
   1781         nDelayOut0 = (short) SATURATE(nDelayOut0 + nDelayOut1);
   1782 
   1783         // difference is feedback to left input (R - L)
   1784         /*lint -e{685} lint complains that it can't saturate negative */
   1785         nDelayOut1 = (short) SATURATE(nDelayOut1 - nDelayOut0);
   1786 
   1787         // ********** mixer and feedback - end
   1788 
   1789         // calculate lowpass filter (mixer scale factor included in LPF feedforward)
   1790         nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRvbLpfFwd);
   1791 
   1792         nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkL, pReverb->m_nRvbLpfFbk);
   1793 
   1794         // calculate filtered delay out and simultaneously update LPF state variable
   1795         // filtered delay output is stored in m_nRevFbkL
   1796         pReverb->m_nRevFbkL = (short) SATURATE(nTemp1 + nTemp2);
   1797 
   1798         // calculate lowpass filter (mixer scale factor included in LPF feedforward)
   1799         nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRvbLpfFwd);
   1800 
   1801         nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkR, pReverb->m_nRvbLpfFbk);
   1802 
   1803         // calculate filtered delay out and simultaneously update LPF state variable
   1804         // filtered delay output is stored in m_nRevFbkR
   1805         pReverb->m_nRevFbkR = (short) SATURATE(nTemp1 + nTemp2);
   1806 
   1807         // ********** start early reflection generator, left
   1808         //psEarly = &(pReverb->m_sEarlyL);
   1809 
   1810 
   1811         for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
   1812             // fetch delay line out
   1813             //nAddr = CIRCULAR(nBase, psEarly->m_zDelay[j], pReverb->m_nBufferMask);
   1814             nAddr
   1815                     = CIRCULAR(nBase, pReverb->m_sEarlyL.m_zDelay[j], pReverb->m_nBufferMask);
   1816 
   1817             nTemp1 = pReverb->m_nDelayLine[nAddr];
   1818 
   1819             // calculate reflection
   1820             //nTemp1 = MULT_EG1_EG1(nDelayOut0, psEarly->m_nGain[j]);
   1821             nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyL.m_nGain[j]);
   1822 
   1823             nDelayOut0 = SATURATE(nDelayOut0 + nTemp1);
   1824 
   1825         } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
   1826 
   1827         // apply lowpass to early reflections and reverb output
   1828         //nTemp1 = MULT_EG1_EG1(nEarlyOut, psEarly->m_nRvbLpfFwd);
   1829         nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRoomLpfFwd);
   1830 
   1831         //nTemp2 = MULT_EG1_EG1(psEarly->m_zLpf, psEarly->m_nLpfFbk);
   1832         nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfL, pReverb->m_nRoomLpfFbk);
   1833 
   1834         // calculate filtered out and simultaneously update LPF state variable
   1835         // filtered output is stored in m_zOutLpfL
   1836         pReverb->m_zOutLpfL = (short) SATURATE(nTemp1 + nTemp2);
   1837 
   1838         //sum with output buffer
   1839         tempValue = *pOutputBuffer;
   1840         *pOutputBuffer++ = (short) SATURATE(tempValue+pReverb->m_zOutLpfL);
   1841 
   1842         // ********** end early reflection generator, left
   1843 
   1844         // ********** start early reflection generator, right
   1845         //psEarly = &(pReverb->m_sEarlyR);
   1846 
   1847         for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
   1848             // fetch delay line out
   1849             nAddr
   1850                     = CIRCULAR(nBase, pReverb->m_sEarlyR.m_zDelay[j], pReverb->m_nBufferMask);
   1851             nTemp1 = pReverb->m_nDelayLine[nAddr];
   1852 
   1853             // calculate reflection
