Home | History | Annotate | Download | only in tests
      1 #include <binder/Binder.h>
      2 #include <binder/IBinder.h>
      3 #include <binder/IPCThreadState.h>
      4 #include <binder/IServiceManager.h>
      5 #include <string>
      6 #include <cstring>
      7 #include <cstdlib>
      8 #include <cstdio>
      9 
     10 #include <iostream>
     11 #include <vector>
     12 #include <tuple>
     13 
     14 #include <unistd.h>
     15 #include <sys/wait.h>
     16 
     17 using namespace std;
     18 using namespace android;
     19 
     20 enum BinderWorkerServiceCode {
     21     BINDER_NOP = IBinder::FIRST_CALL_TRANSACTION,
     22 };
     23 
     24 #define ASSERT_TRUE(cond) \
     25 do { \
     26     if (!(cond)) {\
     27        cerr << __func__ << ":" << __LINE__ << " condition:" << #cond << " failed\n" << endl; \
     28        exit(EXIT_FAILURE); \
     29     } \
     30 } while (0)
     31 
     32 class BinderWorkerService : public BBinder
     33 {
     34 public:
     35     BinderWorkerService() {}
     36     ~BinderWorkerService() {}
     37     virtual status_t onTransact(uint32_t code,
     38                                 const Parcel& data, Parcel* reply,
     39                                 uint32_t flags = 0) {
     40         (void)flags;
     41         (void)data;
     42         (void)reply;
     43         switch (code) {
     44         case BINDER_NOP:
     45             return NO_ERROR;
     46         default:
     47             return UNKNOWN_TRANSACTION;
     48         };
     49     }
     50 };
     51 
     52 class Pipe {
     53     int m_readFd;
     54     int m_writeFd;
     55     Pipe(int readFd, int writeFd) : m_readFd{readFd}, m_writeFd{writeFd} {}
     56     Pipe(const Pipe &) = delete;
     57     Pipe& operator=(const Pipe &) = delete;
     58     Pipe& operator=(const Pipe &&) = delete;
     59 public:
     60     Pipe(Pipe&& rval) noexcept {
     61         m_readFd = rval.m_readFd;
     62         m_writeFd = rval.m_writeFd;
     63         rval.m_readFd = 0;
     64         rval.m_writeFd = 0;
     65     }
     66     ~Pipe() {
     67         if (m_readFd)
     68             close(m_readFd);
     69         if (m_writeFd)
     70             close(m_writeFd);
     71     }
     72     void signal() {
     73         bool val = true;
     74         int error = write(m_writeFd, &val, sizeof(val));
     75         ASSERT_TRUE(error >= 0);
     76     };
     77     void wait() {
     78         bool val = false;
     79         int error = read(m_readFd, &val, sizeof(val));
     80         ASSERT_TRUE(error >= 0);
     81     }
     82     template <typename T> void send(const T& v) {
     83         int error = write(m_writeFd, &v, sizeof(T));
     84         ASSERT_TRUE(error >= 0);
     85     }
     86     template <typename T> void recv(T& v) {
     87         int error = read(m_readFd, &v, sizeof(T));
     88         ASSERT_TRUE(error >= 0);
     89     }
     90     static tuple<Pipe, Pipe> createPipePair() {
     91         int a[2];
     92         int b[2];
     93 
     94         int error1 = pipe(a);
     95         int error2 = pipe(b);
     96         ASSERT_TRUE(error1 >= 0);
     97         ASSERT_TRUE(error2 >= 0);
     98 
     99         return make_tuple(Pipe(a[0], b[1]), Pipe(b[0], a[1]));
    100     }
    101 };
    102 
    103 static const uint32_t num_buckets = 128;
    104 static uint64_t max_time_bucket = 50ull * 1000000;
    105 static uint64_t time_per_bucket = max_time_bucket / num_buckets;
    106 
    107 struct ProcResults {
    108     uint64_t m_worst = 0;
    109     uint32_t m_buckets[num_buckets] = {0};
    110     uint64_t m_transactions = 0;
    111     uint64_t m_long_transactions = 0;
    112     uint64_t m_total_time = 0;
    113     uint64_t m_best = max_time_bucket;
    114 
    115     void add_time(uint64_t time) {
    116         if (time > max_time_bucket) {
