Home | History | Annotate | Download | only in common_time
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /*
     18  * A service that exchanges time synchronization information between
     19  * a master that defines a timeline and clients that follow the timeline.
     20  */
     21 
     22 #define LOG_TAG "common_time"
     23 #include <utils/Log.h>
     24 
     25 #include <arpa/inet.h>
     26 #include <assert.h>
     27 #include <fcntl.h>
     28 #include <inttypes.h>
     29 #include <linux/if_ether.h>
     30 #include <net/if.h>
     31 #include <net/if_arp.h>
     32 #include <netinet/ip.h>
     33 #include <poll.h>
     34 #include <stdio.h>
     35 #include <sys/eventfd.h>
     36 #include <sys/ioctl.h>
     37 #include <sys/stat.h>
     38 #include <sys/types.h>
     39 #include <sys/socket.h>
     40 
     41 #include <common_time/local_clock.h>
     42 #include <binder/IPCThreadState.h>
     43 #include <binder/ProcessState.h>
     44 #include <utils/Timers.h>
     45 
     46 #include "common_clock_service.h"
     47 #include "common_time_config_service.h"
     48 #include "common_time_server.h"
     49 #include "common_time_server_packets.h"
     50 #include "clock_recovery.h"
     51 #include "common_clock.h"
     52 
     53 #define MAX_INT ((int)0x7FFFFFFF)
     54 
     55 namespace android {
     56 
     57 const char*    CommonTimeServer::kDefaultMasterElectionAddr = "255.255.255.255";
     58 const uint16_t CommonTimeServer::kDefaultMasterElectionPort = 8886;
     59 const uint64_t CommonTimeServer::kDefaultSyncGroupID = 1;
     60 const uint8_t  CommonTimeServer::kDefaultMasterPriority = 1;
     61 const uint32_t CommonTimeServer::kDefaultMasterAnnounceIntervalMs = 10000;
     62 const uint32_t CommonTimeServer::kDefaultSyncRequestIntervalMs = 1000;
     63 const uint32_t CommonTimeServer::kDefaultPanicThresholdUsec = 50000;
     64 const bool     CommonTimeServer::kDefaultAutoDisable = true;
     65 const int      CommonTimeServer::kSetupRetryTimeoutMs = 30000;
     66 const int64_t  CommonTimeServer::kNoGoodDataPanicThresholdUsec = 600000000ll;
     67 const uint32_t CommonTimeServer::kRTTDiscardPanicThreshMultiplier = 5;
     68 
     69 // timeout value representing an infinite timeout
     70 const int CommonTimeServer::kInfiniteTimeout = -1;
     71 
     72 /*** Initial state constants ***/
     73 
     74 // number of WhoIsMaster attempts sent before giving up
     75 const int CommonTimeServer::kInitial_NumWhoIsMasterRetries = 6;
     76 
     77 // timeout used when waiting for a response to a WhoIsMaster request
     78 const int CommonTimeServer::kInitial_WhoIsMasterTimeoutMs = 500;
     79 
     80 /*** Client state constants ***/
     81 
     82 // number of sync requests that can fail before a client assumes its master
     83 // is dead
     84 const int CommonTimeServer::kClient_NumSyncRequestRetries = 10;
     85 
     86 /*** Master state constants ***/
     87 
     88 /*** Ronin state constants ***/
     89 
     90 // number of WhoIsMaster attempts sent before declaring ourselves master
     91 const int CommonTimeServer::kRonin_NumWhoIsMasterRetries = 20;
     92 
     93 // timeout used when waiting for a response to a WhoIsMaster request
     94 const int CommonTimeServer::kRonin_WhoIsMasterTimeoutMs = 500;
     95 
     96 /*** WaitForElection state constants ***/
     97 
     98 // how long do we wait for an announcement from a master before
     99 // trying another election?
    100 const int CommonTimeServer::kWaitForElection_TimeoutMs = 12500;
    101 
    102 CommonTimeServer::CommonTimeServer()
    103     : Thread(false)
    104     , mState(ICommonClock::STATE_INITIAL)
    105     , mClockRecovery(&mLocalClock, &mCommonClock)
    106     , mSocket(-1)
    107     , mLastPacketRxLocalTime(0)
    108     , mTimelineID(ICommonClock::kInvalidTimelineID)
    109     , mClockSynced(false)
    110     , mCommonClockHasClients(false)
    111     , mStateChangeLog("Recent State Change Events", 30)
    112     , mElectionLog("Recent Master Election Traffic", 30)
    113     , mBadPktLog("Recent Bad Packet RX Info", 8)
    114     , mInitial_WhoIsMasterRequestTimeouts(0)
    115     , mClient_MasterDeviceID(0)
    116     , mClient_MasterDevicePriority(0)
    117     , mRonin_WhoIsMasterRequestTimeouts(0) {
    118     // zero out sync stats
    119     resetSyncStats();
    120 
    121     // Setup the master election endpoint to use the default.
    122     struct sockaddr_in* meep =
    123         reinterpret_cast<struct sockaddr_in*>(&mMasterElectionEP);
    124     memset(&mMasterElectionEP, 0, sizeof(mMasterElectionEP));
    125     inet_aton(kDefaultMasterElectionAddr, &meep->sin_addr);
    126     meep->sin_family = AF_INET;
    127     meep->sin_port   = htons(kDefaultMasterElectionPort);
    128 
    129     // Zero out the master endpoint.
    130     memset(&mMasterEP, 0, sizeof(mMasterEP));
    131     mMasterEPValid    = false;
    132     mBindIfaceValid   = false;
    133     setForceLowPriority(false);
    134 
    135     // Set all remaining configuration parameters to their defaults.
    136     mDeviceID                 = 0;
    137     mSyncGroupID              = kDefaultSyncGroupID;
    138     mMasterPriority           = kDefaultMasterPriority;
    139     mMasterAnnounceIntervalMs = kDefaultMasterAnnounceIntervalMs;
    140     mSyncRequestIntervalMs    = kDefaultSyncRequestIntervalMs;
    141     mPanicThresholdUsec       = kDefaultPanicThresholdUsec;
    142     mAutoDisable              = kDefaultAutoDisable;
    143 
    144     // Create the eventfd we will use to signal our thread to wake up when
    145     // needed.
    146     mWakeupThreadFD = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
    147 
    148     // seed the random number generator (used to generated timeline IDs)
    149     srand48(static_cast<unsigned int>(systemTime()));
    150 }
    151 
    152 CommonTimeServer::~CommonTimeServer() {
    153     shutdownThread();
    154 
    155     // No need to grab the lock here.  We are in the destructor; if the the user
    156     // has a thread in any of the APIs while the destructor is being called,
    157     // there is a threading problem a the application level we cannot reasonably
    158     // do anything about.
    159     cleanupSocket_l();
    160 
    161     if (mWakeupThreadFD >= 0) {
    162         close(mWakeupThreadFD);
    163         mWakeupThreadFD = -1;
    164     }
    165 }
    166 
    167 bool CommonTimeServer::startServices() {
    168     // start the ICommonClock service
    169     mICommonClock = CommonClockService::instantiate(*this);
    170     if (mICommonClock == NULL)
    171         return false;
    172 
    173     // start the ICommonTimeConfig service
    174     mICommonTimeConfig = CommonTimeConfigService::instantiate(*this);
    175     if (mICommonTimeConfig == NULL)
    176         return false;
    177 
    178     return true;
    179 }
    180 
    181 bool CommonTimeServer::threadLoop() {
    182     // Register our service interfaces.
    183     if (!startServices())
    184         return false;
    185 
    186     // Hold the lock while we are in the main thread loop.  It will release the
    187     // lock when it blocks, and hold the lock at all other times.
    188     mLock.lock();
    189     runStateMachine_l();
    190     mLock.unlock();
    191 
    192     IPCThreadState::self()->stopProcess();
    193     return false;
    194 }
    195 
    196 bool CommonTimeServer::runStateMachine_l() {
    197     if (!mLocalClock.initCheck())
    198         return false;
    199 
    200     if (!mCommonClock.init(mLocalClock.getLocalFreq()))
    201         return false;
    202 
    203     // Enter the initial state.
