Home | History | Annotate | Download | only in models
      1 // Generated file (from: lstm.mod.py). Do not edit
      2 void CreateModel(Model *model) {
      3   OperandType type8(Type::FLOAT32, {});
      4   OperandType type7(Type::INT32, {});
      5   OperandType type5(Type::TENSOR_FLOAT32, {0,0});
      6   OperandType type3(Type::TENSOR_FLOAT32, {0});
      7   OperandType type9(Type::TENSOR_FLOAT32, {1, 16});
      8   OperandType type0(Type::TENSOR_FLOAT32, {1, 2});
      9   OperandType type6(Type::TENSOR_FLOAT32, {1, 4});
     10   OperandType type1(Type::TENSOR_FLOAT32, {4, 2});
     11   OperandType type2(Type::TENSOR_FLOAT32, {4, 4});
     12   OperandType type4(Type::TENSOR_FLOAT32, {4});
     13   // Phase 1, operands
     14   auto input = model->addOperand(&type0);
     15   auto input_to_input_weights = model->addOperand(&type1);
     16   auto input_to_forget_weights = model->addOperand(&type1);
     17   auto input_to_cell_weights = model->addOperand(&type1);
     18   auto input_to_output_weights = model->addOperand(&type1);
     19   auto recurrent_to_intput_weights = model->addOperand(&type2);
     20   auto recurrent_to_forget_weights = model->addOperand(&type2);
     21   auto recurrent_to_cell_weights = model->addOperand(&type2);
     22   auto recurrent_to_output_weights = model->addOperand(&type2);
     23   auto cell_to_input_weights = model->addOperand(&type3);
     24   auto cell_to_forget_weights = model->addOperand(&type3);
     25   auto cell_to_output_weights = model->addOperand(&type3);
     26   auto input_gate_bias = model->addOperand(&type4);
     27   auto forget_gate_bias = model->addOperand(&type4);
     28   auto cell_gate_bias = model->addOperand(&type4);
     29   auto output_gate_bias = model->addOperand(&type4);
     30   auto projection_weights = model->addOperand(&type5);
     31   auto projection_bias = model->addOperand(&type3);
     32   auto output_state_in = model->addOperand(&type6);
     33   auto cell_state_in = model->addOperand(&type6);
     34   auto activation_param = model->addOperand(&type7);
     35   auto cell_clip_param = model->addOperand(&type8);
     36   auto proj_clip_param = model->addOperand(&type8);
     37   auto scratch_buffer = model->addOperand(&type9);
     38   auto output_state_out = model->addOperand(&type6);
     39   auto cell_state_out = model->addOperand(&type6);
     40   auto output = model->addOperand(&type6);
     41   // Phase 2, operations
     42   static int32_t activation_param_init[] = {4};
     43   model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1);
     44   static float cell_clip_param_init[] = {0.0f};
     45   model->setOperandValue(cell_clip_param, cell_clip_param_init, sizeof(float) * 1);
     46   static float proj_clip_param_init[] = {0.0f};
     47   model->setOperandValue(proj_clip_param, proj_clip_param_init, sizeof(float) * 1);
     48   model->addOperation(ANEURALNETWORKS_LSTM, {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in, activation_param, cell_clip_param, proj_clip_param}, {scratch_buffer, output_state_out, cell_state_out, output});
     49   // Phase 3, inputs and outputs
     50   model->identifyInputsAndOutputs(
     51     {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in},
     52     {scratch_buffer, output_state_out, cell_state_out, output});
     53   assert(model->isValid());
     54 }
     55 
     56 bool is_ignored(int i) {
     57   static std::set<int> ignore = {0};
     58   return ignore.find(i) != ignore.end();
     59 }
     60