   1854             nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyR.m_nGain[j]);
   1855 
   1856             nDelayOut1 = SATURATE(nDelayOut1 + nTemp1);
   1857 
   1858         } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
   1859 
   1860         // apply lowpass to early reflections
   1861         nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRoomLpfFwd);
   1862 
   1863         nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfR, pReverb->m_nRoomLpfFbk);
   1864 
   1865         // calculate filtered out and simultaneously update LPF state variable
   1866         // filtered output is stored in m_zOutLpfR
   1867         pReverb->m_zOutLpfR = (short) SATURATE(nTemp1 + nTemp2);
   1868 
   1869         //sum with output buffer
   1870         tempValue = *pOutputBuffer;
   1871         *pOutputBuffer++ = (short) SATURATE(tempValue + pReverb->m_zOutLpfR);
   1872 
   1873         // ********** end early reflection generator, right
   1874 
   1875         // decrement base addr for next sample period
   1876         nBase--;
   1877 
   1878         pReverb->m_nSin += pReverb->m_nSinIncrement;
   1879         pReverb->m_nCos += pReverb->m_nCosIncrement;
   1880 
   1881     } // end for (i=0; i < nNumSamplesToAdd; i++)
   1882 
   1883     // store the most up to date version
   1884     pReverb->m_nBaseIndex = nBase;
   1885 
   1886     return 0;
   1887 } /* end Reverb */
   1888 
   1889 /*----------------------------------------------------------------------------
   1890  * ReverbUpdateRoom
   1891  *----------------------------------------------------------------------------
   1892  * Purpose:
   1893  * Update the room's preset parameters as required
   1894  *
   1895  * Inputs:
   1896  *
   1897  * Outputs:
   1898  *
   1899  *
   1900  * Side Effects:
   1901  * - reverb paramters (fbk, fwd, etc) will be changed
   1902  * - m_nCurrentRoom := m_nNextRoom
   1903  *----------------------------------------------------------------------------
   1904  */
   1905 static int ReverbUpdateRoom(reverb_object_t *pReverb, bool fullUpdate) {
   1906     int temp;
   1907     int i;
   1908     int maxSamples;
   1909     int earlyDelay;
   1910     int earlyGain;
   1911 
   1912     reverb_preset_t *pPreset =
   1913             &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
   1914 
   1915     if (fullUpdate) {
   1916         pReverb->m_nRvbLpfFwd = pPreset->m_nRvbLpfFwd;
   1917         pReverb->m_nRvbLpfFbk = pPreset->m_nRvbLpfFbk;
   1918 
   1919         pReverb->m_nEarlyGain = pPreset->m_nEarlyGain;
   1920         //stored as time based, convert to sample based
   1921         pReverb->m_nLateGain = pPreset->m_nLateGain;
   1922         pReverb->m_nRoomLpfFbk = pPreset->m_nRoomLpfFbk;
   1923         pReverb->m_nRoomLpfFwd = pPreset->m_nRoomLpfFwd;
   1924 
   1925         // set the early reflections gains
   1926         earlyGain = pPreset->m_nEarlyGain;
   1927         for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
   1928             pReverb->m_sEarlyL.m_nGain[i]
   1929                     = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],earlyGain);
   1930             pReverb->m_sEarlyR.m_nGain[i]
   1931                     = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],earlyGain);
   1932         }
   1933 
   1934         pReverb->m_nMaxExcursion = pPreset->m_nMaxExcursion;
   1935 
   1936         pReverb->m_sAp0.m_nApGain = pPreset->m_nAp0_ApGain;
   1937         pReverb->m_sAp1.m_nApGain = pPreset->m_nAp1_ApGain;
   1938 
   1939         // set the early reflections delay
   1940         earlyDelay = ((int) pPreset->m_nEarlyDelay * pReverb->m_nSamplingRate)
   1941                 >> 16;
   1942         pReverb->m_nEarlyDelay = earlyDelay;