    204     becomeInitial("startup");
    205 
    206     // run the state machine
    207     while (!exitPending()) {
    208         struct pollfd pfds[2];
    209         int rc, timeout;
    210         int eventCnt = 0;
    211         int64_t wakeupTime;
    212         uint32_t t1, t2;
    213         bool needHandleTimeout = false;
    214 
    215         // We are always interested in our wakeup FD.
    216         pfds[eventCnt].fd      = mWakeupThreadFD;
    217         pfds[eventCnt].events  = POLLIN;
    218         pfds[eventCnt].revents = 0;
    219         eventCnt++;
    220 
    221         // If we have a valid socket, then we are interested in what it has to
    222         // say as well.
    223         if (mSocket >= 0) {
    224             pfds[eventCnt].fd      = mSocket;
    225             pfds[eventCnt].events  = POLLIN;
    226             pfds[eventCnt].revents = 0;
    227             eventCnt++;
    228         }
    229 
    230         t1 = static_cast<uint32_t>(mCurTimeout.msecTillTimeout());
    231         t2 = static_cast<uint32_t>(mClockRecovery.applyRateLimitedSlew());
    232         timeout = static_cast<int>(t1 < t2 ? t1 : t2);
    233 
    234         // Note, we were holding mLock when this function was called.  We
    235         // release it only while we are blocking and hold it at all other times.
    236         mLock.unlock();
    237         rc          = poll(pfds, eventCnt, timeout);
    238         wakeupTime  = mLocalClock.getLocalTime();
    239         mLock.lock();
    240 
    241         // Is it time to shutdown?  If so, don't hesitate... just do it.
    242         if (exitPending())
    243             break;
    244 
    245         // Did the poll fail?  This should never happen and is fatal if it does.
    246         if (rc < 0) {
    247             ALOGE("%s:%d poll failed", __PRETTY_FUNCTION__, __LINE__);
    248             return false;
    249         }
    250 
    251         if (rc == 0) {
    252             needHandleTimeout = !mCurTimeout.msecTillTimeout();
    253             if (needHandleTimeout)
    254                 mCurTimeout.setTimeout(kInfiniteTimeout);
    255         }
    256 
    257         // Were we woken up on purpose?  If so, clear the eventfd with a read.
    258         if (pfds[0].revents)
    259             clearPendingWakeupEvents_l();
    260 
    261         // Is out bind address dirty?  If so, clean up our socket (if any).
    262         // Alternatively, do we have an active socket but should be auto
    263         // disabled?  If so, release the socket and enter the proper sync state.
    264         bool droppedSocket = false;
    265         if (mBindIfaceDirty || ((mSocket >= 0) && shouldAutoDisable())) {
    266             cleanupSocket_l();
    267             mBindIfaceDirty = false;
    268             droppedSocket = true;
    269         }
    270 
    271         // Do we not have a socket but should have one?  If so, try to set one
    272         // up.
    273         if ((mSocket < 0) && mBindIfaceValid && !shouldAutoDisable()) {
    274             if (setupSocket_l()) {
    275                 // Success!  We are now joining a new network (either coming
    276                 // from no network, or coming from a potentially different
    277                 // network).  Force our priority to be lower so that we defer to
    278                 // any other masters which may already be on the network we are
    279                 // joining.  Later, when we enter either the client or the
    280                 // master state, we will clear this flag and go back to our
    281                 // normal election priority.
    282                 setForceLowPriority(true);
    283                 switch (mState) {
    284                     // If we were in initial (whether we had a immediately
    285                     // before this network or not) we want to simply reset the
    286                     // system and start again.  Forcing a transition from
    287                     // INITIAL to INITIAL should do the job.
    288                     case CommonClockService::STATE_INITIAL:
    289                         becomeInitial("bound interface");
    290                         break;
    291 
    292                     // If we were in the master state, then either we were the
    293                     // master in a no-network situation, or we were the master
    294                     // of a different network and have moved to a new interface.
    295                     // In either case, immediately transition to Ronin at low
    296                     // priority.  If there is no one in the network we just
    297                     // joined, we will become master soon enough.  If there is,
    298                     // we want to be certain to defer master status to the
    299                     // existing timeline currently running on the network.
    300                     //
    301                     case CommonClockService::STATE_MASTER:
    302                         becomeRonin("leaving networkless mode");
    303                         break;
    304 
    305                     // If we were in any other state (CLIENT, RONIN, or
    306                     // WAIT_FOR_ELECTION) then we must be moving from one
    307                     // network to another.  We have lost our old master;
    308                     // transition to RONIN in an attempt to find a new master.
    309                     // If there are none out there, we will just assume
    310                     // responsibility for the timeline we used to be a client
    311                     // of.
    312                     default:
    313                         becomeRonin("bound interface");
    314                         break;
    315                 }
    316             } else {
    317                 // That's odd... we failed to set up our socket.  This could be
    318                 // due to some transient network change which will work itself
    319                 // out shortly; schedule a retry attempt in the near future.
    320                 mCurTimeout.setTimeout(kSetupRetryTimeoutMs);
    321             }
    322 
    323             // One way or the other, we don't have any data to process at this
    324             // point (since we just tried to bulid a new socket).  Loop back
    325             // around and wait for the next thing to do.
    326             continue;
    327         } else if (droppedSocket) {
    328             // We just lost our socket, and for whatever reason (either no
    329             // config, or auto disable engaged) we are not supposed to rebuild
    330             // one at this time.  We are not going to rebuild our socket until
    331             // something about our config/auto-disabled status changes, so we
    332             // are basically in network-less mode.  If we are already in either
    333             // INITIAL or MASTER, just stay there until something changes.  If
    334             // we are in any other state (CLIENT, RONIN or WAIT_FOR_ELECTION),
    335             // then transition to either INITIAL or MASTER depending on whether
    336             // or not our timeline is valid.
    337             mStateChangeLog.log(ANDROID_LOG_INFO, LOG_TAG,
    338                     "Entering networkless mode interface is %s, "
    339                     "shouldAutoDisable = %s",
    340                     mBindIfaceValid ? "valid" : "invalid",
    341                     shouldAutoDisable() ? "true" : "false");
    342             if ((mState != ICommonClock::STATE_INITIAL) &&
    343                 (mState != ICommonClock::STATE_MASTER)) {
    344                 if (mTimelineID == ICommonClock::kInvalidTimelineID)
    345                     becomeInitial("network-less mode");
    346                 else
    347                     becomeMaster("network-less mode");
    348             }
    349 
    350             continue;
    351         }
    352 
    353         // Time to handle the timeouts?
    354         if (needHandleTimeout) {
    355             if (!handleTimeout())
    356                 ALOGE("handleTimeout failed");
    357             continue;
    358         }
    359 
    360         // Does our socket have data for us (assuming we still have one, we
    361         // may have RXed a packet at the same time as a config change telling us
    362         // to shut our socket down)?  If so, process its data.
    363         if ((mSocket >= 0) && (eventCnt > 1) && (pfds[1].revents)) {
    364             mLastPacketRxLocalTime = wakeupTime;
    365             if (!handlePacket())
    366                 ALOGE("handlePacket failed");
    367         }
    368     }
    369 
    370     cleanupSocket_l();
    371     return true;
    372 }
    373 
    374 void CommonTimeServer::clearPendingWakeupEvents_l() {
    375     int64_t tmp;
    376     read(mWakeupThreadFD, &tmp, sizeof(tmp));
    377 }
    378 
    379 void CommonTimeServer::wakeupThread_l() {
    380     int64_t tmp = 1;
    381     write(mWakeupThreadFD, &tmp, sizeof(tmp));
    382 }
    383 
    384 void CommonTimeServer::cleanupSocket_l() {
    385     if (mSocket >= 0) {
    386         close(mSocket);
    387         mSocket = -1;
    388     }
    389 }
    390 
    391 void CommonTimeServer::shutdownThread() {
    392     // Flag the work thread for shutdown.
    393     this->requestExit();
    394 
    395     // Signal the thread in case its sleeping.
    396     mLock.lock();
    397     wakeupThread_l();
    398     mLock.unlock();
    399 
    400     // Wait for the thread to exit.