    117             m_long_transactions++;
    118         }
    119         m_buckets[min(time, max_time_bucket-1) / time_per_bucket] += 1;
    120         m_best = min(time, m_best);
    121         m_worst = max(time, m_worst);
    122         m_transactions += 1;
    123         m_total_time += time;
    124     }
    125     static ProcResults combine(const ProcResults& a, const ProcResults& b) {
    126         ProcResults ret;
    127         for (int i = 0; i < num_buckets; i++) {
    128             ret.m_buckets[i] = a.m_buckets[i] + b.m_buckets[i];
    129         }
    130         ret.m_worst = max(a.m_worst, b.m_worst);
    131         ret.m_best = min(a.m_best, b.m_best);
    132         ret.m_transactions = a.m_transactions + b.m_transactions;
    133         ret.m_long_transactions = a.m_long_transactions + b.m_long_transactions;
    134         ret.m_total_time = a.m_total_time + b.m_total_time;
    135         return ret;
    136     }
    137     void dump() {
    138         if (m_long_transactions > 0) {
    139             cout << (double)m_long_transactions / m_transactions << "% of transactions took longer "
    140                 "than estimated max latency. Consider setting -m to be higher than "
    141                  << m_worst / 1000 << " microseconds" << endl;
    142         }
    143 
    144         double best = (double)m_best / 1.0E6;
    145         double worst = (double)m_worst / 1.0E6;
    146         double average = (double)m_total_time / m_transactions / 1.0E6;
    147         cout << "average:" << average << "ms worst:" << worst << "ms best:" << best << "ms" << endl;
    148 
    149         uint64_t cur_total = 0;
    150         float time_per_bucket_ms = time_per_bucket / 1.0E6;
    151         for (int i = 0; i < num_buckets; i++) {
    152             float cur_time = time_per_bucket_ms * i + 0.5f * time_per_bucket_ms;
    153             if ((cur_total < 0.5f * m_transactions) && (cur_total + m_buckets[i] >= 0.5f * m_transactions)) {
    154                 cout << "50%: " << cur_time << " ";
    155             }
    156             if ((cur_total < 0.9f * m_transactions) && (cur_total + m_buckets[i] >= 0.9f * m_transactions)) {
    157                 cout << "90%: " << cur_time << " ";
    158             }
    159             if ((cur_total < 0.95f * m_transactions) && (cur_total + m_buckets[i] >= 0.95f * m_transactions)) {
    160                 cout << "95%: " << cur_time << " ";
    161             }
    162             if ((cur_total < 0.99f * m_transactions) && (cur_total + m_buckets[i] >= 0.99f * m_transactions)) {
    163                 cout << "99%: " << cur_time << " ";
    164             }
    165             cur_total += m_buckets[i];
    166         }
    167         cout << endl;
    168     }
    169 };
    170 
    171 String16 generateServiceName(int num)
    172 {
    173     char num_str[32];
    174     snprintf(num_str, sizeof(num_str), "%d", num);
    175     String16 serviceName = String16("binderWorker") + String16(num_str);
    176     return serviceName;
    177 }
    178 
    179 void worker_fx(int num,
    180                int worker_count,
    181                int iterations,
    182                int payload_size,
    183                bool cs_pair,
    184                Pipe p)
    185 {
    186     // Create BinderWorkerService and for go.
    187     ProcessState::self()->startThreadPool();
    188     sp<IServiceManager> serviceMgr = defaultServiceManager();
    189     sp<BinderWorkerService> service = new BinderWorkerService;
    190     serviceMgr->addService(generateServiceName(num), service);
    191 
    192     srand(num);
    193     p.signal();
    194     p.wait();
    195 
    196     // If client/server pairs, then half the workers are
    197     // servers and half are clients
    198     int server_count = cs_pair ? worker_count / 2 : worker_count;
    199 
    200     // Get references to other binder services.