   1943         maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
   1944                 >> 16;
   1945         for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
   1946             //stored as time based, convert to sample based
   1947             temp = earlyDelay + (((int) pPreset->m_sEarlyL.m_zDelay[i]
   1948                     * pReverb->m_nSamplingRate) >> 16);
   1949             if (temp > maxSamples)
   1950                 temp = maxSamples;
   1951             pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp;
   1952             //stored as time based, convert to sample based
   1953             temp = earlyDelay + (((int) pPreset->m_sEarlyR.m_zDelay[i]
   1954                     * pReverb->m_nSamplingRate) >> 16);
   1955             if (temp > maxSamples)
   1956                 temp = maxSamples;
   1957             pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp;
   1958         }
   1959 
   1960         maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
   1961                 >> 16;
   1962         //stored as time based, convert to sample based
   1963         /*lint -e{702} shift for performance */
   1964         temp = (pPreset->m_nLateDelay * pReverb->m_nSamplingRate) >> 16;
   1965         if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
   1966             temp = maxSamples - pReverb->m_nMaxExcursion;
   1967         }
   1968         temp -= pReverb->m_nLateDelay;
   1969         pReverb->m_nDelay0Out += temp;
   1970         pReverb->m_nDelay1Out += temp;
   1971         pReverb->m_nLateDelay += temp;
   1972 
   1973         maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
   1974         //stored as time based, convert to absolute sample value
   1975         temp = pPreset->m_nAp0_ApOut;
   1976         /*lint -e{702} shift for performance */
   1977         temp = (temp * pReverb->m_nSamplingRate) >> 16;
   1978         if (temp > maxSamples)
   1979             temp = maxSamples;
   1980         pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
   1981 
   1982         //stored as time based, convert to absolute sample value
   1983         temp = pPreset->m_nAp1_ApOut;
   1984         /*lint -e{702} shift for performance */
   1985         temp = (temp * pReverb->m_nSamplingRate) >> 16;
   1986         if (temp > maxSamples)
   1987             temp = maxSamples;
   1988         pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
   1989         //gpsReverbObject->m_sAp1.m_zApOut = pPreset->m_nAp1_ApOut;
   1990     }
   1991 
   1992     //stored as time based, convert to sample based
   1993     temp = pPreset->m_nXfadeInterval;
   1994     /*lint -e{702} shift for performance */
   1995     temp = (temp * pReverb->m_nSamplingRate) >> 16;
   1996     pReverb->m_nXfadeInterval = (uint16_t) temp;
   1997     //gsReverbObject.m_nXfadeInterval = pPreset->m_nXfadeInterval;
   1998     pReverb->m_nXfadeCounter = pReverb->m_nXfadeInterval + 1; // force update on first iteration
   1999 
   2000     pReverb->m_nCurrentRoom = pReverb->m_nNextRoom;
   2001 
   2002     return 0;
   2003 
   2004 } /* end ReverbUpdateRoom */
   2005 
   2006 /*----------------------------------------------------------------------------
   2007  * ReverbReadInPresets()
   2008  *----------------------------------------------------------------------------
   2009  * Purpose: sets global reverb preset bank to defaults
   2010  *
   2011  * Inputs:
   2012  *
   2013  * Outputs:
   2014  *
   2015  *----------------------------------------------------------------------------
   2016  */
   2017 static int ReverbReadInPresets(reverb_object_t *pReverb) {
   2018 
   2019     int preset;
   2020 
   2021     // this is for test only. OpenSL ES presets are mapped to 4 presets.