    401     this->join();
    402 }
    403 
    404 bool CommonTimeServer::setupSocket_l() {
    405     int rc;
    406     bool ret_val = false;
    407     struct sockaddr_in* ipv4_addr = NULL;
    408     char masterElectionEPStr[64];
    409     const int one = 1;
    410 
    411     // This should never be needed, but if we happened to have an old socket
    412     // lying around, be sure to not leak it before proceeding.
    413     cleanupSocket_l();
    414 
    415     // If we don't have a valid endpoint to bind to, then how did we get here in
    416     // the first place?  Regardless, we know that we are going to fail to bind,
    417     // so don't even try.
    418     if (!mBindIfaceValid)
    419         return false;
    420 
    421     sockaddrToString(mMasterElectionEP, true, masterElectionEPStr,
    422                      sizeof(masterElectionEPStr));
    423     mStateChangeLog.log(ANDROID_LOG_INFO, LOG_TAG,
    424                         "Building socket :: bind = %s master election = %s",
    425                         mBindIface.string(), masterElectionEPStr);
    426 
    427     // TODO: add proper support for IPv6.  Right now, we block IPv6 addresses at
    428     // the configuration interface level.
    429     if (AF_INET != mMasterElectionEP.ss_family) {
    430         mStateChangeLog.log(ANDROID_LOG_WARN, LOG_TAG,
    431                             "TODO: add proper IPv6 support");
    432         goto bailout;
    433     }
    434 
    435     // open a UDP socket for the timeline serivce
    436     mSocket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
    437     if (mSocket < 0) {
    438         mStateChangeLog.log(ANDROID_LOG_ERROR, LOG_TAG,
    439                             "Failed to create socket (errno = %d)", errno);
    440         goto bailout;
    441     }
    442 
    443     // Bind to the selected interface using Linux's spiffy SO_BINDTODEVICE.
    444     struct ifreq ifr;
    445     memset(&ifr, 0, sizeof(ifr));
    446     snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "%s", mBindIface.string());
    447     ifr.ifr_name[sizeof(ifr.ifr_name) - 1] = 0;
    448     rc = setsockopt(mSocket, SOL_SOCKET, SO_BINDTODEVICE,
    449                     (void *)&ifr, sizeof(ifr));
    450     if (rc) {
    451         mStateChangeLog.log(ANDROID_LOG_ERROR, LOG_TAG,
    452                             "Failed to bind socket at to interface %s "
    453                             "(errno = %d)", ifr.ifr_name, errno);
    454         goto bailout;
    455     }
    456 
    457     // Bind our socket to INADDR_ANY and the master election port.  The
    458     // interface binding we made using SO_BINDTODEVICE should limit us to
    459     // traffic only on the interface we are interested in.  We need to bind to
    460     // INADDR_ANY and the specific master election port in order to be able to
    461     // receive both unicast traffic and master election multicast traffic with
    462     // just a single socket.
    463     struct sockaddr_in bindAddr;
    464     ipv4_addr = reinterpret_cast<struct sockaddr_in*>(&mMasterElectionEP);
    465     memcpy(&bindAddr, ipv4_addr, sizeof(bindAddr));
    466     bindAddr.sin_addr.s_addr = INADDR_ANY;
    467     rc = bind(mSocket,
    468               reinterpret_cast<const sockaddr *>(&bindAddr),
    469               sizeof(bindAddr));
    470     if (rc) {
    471         mStateChangeLog.log(ANDROID_LOG_ERROR, LOG_TAG,
    472                             "Failed to bind socket to port %hu (errno = %d)",
    473                             ntohs(bindAddr.sin_port), errno);
    474         goto bailout;
    475     }
    476 
    477     if (0xE0000000 == (ntohl(ipv4_addr->sin_addr.s_addr) & 0xF0000000)) {
    478         // If our master election endpoint is a multicast address, be sure to join
    479         // the multicast group.
    480         struct ip_mreq mreq;
    481         mreq.imr_multiaddr = ipv4_addr->sin_addr;
    482         mreq.imr_interface.s_addr = htonl(INADDR_ANY);
    483         rc = setsockopt(mSocket, IPPROTO_IP, IP_ADD_MEMBERSHIP,
    484                         &mreq, sizeof(mreq));
    485         if (rc == -1) {
    486             ALOGE("Failed to join multicast group at %s.  (errno = %d)",
    487                  masterElectionEPStr, errno);
    488             goto bailout;
    489         }
    490 
    491         // disable loopback of multicast packets
    492         const int zero = 0;
    493         rc = setsockopt(mSocket, IPPROTO_IP, IP_MULTICAST_LOOP,
    494                         &zero, sizeof(zero));
    495         if (rc == -1) {
    496             mStateChangeLog.log(ANDROID_LOG_ERROR, LOG_TAG,
    497                                 "Failed to disable multicast loopback "
    498                                 "(errno = %d)", errno);
    499             goto bailout;
    500         }
    501     } else
    502     if (ntohl(ipv4_addr->sin_addr.s_addr) == 0xFFFFFFFF) {
    503         // If the master election address is the broadcast address, then enable
    504         // the broadcast socket option
    505         rc = setsockopt(mSocket, SOL_SOCKET, SO_BROADCAST, &one, sizeof(one));
    506         if (rc == -1) {
    507             mStateChangeLog.log(ANDROID_LOG_ERROR, LOG_TAG,
    508                                 "Failed to enable broadcast (errno = %d)",
    509                                 errno);
    510             goto bailout;
    511         }
    512     } else {
    513         // If the master election address is neither broadcast, nor multicast,
    514         // then we are misconfigured.  The config API layer should prevent this
    515         // from ever happening.
    516         goto bailout;
    517     }
    518 
    519     // Set the TTL of sent packets to 1.  (Time protocol sync should never leave
    520     // the local subnet)
    521     rc = setsockopt(mSocket, IPPROTO_IP, IP_TTL, &one, sizeof(one));
    522     if (rc == -1) {
    523         mStateChangeLog.log(ANDROID_LOG_ERROR, LOG_TAG,
    524                             "Failed to set TTL to %d (errno = %d)", one, errno);
    525         goto bailout;
    526     }
    527 
    528     // get the device's unique ID
    529     if (!assignDeviceID())
    530         goto bailout;
    531 
    532     ret_val = true;
    533 
    534 bailout:
    535     if (!ret_val)
    536         cleanupSocket_l();
    537     return ret_val;
    538 }
    539 
    540 // generate a unique device ID that can be used for arbitration
    541 bool CommonTimeServer::assignDeviceID() {
    542     if (!mBindIfaceValid)
    543         return false;
    544 
    545     struct ifreq ifr;
    546     memset(&ifr, 0, sizeof(ifr));
    547     ifr.ifr_addr.sa_family = AF_INET;
    548     strlcpy(ifr.ifr_name, mBindIface.string(), IFNAMSIZ);
    549 
    550     int rc = ioctl(mSocket, SIOCGIFHWADDR, &ifr);
    551     if (rc) {
    552         ALOGE("%s:%d ioctl failed", __PRETTY_FUNCTION__, __LINE__);
    553         return false;
    554     }
    555 
    556     if (ifr.ifr_addr.sa_family != ARPHRD_ETHER) {
    557         ALOGE("%s:%d got non-Ethernet address", __PRETTY_FUNCTION__, __LINE__);
    558         return false;
    559     }
    560 
    561     mDeviceID = 0;
    562     for (int i = 0; i < ETH_ALEN; i++) {
    563         mDeviceID = (mDeviceID << 8) | ifr.ifr_hwaddr.sa_data[i];
    564     }
    565 
    566     return true;
    567 }
    568 
    569 // generate a new timeline ID
    570 void CommonTimeServer::assignTimelineID() {
    571     do {
    572         mTimelineID = (static_cast<uint64_t>(lrand48()) << 32)
    573                     |  static_cast<uint64_t>(lrand48());
    574     } while (mTimelineID == ICommonClock::kInvalidTimelineID);
    575 }
    576 
    577 // Select a preference between the device IDs of two potential masters.
    578 // Returns true if the first ID wins, or false if the second ID wins.
    579 bool CommonTimeServer::arbitrateMaster(
    580         uint64_t deviceID1, uint8_t devicePrio1,
    581         uint64_t deviceID2, uint8_t devicePrio2) {
    582     return ((devicePrio1 >  devicePrio2) ||
    583            ((devicePrio1 == devicePrio2) && (deviceID1 > deviceID2)));
    584 }
    585 
    586 static void hexDumpToString(const uint8_t* src, size_t src_len,
    587                             char* dst, size_t dst_len) {
    588     size_t offset = 0;
    589     size_t i;
    590 
    591     for (i = 0; (i < src_len) && (offset < dst_len); ++i) {
    592         int res;
    593         if (0 == (i % 16)) {
    594             res = snprintf(dst + offset, dst_len - offset, "\n%04zx :", i);
    595             if (res < 0)
    596                 break;
    597             offset += res;
    598             if (offset >= dst_len)
    599                 break;
    600         }
    601 
    602         res = snprintf(dst + offset, dst_len - offset, " %02x", src[i]);
    603         if (res < 0)
    604             break;
    605         offset += res;
    606     }
    607 
    608     dst[dst_len - 1] = 0;
    609 }
    610 
    611 bool CommonTimeServer::handlePacket() {
    612     uint8_t buf[256];
    613     struct sockaddr_storage srcAddr;
    614     socklen_t srcAddrLen = sizeof(srcAddr);
    615 
    616     ssize_t recvBytes = recvfrom(
    617             mSocket, buf, sizeof(buf), 0,
    618             reinterpret_cast<sockaddr *>(&srcAddr), &srcAddrLen);
    619 
    620     if (recvBytes < 0) {
    621         mBadPktLog.log(ANDROID_LOG_ERROR, LOG_TAG, "recvfrom failed (%s)",
    622                        strerror(errno));
    623         return false;
    624     }
    625 
    626     UniversalTimeServicePacket pkt;
    627     if (pkt.deserializePacket(buf, recvBytes, mSyncGroupID) < 0) {
    628         char hex[256];
    629         char srcEPStr[64];
    630 
    631         hexDumpToString(buf, static_cast<size_t>(recvBytes), hex, sizeof(hex));
    632         sockaddrToString(srcAddr, true, srcEPStr, sizeof(srcEPStr));
    633 
    634         mBadPktLog.log("Failed to parse %d byte packet from %s.%s",
    635                        recvBytes, srcEPStr, hex);
    636         return false;
    637     }
    638 
    639     bool result;
    640     switch (pkt.packetType) {
    641         case TIME_PACKET_WHO_IS_MASTER_REQUEST:
    642             result = handleWhoIsMasterRequest(&pkt.p.who_is_master_request,
    643                                               srcAddr);
    644             break;
    645 
    646         case TIME_PACKET_WHO_IS_MASTER_RESPONSE:
    647             result = handleWhoIsMasterResponse(&pkt.p.who_is_master_response,
    648                                                srcAddr);
    649             break;
    650 
    651         case TIME_PACKET_SYNC_REQUEST:
    652             result = handleSyncRequest(&pkt.p.sync_request, srcAddr);
    653             break;
    654 
    655         case TIME_PACKET_SYNC_RESPONSE:
    656             result = handleSyncResponse(&pkt.p.sync_response, srcAddr);
    657             break;
    658 
    659         case TIME_PACKET_MASTER_ANNOUNCEMENT:
    660             result = handleMasterAnnouncement(&pkt.p.master_announcement,
    661                                               srcAddr);
    662             break;
    663 
    664         default: {
    665             char srcEPStr[64];
    666             sockaddrToString(srcAddr, true, srcEPStr, sizeof(srcEPStr));
    667 
    668             mBadPktLog.log(ANDROID_LOG_WARN, LOG_TAG,
    669                            "unknown packet type (%d) from %s",
    670                            pkt.packetType, srcEPStr);
    671 
    672             result = false;
    673         } break;
    674     }
    675 
    676     return result;
    677 }
    678 
    679 bool CommonTimeServer::handleTimeout() {
    680     // If we have no socket, then this must be a timeout to retry socket setup.
    681     if (mSocket < 0)
    682         return true;
    683 
    684     switch (mState) {
    685         case ICommonClock::STATE_INITIAL:
    686             return handleTimeoutInitial();
    687         case ICommonClock::STATE_CLIENT:
    688             return handleTimeoutClient();
    689         case ICommonClock::STATE_MASTER:
    690             return handleTimeoutMaster();
    691         case ICommonClock::STATE_RONIN:
    692             return handleTimeoutRonin();
    693         case ICommonClock::STATE_WAIT_FOR_ELECTION:
    694             return handleTimeoutWaitForElection();
    695     }
    696 
    697     return false;
    698 }
    699 
    700 bool CommonTimeServer::handleTimeoutInitial() {
    701     if (++mInitial_WhoIsMasterRequestTimeouts ==
    702             kInitial_NumWhoIsMasterRetries) {
    703         // none of our attempts to discover a master succeeded, so make
    704         // this device the master
    705         return becomeMaster("initial timeout");
    706     } else {
    707         // retry the WhoIsMaster request
    708         return sendWhoIsMasterRequest();
    709     }
    710 }
    711 
    712 bool CommonTimeServer::handleTimeoutClient() {
    713     if (shouldPanicNotGettingGoodData())
    714         return becomeInitial("timeout panic, no good data");
    715 
    716     if (mClient_SyncRequestPending) {
    717         mClient_SyncRequestPending = false;
    718 
    719         if (++mClient_SyncRequestTimeouts < kClient_NumSyncRequestRetries) {
    720             // a sync request has timed out, so retry
    721             return sendSyncRequest();
    722         } else {
    723             // The master has failed to respond to a sync request for too many
    724             // times in a row.  Assume the master is dead and start electing
    725             // a new master.
    726             return becomeRonin("master not responding");
    727         }
    728     } else {
    729         // initiate the next sync request
    730         return sendSyncRequest();
    731     }
    732 }
    733 
    734 bool CommonTimeServer::handleTimeoutMaster() {
    735     // send another announcement from the master
    736     return sendMasterAnnouncement();
    737 }
    738 
    739 bool CommonTimeServer::handleTimeoutRonin() {
    740     if (++mRonin_WhoIsMasterRequestTimeouts == kRonin_NumWhoIsMasterRetries) {
    741         // no other master is out there, so we won the election
    742         return becomeMaster("no better masters detected");
    743     } else {
    744         return sendWhoIsMasterRequest();
    745     }
    746 }
    747 
    748 bool CommonTimeServer::handleTimeoutWaitForElection() {
    749     return becomeRonin("timeout waiting for election conclusion");
    750 }
    751 
    752 bool CommonTimeServer::handleWhoIsMasterRequest(
    753         const WhoIsMasterRequestPacket* request,
    754         const sockaddr_storage& srcAddr) {
    755     // Skip our own messages which come back via broadcast loopback.
    756     if (request->senderDeviceID == mDeviceID)
    757         return true;
    758 
    759     char srcEPStr[64];
    760     sockaddrToString(srcAddr, true, srcEPStr, sizeof(srcEPStr));
    761     mElectionLog.log("RXed WhoIs master request while in state %s.  "
    762                      "src %s reqTID %016llx ourTID %016llx",
    763                      stateToString(mState), srcEPStr,
    764                      request->timelineID, mTimelineID);
    765 
    766     if (mState == ICommonClock::STATE_MASTER) {
    767         // is this request related to this master's timeline?