   2022     // REVERB_PRESET_NONE is mapped to bypass
   2023     for (preset = 0; preset < REVERB_NUM_PRESETS; preset++) {
   2024         reverb_preset_t *pPreset = &pReverb->m_sPreset.m_sPreset[preset];
   2025         switch (preset + 1) {
   2026         case REVERB_PRESET_PLATE:
   2027         case REVERB_PRESET_SMALLROOM:
   2028             pPreset->m_nRvbLpfFbk = 5077;
   2029             pPreset->m_nRvbLpfFwd = 11076;
   2030             pPreset->m_nEarlyGain = 27690;
   2031             pPreset->m_nEarlyDelay = 1311;
   2032             pPreset->m_nLateGain = 8191;
   2033             pPreset->m_nLateDelay = 3932;
   2034             pPreset->m_nRoomLpfFbk = 3692;
   2035             pPreset->m_nRoomLpfFwd = 20474;
   2036             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
   2037             pPreset->m_sEarlyL.m_nGain[0] = 22152;
   2038             pPreset->m_sEarlyL.m_zDelay[1] = 1462;
   2039             pPreset->m_sEarlyL.m_nGain[1] = 17537;
   2040             pPreset->m_sEarlyL.m_zDelay[2] = 0;
   2041             pPreset->m_sEarlyL.m_nGain[2] = 14768;
   2042             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
   2043             pPreset->m_sEarlyL.m_nGain[3] = 14307;
   2044             pPreset->m_sEarlyL.m_zDelay[4] = 0;
   2045             pPreset->m_sEarlyL.m_nGain[4] = 13384;
   2046             pPreset->m_sEarlyR.m_zDelay[0] = 721;
   2047             pPreset->m_sEarlyR.m_nGain[0] = 20306;
   2048             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
   2049             pPreset->m_sEarlyR.m_nGain[1] = 17537;
   2050             pPreset->m_sEarlyR.m_zDelay[2] = 0;
   2051             pPreset->m_sEarlyR.m_nGain[2] = 14768;
   2052             pPreset->m_sEarlyR.m_zDelay[3] = 0;
   2053             pPreset->m_sEarlyR.m_nGain[3] = 16153;
   2054             pPreset->m_sEarlyR.m_zDelay[4] = 0;
   2055             pPreset->m_sEarlyR.m_nGain[4] = 13384;
   2056             pPreset->m_nMaxExcursion = 127;
   2057             pPreset->m_nXfadeInterval = 6470; //6483;
   2058             pPreset->m_nAp0_ApGain = 14768;
   2059             pPreset->m_nAp0_ApOut = 792;
   2060             pPreset->m_nAp1_ApGain = 14777;
   2061             pPreset->m_nAp1_ApOut = 1191;
   2062             pPreset->m_rfu4 = 0;
   2063             pPreset->m_rfu5 = 0;
   2064             pPreset->m_rfu6 = 0;
   2065             pPreset->m_rfu7 = 0;
   2066             pPreset->m_rfu8 = 0;
   2067             pPreset->m_rfu9 = 0;
   2068             pPreset->m_rfu10 = 0;
   2069             break;
   2070         case REVERB_PRESET_MEDIUMROOM:
   2071         case REVERB_PRESET_LARGEROOM:
   2072             pPreset->m_nRvbLpfFbk = 5077;
   2073             pPreset->m_nRvbLpfFwd = 12922;
   2074             pPreset->m_nEarlyGain = 27690;
   2075             pPreset->m_nEarlyDelay = 1311;
   2076             pPreset->m_nLateGain = 8191;
   2077             pPreset->m_nLateDelay = 3932;
   2078             pPreset->m_nRoomLpfFbk = 3692;
   2079             pPreset->m_nRoomLpfFwd = 21703;
   2080             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
   2081             pPreset->m_sEarlyL.m_nGain[0] = 22152;
   2082             pPreset->m_sEarlyL.m_zDelay[1] = 1462;
   2083             pPreset->m_sEarlyL.m_nGain[1] = 17537;