    768         if (request->timelineID != ICommonClock::kInvalidTimelineID &&
    769             request->timelineID != mTimelineID)
    770             return true;
    771 
    772         WhoIsMasterResponsePacket pkt;
    773         pkt.initHeader(mTimelineID, mSyncGroupID);
    774         pkt.deviceID = mDeviceID;
    775         pkt.devicePriority = effectivePriority();
    776 
    777         mElectionLog.log("TXing WhoIs master resp to %s while in state %s.  "
    778                          "ourTID %016llx ourGID %016llx ourDID %016llx "
    779                          "ourPrio %u",
    780                          srcEPStr, stateToString(mState),
    781                          mTimelineID, mSyncGroupID,
    782                          pkt.deviceID, pkt.devicePriority);
    783 
    784         uint8_t buf[256];
    785         ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
    786         if (bufSz < 0)
    787             return false;
    788 
    789         ssize_t sendBytes = sendto(
    790                 mSocket, buf, bufSz, 0,
    791                 reinterpret_cast<const sockaddr *>(&srcAddr),
    792                 sizeof(srcAddr));
    793         if (sendBytes == -1) {
    794             ALOGE("%s:%d sendto failed", __PRETTY_FUNCTION__, __LINE__);
    795             return false;
    796         }
    797     } else if (mState == ICommonClock::STATE_RONIN) {
    798         // if we hear a WhoIsMaster request from another device following
    799         // the same timeline and that device wins arbitration, then we will stop
    800         // trying to elect ourselves master and will instead wait for an
    801         // announcement from the election winner
    802         if (request->timelineID != mTimelineID)
    803             return true;
    804 
    805         if (arbitrateMaster(request->senderDeviceID,
    806                             request->senderDevicePriority,
    807                             mDeviceID,
    808                             effectivePriority()))
    809             return becomeWaitForElection("would lose election");
    810 
    811         return true;
    812     } else if (mState == ICommonClock::STATE_INITIAL) {
    813         // If a group of devices booted simultaneously (e.g. after a power
    814         // outage) and all of them are in the initial state and there is no
    815         // master, then each device may time out and declare itself master at
    816         // the same time.  To avoid this, listen for
    817         // WhoIsMaster(InvalidTimeline) requests from peers.  If we would lose
    818         // arbitration against that peer, reset our timeout count so that the
    819         // peer has a chance to become master before we time out.
    820         if (request->timelineID == ICommonClock::kInvalidTimelineID &&
    821                 arbitrateMaster(request->senderDeviceID,
    822                                 request->senderDevicePriority,
    823                                 mDeviceID,
    824                                 effectivePriority())) {
    825             mInitial_WhoIsMasterRequestTimeouts = 0;
    826         }
    827     }
    828 
    829     return true;
    830 }
    831 
    832 bool CommonTimeServer::handleWhoIsMasterResponse(
    833         const WhoIsMasterResponsePacket* response,
    834         const sockaddr_storage& srcAddr) {
    835     // Skip our own messages which come back via broadcast loopback.
    836     if (response->deviceID == mDeviceID)
    837         return true;
    838 
    839     char srcEPStr[64];
    840     sockaddrToString(srcAddr, true, srcEPStr, sizeof(srcEPStr));
    841     mElectionLog.log("RXed WhoIs master response while in state %s.  "
    842                      "src %s respTID %016llx respDID %016llx respPrio %u "
    843                      "ourTID %016llx",
    844                      stateToString(mState), srcEPStr,
    845                      response->timelineID,
    846                      response->deviceID,
    847                      static_cast<uint32_t>(response->devicePriority),
    848                      mTimelineID);
    849 
    850     if (mState == ICommonClock::STATE_INITIAL || mState == ICommonClock::STATE_RONIN) {
    851         return becomeClient(srcAddr,
    852                             response->deviceID,
    853                             response->devicePriority,
    854                             response->timelineID,
    855                             "heard whois response");
    856     } else if (mState == ICommonClock::STATE_CLIENT) {
    857         // if we get multiple responses because there are multiple devices
    858         // who believe that they are master, then follow the master that
    859         // wins arbitration
    860         if (arbitrateMaster(response->deviceID,
    861                             response->devicePriority,
    862                             mClient_MasterDeviceID,
    863                             mClient_MasterDevicePriority)) {
    864             return becomeClient(srcAddr,
    865                                 response->deviceID,
    866                                 response->devicePriority,
    867                                 response->timelineID,
    868                                 "heard whois response");
    869         }
    870     }
    871 
    872     return true;
    873 }
    874 
    875 bool CommonTimeServer::handleSyncRequest(const SyncRequestPacket* request,
    876                                          const sockaddr_storage& srcAddr) {
    877     SyncResponsePacket pkt;
    878     pkt.initHeader(mTimelineID, mSyncGroupID);
    879 
    880     if ((mState == ICommonClock::STATE_MASTER) &&
    881         (mTimelineID == request->timelineID)) {
    882         int64_t rxLocalTime = mLastPacketRxLocalTime;
    883         int64_t rxCommonTime;
    884 
    885         // If we are master on an actual network and have actual clients, then
    886         // we are no longer low priority.
    887         setForceLowPriority(false);
    888 
    889         if (OK != mCommonClock.localToCommon(rxLocalTime, &rxCommonTime)) {
    890             return false;
    891         }
    892 
    893         int64_t txLocalTime = mLocalClock.getLocalTime();;
    894         int64_t txCommonTime;
    895         if (OK != mCommonClock.localToCommon(txLocalTime, &txCommonTime)) {
    896             return false;
    897         }
    898 
    899         pkt.nak = 0;
    900         pkt.clientTxLocalTime  = request->clientTxLocalTime;
    901         pkt.masterRxCommonTime = rxCommonTime;
    902         pkt.masterTxCommonTime = txCommonTime;
    903     } else {
    904         pkt.nak = 1;
    905         pkt.clientTxLocalTime  = 0;
    906         pkt.masterRxCommonTime = 0;
    907         pkt.masterTxCommonTime = 0;
    908     }
    909 
    910     uint8_t buf[256];
    911     ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
    912     if (bufSz < 0)
    913         return false;
    914 
    915     ssize_t sendBytes = sendto(
    916             mSocket, &buf, bufSz, 0,
    917             reinterpret_cast<const sockaddr *>(&srcAddr),
    918             sizeof(srcAddr));
    919     if (sendBytes == -1) {
    920         ALOGE("%s:%d sendto failed", __PRETTY_FUNCTION__, __LINE__);
    921         return false;
    922     }
    923 
    924     return true;
    925 }
    926 
    927 bool CommonTimeServer::handleSyncResponse(
    928         const SyncResponsePacket* response,
    929         const sockaddr_storage& srcAddr) {
    930     if (mState != ICommonClock::STATE_CLIENT)
    931         return true;
    932 
    933     assert(mMasterEPValid);
    934     if (!sockaddrMatch(srcAddr, mMasterEP, true)) {
    935         char srcEP[64], expectedEP[64];
    936         sockaddrToString(srcAddr, true, srcEP, sizeof(srcEP));
    937         sockaddrToString(mMasterEP, true, expectedEP, sizeof(expectedEP));
    938         ALOGI("Dropping sync response from unexpected address."
    939              " Expected %s Got %s", expectedEP, srcEP);
    940         return true;
    941     }
    942 
    943     if (response->nak) {
    944         // if our master is no longer accepting requests, then we need to find
    945         // a new master
    946         return becomeRonin("master NAK'ed");
    947     }
    948 
    949     mClient_SyncRequestPending = 0;
    950     mClient_SyncRequestTimeouts = 0;
    951     mClient_PacketRTTLog.logRX(response->clientTxLocalTime,
    952                                mLastPacketRxLocalTime);
    953 
    954     bool result;
    955     if (!(mClient_SyncRespsRXedFromCurMaster++)) {
    956         // the first request/response exchange between a client and a master
    957         // may take unusually long due to ARP, so discard it.
    958         result = true;
    959     } else {
    960         int64_t clientTxLocalTime  = response->clientTxLocalTime;
    961         int64_t clientRxLocalTime  = mLastPacketRxLocalTime;
    962         int64_t masterTxCommonTime = response->masterTxCommonTime;
    963         int64_t masterRxCommonTime = response->masterRxCommonTime;
    964 
    965         int64_t rtt       = (clientRxLocalTime - clientTxLocalTime);
    966         int64_t avgLocal  = (clientTxLocalTime + clientRxLocalTime) >> 1;
    967         int64_t avgCommon = (masterTxCommonTime + masterRxCommonTime) >> 1;
    968 
    969         // if the RTT of the packet is significantly larger than the panic
    970         // threshold, we should simply discard it.  Its better to do nothing
    971         // than to take cues from a packet like that.
    972         int64_t rttCommon = mCommonClock.localDurationToCommonDuration(rtt);
    973         if (rttCommon > (static_cast<int64_t>(mPanicThresholdUsec) *
    974                          kRTTDiscardPanicThreshMultiplier)) {
    975             ALOGV("Dropping sync response with RTT of %" PRId64 " uSec", rttCommon);
    976             mClient_ExpiredSyncRespsRXedFromCurMaster++;
    977             if (shouldPanicNotGettingGoodData())
    978                 return becomeInitial("RX panic, no good data");
    979             return true;
    980         } else {
    981             result = mClockRecovery.pushDisciplineEvent(avgLocal, avgCommon, rttCommon);
    982             mClient_LastGoodSyncRX = clientRxLocalTime;
    983 
    984             if (result) {
    985                 // indicate to listeners that we've synced to the common timeline
    986                 notifyClockSync();
    987             } else {
    988                 ALOGE("Panic!  Observed clock sync error is too high to tolerate,"
    989                         " resetting state machine and starting over.");
    990                 notifyClockSyncLoss();
    991                 return becomeInitial("panic");
    992             }
    993         }
    994     }
    995 
    996     mCurTimeout.setTimeout(mSyncRequestIntervalMs);
    997     return result;
    998 }
    999 
   1000 bool CommonTimeServer::handleMasterAnnouncement(
   1001         const MasterAnnouncementPacket* packet,
   1002         const sockaddr_storage& srcAddr) {
   1003     uint64_t newDeviceID   = packet->deviceID;
   1004     uint8_t  newDevicePrio = packet->devicePriority;
   1005     uint64_t newTimelineID = packet->timelineID;
   1006 
   1007     // Skip our own messages which come back via broadcast loopback.
   1008     if (newDeviceID == mDeviceID)
   1009         return true;
   1010 
   1011     char srcEPStr[64];
   1012     sockaddrToString(srcAddr, true, srcEPStr, sizeof(srcEPStr));
   1013     mElectionLog.log("RXed master announcement while in state %s.  "
   1014                      "src %s srcDevID %lld srcPrio %u srcTID %016llx",
   1015                      stateToString(mState), srcEPStr,
   1016                      newDeviceID, static_cast<uint32_t>(newDevicePrio),
   1017                      newTimelineID);
   1018 
   1019     if (mState == ICommonClock::STATE_INITIAL ||
   1020         mState == ICommonClock::STATE_RONIN ||
   1021         mState == ICommonClock::STATE_WAIT_FOR_ELECTION) {
   1022         // if we aren't currently following a master, then start following
   1023         // this new master
   1024         return becomeClient(srcAddr,
   1025                             newDeviceID,
   1026                             newDevicePrio,
   1027                             newTimelineID,
   1028                             "heard master announcement");
   1029     } else if (mState == ICommonClock::STATE_CLIENT) {
   1030         // if the new master wins arbitration against our current master,
   1031         // then become a client of the new master
   1032         if (arbitrateMaster(newDeviceID,
   1033                             newDevicePrio,
   1034                             mClient_MasterDeviceID,
   1035                             mClient_MasterDevicePriority))
   1036             return becomeClient(srcAddr,
   1037                                 newDeviceID,
   1038                                 newDevicePrio,
   1039                                 newTimelineID,
   1040                                 "heard master announcement");
   1041     } else if (mState == ICommonClock::STATE_MASTER) {
   1042         // two masters are competing - if the new one wins arbitration, then
   1043         // cease acting as master
   1044         if (arbitrateMaster(newDeviceID, newDevicePrio,
   1045                             mDeviceID, effectivePriority()))
   1046             return becomeClient(srcAddr, newDeviceID,
   1047                                 newDevicePrio, newTimelineID,
   1048                                 "heard master announcement");
   1049     }
   1050 
   1051     return true;
   1052 }
   1053 
   1054 bool CommonTimeServer::sendWhoIsMasterRequest() {
   1055     assert(mState == ICommonClock::STATE_INITIAL || mState == ICommonClock::STATE_RONIN);
   1056 
   1057     // If we have no socket, then we must be in the unconfigured initial state.
   1058     // Don't report any errors, just don't try to send the initial who-is-master
   1059     // query.  Eventually, our network will either become configured, or we will
   1060     // be forced into network-less master mode by higher level code.
   1061     if (mSocket < 0) {
   1062         assert(mState == ICommonClock::STATE_INITIAL);
   1063         return true;
   1064     }
   1065 
   1066     bool ret = false;
   1067     WhoIsMasterRequestPacket pkt;
   1068     pkt.initHeader(mSyncGroupID);
   1069     pkt.senderDeviceID = mDeviceID;
   1070     pkt.senderDevicePriority = effectivePriority();
   1071 
   1072     uint8_t buf[256];
   1073     ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
   1074     if (bufSz >= 0) {
   1075         char dstEPStr[64];
   1076         sockaddrToString(mMasterElectionEP, true, dstEPStr, sizeof(dstEPStr));
   1077         mElectionLog.log("TXing WhoIs master request to %s while in state %s.  "
   1078                          "ourTID %016llx ourGID %016llx ourDID %016llx "
   1079                          "ourPrio %u",
   1080                          dstEPStr, stateToString(mState),
   1081                          mTimelineID, mSyncGroupID,
   1082                          pkt.senderDeviceID, pkt.senderDevicePriority);
   1083 
   1084         ssize_t sendBytes = sendto(
   1085                 mSocket, buf, bufSz, 0,
   1086                 reinterpret_cast<const sockaddr *>(&mMasterElectionEP),
   1087                 sizeof(mMasterElectionEP));
   1088         if (sendBytes < 0)
   1089             ALOGE("WhoIsMaster sendto failed (errno %d)", errno);
   1090         ret = true;
   1091     }
   1092 
   1093     if (mState == ICommonClock::STATE_INITIAL) {
   1094         mCurTimeout.setTimeout(kInitial_WhoIsMasterTimeoutMs);
   1095     } else {
   1096         mCurTimeout.setTimeout(kRonin_WhoIsMasterTimeoutMs);
   1097     }
   1098 
   1099     return ret;
   1100 }
   1101 
   1102 bool CommonTimeServer::sendSyncRequest() {
   1103     // If we are sending sync requests, then we must be in the client state and
   1104     // we must have a socket (when we have no network, we are only supposed to
   1105     // be in INITIAL or MASTER)
   1106     assert(mState == ICommonClock::STATE_CLIENT);
   1107     assert(mSocket >= 0);
   1108 
   1109     bool ret = false;
   1110     SyncRequestPacket pkt;
   1111     pkt.initHeader(mTimelineID, mSyncGroupID);
   1112     pkt.clientTxLocalTime = mLocalClock.getLocalTime();
   1113 
   1114     if (!mClient_FirstSyncTX)
   1115         mClient_FirstSyncTX = pkt.clientTxLocalTime;
   1116 
   1117     mClient_PacketRTTLog.logTX(pkt.clientTxLocalTime);
   1118 
   1119     uint8_t buf[256];
   1120     ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
   1121     if (bufSz >= 0) {
   1122         ssize_t sendBytes = sendto(
   1123                 mSocket, buf, bufSz, 0,
   1124                 reinterpret_cast<const sockaddr *>(&mMasterEP),
   1125                 sizeof(mMasterEP));
   1126         if (sendBytes < 0)
   1127             ALOGE("SyncRequest sendto failed (errno %d)", errno);
   1128         ret = true;
   1129     }
   1130 
   1131     mClient_SyncsSentToCurMaster++;
   1132     mCurTimeout.setTimeout(mSyncRequestIntervalMs);
   1133     mClient_SyncRequestPending = true;
   1134 
   1135     return ret;
   1136 }
   1137 
   1138 bool CommonTimeServer::sendMasterAnnouncement() {
   1139     bool ret = false;
   1140     assert(mState == ICommonClock::STATE_MASTER);
   1141 
   1142     // If we are being asked to send a master announcement, but we have no
   1143     // socket, we must be in network-less master mode.  Don't bother to send the
   1144     // announcement, and don't bother to schedule a timeout.  When the network
   1145     // comes up, the work thread will get poked and start the process of
   1146     // figuring out who the current master should be.