   2084             pPreset->m_sEarlyL.m_zDelay[2] = 0;
   2085             pPreset->m_sEarlyL.m_nGain[2] = 14768;
   2086             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
   2087             pPreset->m_sEarlyL.m_nGain[3] = 14307;
   2088             pPreset->m_sEarlyL.m_zDelay[4] = 0;
   2089             pPreset->m_sEarlyL.m_nGain[4] = 13384;
   2090             pPreset->m_sEarlyR.m_zDelay[0] = 721;
   2091             pPreset->m_sEarlyR.m_nGain[0] = 20306;
   2092             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
   2093             pPreset->m_sEarlyR.m_nGain[1] = 17537;
   2094             pPreset->m_sEarlyR.m_zDelay[2] = 0;
   2095             pPreset->m_sEarlyR.m_nGain[2] = 14768;
   2096             pPreset->m_sEarlyR.m_zDelay[3] = 0;
   2097             pPreset->m_sEarlyR.m_nGain[3] = 16153;
   2098             pPreset->m_sEarlyR.m_zDelay[4] = 0;
   2099             pPreset->m_sEarlyR.m_nGain[4] = 13384;
   2100             pPreset->m_nMaxExcursion = 127;
   2101             pPreset->m_nXfadeInterval = 6449;
   2102             pPreset->m_nAp0_ApGain = 15691;
   2103             pPreset->m_nAp0_ApOut = 774;
   2104             pPreset->m_nAp1_ApGain = 16317;
   2105             pPreset->m_nAp1_ApOut = 1155;
   2106             pPreset->m_rfu4 = 0;
   2107             pPreset->m_rfu5 = 0;
   2108             pPreset->m_rfu6 = 0;
   2109             pPreset->m_rfu7 = 0;
   2110             pPreset->m_rfu8 = 0;
   2111             pPreset->m_rfu9 = 0;
   2112             pPreset->m_rfu10 = 0;
   2113             break;
   2114         case REVERB_PRESET_MEDIUMHALL:
   2115             pPreset->m_nRvbLpfFbk = 6461;
   2116             pPreset->m_nRvbLpfFwd = 14307;
   2117             pPreset->m_nEarlyGain = 27690;
   2118             pPreset->m_nEarlyDelay = 1311;
   2119             pPreset->m_nLateGain = 8191;
   2120             pPreset->m_nLateDelay = 3932;
   2121             pPreset->m_nRoomLpfFbk = 3692;
   2122             pPreset->m_nRoomLpfFwd = 24569;
   2123             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
   2124             pPreset->m_sEarlyL.m_nGain[0] = 22152;
   2125             pPreset->m_sEarlyL.m_zDelay[1] = 1462;
   2126             pPreset->m_sEarlyL.m_nGain[1] = 17537;
   2127             pPreset->m_sEarlyL.m_zDelay[2] = 0;
   2128             pPreset->m_sEarlyL.m_nGain[2] = 14768;
   2129             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
   2130             pPreset->m_sEarlyL.m_nGain[3] = 14307;
   2131             pPreset->m_sEarlyL.m_zDelay[4] = 0;
   2132             pPreset->m_sEarlyL.m_nGain[4] = 13384;
   2133             pPreset->m_sEarlyR.m_zDelay[0] = 721;
   2134             pPreset->m_sEarlyR.m_nGain[0] = 20306;
   2135             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
   2136             pPreset->m_sEarlyR.m_nGain[1] = 17537;
   2137             pPreset->m_sEarlyR.m_zDelay[2] = 0;
   2138             pPreset->m_sEarlyR.m_nGain[2] = 14768;
   2139             pPreset->m_sEarlyR.m_zDelay[3] = 0;
   2140             pPreset->m_sEarlyR.m_nGain[3] = 16153;
   2141             pPreset->m_sEarlyR.m_zDelay[4] = 0;
   2142             pPreset->m_sEarlyR.m_nGain[4] = 13384;
   2143             pPreset->m_nMaxExcursion = 127;
   2144             pPreset->m_nXfadeInterval = 6391;
   2145             pPreset->m_nAp0_ApGain = 15230;
   2146             pPreset->m_nAp0_ApOut = 708;
   2147             pPreset->m_nAp1_ApGain = 15547;
   2148             pPreset->m_nAp1_ApOut = 1023;
   2149             pPreset->m_rfu4 = 0;
   2150             pPreset->m_rfu5 = 0;
   2151             pPreset->m_rfu6 = 0;
   2152             pPreset->m_rfu7 = 0;
   2153             pPreset->m_rfu8 = 0;
   2154             pPreset->m_rfu9 = 0;
   2155             pPreset->m_rfu10 = 0;
   2156             break;
   2157         case REVERB_PRESET_LARGEHALL:
   2158             pPreset->m_nRvbLpfFbk = 8307;
   2159             pPreset->m_nRvbLpfFwd = 14768;
   2160             pPreset->m_nEarlyGain = 27690;
   2161             pPreset->m_nEarlyDelay = 1311;
   2162             pPreset->m_nLateGain = 8191;
   2163             pPreset->m_nLateDelay = 3932;
   2164             pPreset->m_nRoomLpfFbk = 3692;
   2165             pPreset->m_nRoomLpfFwd = 24569;
   2166             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
   2167             pPreset->m_sEarlyL.m_nGain[0] = 22152;
   2168             pPreset->m_sEarlyL.m_zDelay[1] = 2163;
   2169             pPreset->m_sEarlyL.m_nGain[1] = 17537;
   2170             pPreset->m_sEarlyL.m_zDelay[2] = 0;
   2171             pPreset->m_sEarlyL.m_nGain[2] = 14768;
   2172             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
   2173             pPreset->m_sEarlyL.m_nGain[3] = 14307;
   2174             pPreset->m_sEarlyL.m_zDelay[4] = 0;
   2175             pPreset->m_sEarlyL.m_nGain[4] = 13384;
   2176             pPreset->m_sEarlyR.m_zDelay[0] = 721;
   2177             pPreset->m_sEarlyR.m_nGain[0] = 20306;
   2178             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
   2179             pPreset->m_sEarlyR.m_nGain[1] = 17537;
   2180             pPreset->m_sEarlyR.m_zDelay[2] = 0;
   2181             pPreset->m_sEarlyR.m_nGain[2] = 14768;
   2182             pPreset->m_sEarlyR.m_zDelay[3] = 0;
   2183             pPreset->m_sEarlyR.m_nGain[3] = 16153;
   2184             pPreset->m_sEarlyR.m_zDelay[4] = 0;
   2185             pPreset->m_sEarlyR.m_nGain[4] = 13384;
   2186             pPreset->m_nMaxExcursion = 127;
   2187             pPreset->m_nXfadeInterval = 6388;
   2188             pPreset->m_nAp0_ApGain = 15691;
   2189             pPreset->m_nAp0_ApOut = 711;
   2190             pPreset->m_nAp1_ApGain = 16317;
   2191             pPreset->m_nAp1_ApOut = 1029;
   2192             pPreset->m_rfu4 = 0;
   2193             pPreset->m_rfu5 = 0;
   2194             pPreset->m_rfu6 = 0;
   2195             pPreset->m_rfu7 = 0;
   2196             pPreset->m_rfu8 = 0;
   2197             pPreset->m_rfu9 = 0;
   2198             pPreset->m_rfu10 = 0;
   2199             break;
   2200         }
   2201     }
   2202 
   2203     return 0;
   2204 }
   2205 
   2206 audio_effect_library_t AUDIO_EFFECT_LIBRARY_INFO_SYM = {
   2207     .tag = AUDIO_EFFECT_LIBRARY_TAG,
   2208     .version = EFFECT_LIBRARY_API_VERSION,
   2209     .name = "Test Equalizer Library",
   2210     .implementor = "The Android Open Source Project",
   2211     .create_effect = EffectCreate,
   2212     .release_effect = EffectRelease,
   2213     .get_descriptor = EffectGetDescriptor,
   2214 };
   2215