   1147     if (mSocket < 0) {
   1148         mCurTimeout.setTimeout(kInfiniteTimeout);
   1149         return true;
   1150     }
   1151 
   1152     MasterAnnouncementPacket pkt;
   1153     pkt.initHeader(mTimelineID, mSyncGroupID);
   1154     pkt.deviceID = mDeviceID;
   1155     pkt.devicePriority = effectivePriority();
   1156 
   1157     uint8_t buf[256];
   1158     ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
   1159     if (bufSz >= 0) {
   1160         char dstEPStr[64];
   1161         sockaddrToString(mMasterElectionEP, true, dstEPStr, sizeof(dstEPStr));
   1162         mElectionLog.log("TXing Master announcement to %s while in state %s.  "
   1163                          "ourTID %016llx ourGID %016llx ourDID %016llx "
   1164                          "ourPrio %u",
   1165                          dstEPStr, stateToString(mState),
   1166                          mTimelineID, mSyncGroupID,
   1167                          pkt.deviceID, pkt.devicePriority);
   1168 
   1169         ssize_t sendBytes = sendto(
   1170                 mSocket, buf, bufSz, 0,
   1171                 reinterpret_cast<const sockaddr *>(&mMasterElectionEP),
   1172                 sizeof(mMasterElectionEP));
   1173         if (sendBytes < 0)
   1174             ALOGE("MasterAnnouncement sendto failed (errno %d)", errno);
   1175         ret = true;
   1176     }
   1177 
   1178     mCurTimeout.setTimeout(mMasterAnnounceIntervalMs);
   1179     return ret;
   1180 }
   1181 
   1182 bool CommonTimeServer::becomeClient(const sockaddr_storage& masterEP,
   1183                                     uint64_t masterDeviceID,
   1184                                     uint8_t  masterDevicePriority,
   1185                                     uint64_t timelineID,
   1186                                     const char* cause) {
   1187     char newEPStr[64], oldEPStr[64];
   1188     sockaddrToString(masterEP, true, newEPStr, sizeof(newEPStr));
   1189     sockaddrToString(mMasterEP, mMasterEPValid, oldEPStr, sizeof(oldEPStr));
   1190 
   1191     mStateChangeLog.log(ANDROID_LOG_INFO, LOG_TAG,
   1192             "%s --> CLIENT (%s) :%s"
   1193             " OldMaster: %02x-%014llx::%016llx::%s"
   1194             " NewMaster: %02x-%014llx::%016llx::%s",
   1195             stateToString(mState), cause,
   1196             (mTimelineID != timelineID) ? " (new timeline)" : "",
   1197             mClient_MasterDevicePriority, mClient_MasterDeviceID,
   1198             mTimelineID, oldEPStr,
   1199             masterDevicePriority, masterDeviceID,
   1200             timelineID, newEPStr);
   1201 
   1202     if (mTimelineID != timelineID) {
   1203         // start following a new timeline
   1204         mTimelineID = timelineID;
   1205         mClockRecovery.reset(true, true);
   1206         notifyClockSyncLoss();
   1207     } else {
   1208         // start following a new master on the existing timeline
   1209         mClockRecovery.reset(false, true);
   1210     }
   1211 
   1212     mMasterEP = masterEP;
   1213     mMasterEPValid = true;
   1214 
   1215     // If we are on a real network as a client of a real master, then we should
   1216     // no longer force low priority.  If our master disappears, we should have
   1217     // the high priority bit set during the election to replace the master
   1218     // because this group was a real group and not a singleton created in
   1219     // networkless mode.
   1220     setForceLowPriority(false);
   1221 
   1222     mClient_MasterDeviceID = masterDeviceID;
   1223     mClient_MasterDevicePriority = masterDevicePriority;
   1224     resetSyncStats();
   1225 
   1226     setState(ICommonClock::STATE_CLIENT);
   1227 
   1228     // add some jitter to when the various clients send their requests
   1229     // in order to reduce the likelihood that a group of clients overload
   1230     // the master after receiving a master announcement
   1231     usleep((lrand48() % 100) * 1000);
   1232 
   1233     return sendSyncRequest();
   1234 }
   1235 
   1236 bool CommonTimeServer::becomeMaster(const char* cause) {
   1237     uint64_t oldTimelineID = mTimelineID;
   1238     if (mTimelineID == ICommonClock::kInvalidTimelineID) {
   1239         // this device has not been following any existing timeline,
   1240         // so it will create a new timeline and declare itself master
   1241         assert(!mCommonClock.isValid());
   1242 
   1243         // set the common time basis
   1244         mCommonClock.setBasis(mLocalClock.getLocalTime(), 0);
   1245 
   1246         // assign an arbitrary timeline iD
   1247         assignTimelineID();
   1248 
   1249         // notify listeners that we've created a common timeline
   1250         notifyClockSync();
   1251     }
   1252 
   1253     mStateChangeLog.log(ANDROID_LOG_INFO, LOG_TAG,
   1254             "%s --> MASTER (%s) : %s timeline %016llx",
   1255             stateToString(mState), cause,
   1256             (oldTimelineID == mTimelineID) ? "taking ownership of"
   1257                                            : "creating new",
   1258             mTimelineID);
   1259 
   1260     memset(&mMasterEP, 0, sizeof(mMasterEP));
   1261     mMasterEPValid = false;
   1262     mClient_MasterDevicePriority = effectivePriority();
   1263     mClient_MasterDeviceID = mDeviceID;
   1264     mClockRecovery.reset(false, true);
   1265     resetSyncStats();
   1266 
   1267     setState(ICommonClock::STATE_MASTER);
   1268     return sendMasterAnnouncement();
   1269 }
   1270 
   1271 bool CommonTimeServer::becomeRonin(const char* cause) {
   1272     // If we were the client of a given timeline, but had never received even a
   1273     // single time sync packet, then we transition back to Initial instead of
   1274     // Ronin.  If we transition to Ronin and end up becoming the new Master, we
   1275     // will be unable to service requests for other clients because we never
   1276     // actually knew what time it was.  By going to initial, we ensure that
   1277     // other clients who know what time it is, but would lose master arbitration
   1278     // in the Ronin case, will step up and become the proper new master of the
   1279     // old timeline.
   1280 
   1281     char oldEPStr[64];
   1282     sockaddrToString(mMasterEP, mMasterEPValid, oldEPStr, sizeof(oldEPStr));
   1283     memset(&mMasterEP, 0, sizeof(mMasterEP));
   1284     mMasterEPValid = false;
   1285 
   1286     if (mCommonClock.isValid()) {
   1287         mStateChangeLog.log(ANDROID_LOG_INFO, LOG_TAG,
   1288              "%s --> RONIN (%s) : lost track of previously valid timeline "
   1289              "%02x-%014llx::%016llx::%s (%d TXed %d RXed %d RXExpired)",
   1290              stateToString(mState), cause,
   1291              mClient_MasterDevicePriority, mClient_MasterDeviceID,
   1292              mTimelineID, oldEPStr,
   1293              mClient_SyncsSentToCurMaster,
   1294              mClient_SyncRespsRXedFromCurMaster,
   1295              mClient_ExpiredSyncRespsRXedFromCurMaster);
   1296 
   1297         mRonin_WhoIsMasterRequestTimeouts = 0;
   1298         setState(ICommonClock::STATE_RONIN);
   1299         return sendWhoIsMasterRequest();
   1300     } else {
   1301         mStateChangeLog.log(ANDROID_LOG_INFO, LOG_TAG,
   1302              "%s --> INITIAL (%s) : never synced timeline "
   1303              "%02x-%014llx::%016llx::%s (%d TXed %d RXed %d RXExpired)",
   1304              stateToString(mState), cause,
   1305              mClient_MasterDevicePriority, mClient_MasterDeviceID,
   1306              mTimelineID, oldEPStr,
   1307              mClient_SyncsSentToCurMaster,
   1308              mClient_SyncRespsRXedFromCurMaster,
   1309              mClient_ExpiredSyncRespsRXedFromCurMaster);
   1310 
   1311         return becomeInitial("ronin, no timeline");
   1312     }
   1313 }
   1314 
   1315 bool CommonTimeServer::becomeWaitForElection(const char* cause) {
   1316     mStateChangeLog.log(ANDROID_LOG_INFO, LOG_TAG,
   1317          "%s --> WAIT_FOR_ELECTION (%s) : dropping out of election,"
   1318          " waiting %d mSec for completion.",
   1319          stateToString(mState), cause, kWaitForElection_TimeoutMs);
   1320 
   1321     setState(ICommonClock::STATE_WAIT_FOR_ELECTION);
   1322     mCurTimeout.setTimeout(kWaitForElection_TimeoutMs);
   1323     return true;
   1324 }
   1325 
   1326 bool CommonTimeServer::becomeInitial(const char* cause) {
   1327     mStateChangeLog.log(ANDROID_LOG_INFO, LOG_TAG,
   1328                         "Entering INITIAL (%s), total reset.",
   1329                         cause);
   1330 
   1331     setState(ICommonClock::STATE_INITIAL);
   1332 
   1333     // reset clock recovery
   1334     mClockRecovery.reset(true, true);
   1335 
   1336     // reset internal state bookkeeping.
   1337     mCurTimeout.setTimeout(kInfiniteTimeout);
   1338     memset(&mMasterEP, 0, sizeof(mMasterEP));
   1339     mMasterEPValid = false;
   1340     mLastPacketRxLocalTime = 0;
   1341     mTimelineID = ICommonClock::kInvalidTimelineID;
   1342     mClockSynced = false;
   1343     mInitial_WhoIsMasterRequestTimeouts = 0;
   1344     mClient_MasterDeviceID = 0;
   1345     mClient_MasterDevicePriority = 0;
   1346     mRonin_WhoIsMasterRequestTimeouts = 0;
   1347     resetSyncStats();
   1348 
   1349     // send the first request to discover the master
   1350     return sendWhoIsMasterRequest();
   1351 }
   1352 
   1353 void CommonTimeServer::notifyClockSync() {
   1354     if (!mClockSynced) {
   1355         mClockSynced = true;
   1356         mICommonClock->notifyOnTimelineChanged(mTimelineID);
   1357     }
   1358 }
   1359 
   1360 void CommonTimeServer::notifyClockSyncLoss() {
   1361     if (mClockSynced) {
   1362         mClockSynced = false;
   1363         mICommonClock->notifyOnTimelineChanged(
   1364                 ICommonClock::kInvalidTimelineID);
   1365     }
   1366 }
   1367 
   1368 void CommonTimeServer::setState(ICommonClock::State s) {
   1369     mState = s;
   1370 }
   1371 
   1372 const char* CommonTimeServer::stateToString(ICommonClock::State s) {
   1373     switch(s) {
   1374         case ICommonClock::STATE_INITIAL:
   1375             return "INITIAL";
   1376         case ICommonClock::STATE_CLIENT:
   1377             return "CLIENT";
   1378         case ICommonClock::STATE_MASTER:
   1379             return "MASTER";
   1380         case ICommonClock::STATE_RONIN:
   1381             return "RONIN";
   1382         case ICommonClock::STATE_WAIT_FOR_ELECTION:
   1383             return "WAIT_FOR_ELECTION";
   1384         default:
   1385             return "unknown";
   1386     }
   1387 }
   1388 
   1389 void CommonTimeServer::sockaddrToString(const sockaddr_storage& addr,
   1390                                         bool addrValid,
   1391                                         char* buf, size_t bufLen) {
   1392     if (!bufLen || !buf)
   1393         return;
   1394 
   1395     if (addrValid) {
   1396         switch (addr.ss_family) {
   1397             case AF_INET: {
   1398                 const struct sockaddr_in* sa =
   1399                     reinterpret_cast<const struct sockaddr_in*>(&addr);
   1400                 unsigned long a = ntohl(sa->sin_addr.s_addr);
   1401                 uint16_t      p = ntohs(sa->sin_port);
   1402                 snprintf(buf, bufLen, "%lu.%lu.%lu.%lu:%hu",
   1403                         ((a >> 24) & 0xFF), ((a >> 16) & 0xFF),
   1404                         ((a >>  8) & 0xFF),  (a        & 0xFF), p);
   1405             } break;
   1406 
   1407             case AF_INET6: {
   1408                 const struct sockaddr_in6* sa =
   1409                     reinterpret_cast<const struct sockaddr_in6*>(&addr);
   1410                 const uint8_t* a = sa->sin6_addr.s6_addr;
   1411                 uint16_t       p = ntohs(sa->sin6_port);
   1412                 snprintf(buf, bufLen,
   1413                         "%02X%02X:%02X%02X:%02X%02X:%02X%02X:"
   1414                         "%02X%02X:%02X%02X:%02X%02X:%02X%02X port %hd",
   1415                         a[0], a[1], a[ 2], a[ 3], a[ 4], a[ 5], a[ 6], a[ 7],
   1416                         a[8], a[9], a[10], a[11], a[12], a[13], a[14], a[15],
   1417                         p);
   1418             } break;
   1419 
   1420             default:
   1421                 snprintf(buf, bufLen,
   1422                          "<unknown sockaddr family %d>", addr.ss_family);
   1423                 break;
   1424         }
   1425     } else {
   1426         snprintf(buf, bufLen, "<none>");
   1427     }
   1428 
   1429     buf[bufLen - 1] = 0;
   1430 }
   1431 
   1432 bool CommonTimeServer::sockaddrMatch(const sockaddr_storage& a1,
   1433                                      const sockaddr_storage& a2,
   1434                                      bool matchAddressOnly) {
   1435     if (a1.ss_family != a2.ss_family)
   1436         return false;
   1437 
   1438     switch (a1.ss_family) {
   1439         case AF_INET: {
   1440             const struct sockaddr_in* sa1 =
   1441                 reinterpret_cast<const struct sockaddr_in*>(&a1);
   1442             const struct sockaddr_in* sa2 =
   1443                 reinterpret_cast<const struct sockaddr_in*>(&a2);
   1444 
   1445             if (sa1->sin_addr.s_addr != sa2->sin_addr.s_addr)
   1446                 return false;
   1447 
   1448             return (matchAddressOnly || (sa1->sin_port == sa2->sin_port));
   1449         } break;
   1450 
   1451         case AF_INET6: {
   1452             const struct sockaddr_in6* sa1 =
   1453                 reinterpret_cast<const struct sockaddr_in6*>(&a1);
   1454             const struct sockaddr_in6* sa2 =
   1455                 reinterpret_cast<const struct sockaddr_in6*>(&a2);
   1456 
   1457             if (memcmp(&sa1->sin6_addr, &sa2->sin6_addr, sizeof(sa2->sin6_addr)))
   1458                 return false;
   1459 
   1460             return (matchAddressOnly || (sa1->sin6_port == sa2->sin6_port));
   1461         } break;
   1462 
   1463         // Huh?  We don't deal in non-IPv[46] addresses.  Not sure how we got
   1464         // here, but we don't know how to comapre these addresses and simply
   1465         // default to a no-match decision.
   1466         default: return false;
   1467     }
   1468 }
   1469 
   1470 bool CommonTimeServer::shouldPanicNotGettingGoodData() {
   1471     if (mClient_FirstSyncTX) {
   1472         int64_t now = mLocalClock.getLocalTime();
   1473         int64_t delta = now - (mClient_LastGoodSyncRX
   1474                              ? mClient_LastGoodSyncRX
   1475                              : mClient_FirstSyncTX);
   1476         int64_t deltaUsec = mCommonClock.localDurationToCommonDuration(delta);
   1477 
   1478         if (deltaUsec >= kNoGoodDataPanicThresholdUsec)
   1479             return true;
   1480     }
   1481 
   1482     return false;
   1483 }
   1484 
   1485 void CommonTimeServer::PacketRTTLog::logTX(int64_t txTime) {
   1486     txTimes[wrPtr] = txTime;
   1487     rxTimes[wrPtr] = 0;
   1488     wrPtr = (wrPtr + 1) % RTT_LOG_SIZE;
   1489     if (!wrPtr)
   1490         logFull = true;
   1491 }
   1492 
   1493 void CommonTimeServer::PacketRTTLog::logRX(int64_t txTime, int64_t rxTime) {
   1494     if (!logFull && !wrPtr)
   1495         return;
   1496 
   1497     uint32_t i = logFull ? wrPtr : 0;
   1498     do {
   1499         if (txTimes[i] == txTime) {
   1500             rxTimes[i] = rxTime;
   1501             break;
   1502         }
   1503         i = (i + 1) % RTT_LOG_SIZE;
   1504     } while (i != wrPtr);
   1505 }
   1506 
   1507 }  // namespace android
   1508