    201     cout << "Created BinderWorker" << num << endl;
    202     (void)worker_count;
    203     vector<sp<IBinder> > workers;
    204     for (int i = 0; i < server_count; i++) {
    205         if (num == i)
    206             continue;
    207         workers.push_back(serviceMgr->getService(generateServiceName(i)));
    208     }
    209 
    210     // Run the benchmark if client
    211     ProcResults results;
    212     chrono::time_point<chrono::high_resolution_clock> start, end;
    213     for (int i = 0; (!cs_pair || num >= server_count) && i < iterations; i++) {
    214         Parcel data, reply;
    215         int target = cs_pair ? num % server_count : rand() % workers.size();
    216         int sz = payload_size;
    217 
    218         while (sz >= sizeof(uint32_t)) {
    219             data.writeInt32(0);
    220             sz -= sizeof(uint32_t);
    221         }
    222         start = chrono::high_resolution_clock::now();
    223         status_t ret = workers[target]->transact(BINDER_NOP, data, &reply);
    224         end = chrono::high_resolution_clock::now();
    225 
    226         uint64_t cur_time = uint64_t(chrono::duration_cast<chrono::nanoseconds>(end - start).count());
    227         results.add_time(cur_time);
    228 
    229         if (ret != NO_ERROR) {
    230            cout << "thread " << num << " failed " << ret << "i : " << i << endl;
    231            exit(EXIT_FAILURE);
    232         }
    233     }
    234 
    235     // Signal completion to master and wait.
    236     p.signal();
    237     p.wait();
    238 
    239     // Send results to master and wait for go to exit.
    240     p.send(results);
    241     p.wait();
    242 
    243     exit(EXIT_SUCCESS);
    244 }
    245 
    246 Pipe make_worker(int num, int iterations, int worker_count, int payload_size, bool cs_pair)
    247 {
    248     auto pipe_pair = Pipe::createPipePair();
    249     pid_t pid = fork();
    250     if (pid) {
    251         /* parent */
    252         return move(get<0>(pipe_pair));
    253     } else {
    254         /* child */
    255         worker_fx(num, worker_count, iterations, payload_size, cs_pair, move(get<1>(pipe_pair)));
    256         /* never get here */
    257         return move(get<0>(pipe_pair));
    258     }
    259 
    260 }
    261 
    262 void wait_all(vector<Pipe>& v)
    263 {
    264     for (int i = 0; i < v.size(); i++) {
    265         v[i].wait();
    266     }
    267 }
    268 
    269 void signal_all(vector<Pipe>& v)
    270 {
    271     for (int i = 0; i < v.size(); i++) {
    272         v[i].signal();
    273     }
    274 }
    275 
    276 void run_main(int iterations,
    277               int workers,
    278               int payload_size,
    279               int cs_pair,
    280               bool training_round=false)
    281 {
    282     vector<Pipe> pipes;
    283     // Create all the workers and wait for them to spawn.
    284     for (int i = 0; i < workers; i++) {
    285         pipes.push_back(make_worker(i, iterations, workers, payload_size, cs_pair));
    286     }
    287     wait_all(pipes);
    288 
    289     // Run the workers and wait for completion.
    290     chrono::time_point<chrono::high_resolution_clock> start, end;
    291     cout << "waiting for workers to complete" << endl;
    292     start = chrono::high_resolution_clock::now();
    293     signal_all(pipes);
    294     wait_all(pipes);
    295     end = chrono::high_resolution_clock::now();
    296 
    297     // Calculate overall throughput.
    298     double iterations_per_sec = double(iterations * workers) / (chrono::duration_cast<chrono::nanoseconds>(end - start).count() / 1.0E9);
    299     cout << "iterations per sec: " << iterations_per_sec << endl;
    300 
    301     // Collect all results from the workers.
    302     cout << "collecting results" << endl;
    303     signal_all(pipes);
    304     ProcResults tot_results;
    305     for (int i = 0; i < workers; i++) {
    306         ProcResults tmp_results;
    307         pipes[i].recv(tmp_results);
    308         tot_results = ProcResults::combine(tot_results, tmp_results);
    309     }
    310 
    311     // Kill all the workers.
    312     cout << "killing workers" << endl;
    313     signal_all(pipes);
    314     for (int i = 0; i < workers; i++) {
    315         int status;
    316         wait(&status);
    317         if (status != 0) {
    318             cout << "nonzero child status" << status << endl;
    319         }
    320     }
    321     if (training_round) {
    322         // sets max_time_bucket to 2 * m_worst from the training round.
    323         // Also needs to adjust time_per_bucket accordingly.
    324         max_time_bucket = 2 * tot_results.m_worst;
    325         time_per_bucket = max_time_bucket / num_buckets;
    326         cout << "Max latency during training: " << tot_results.m_worst / 1.0E6 << "ms" << endl;
    327     } else {
    328             tot_results.dump();
    329     }
    330 }
    331 
    332 int main(int argc, char *argv[])
    333 {
    334     int workers = 2;
    335     int iterations = 10000;
    336     int payload_size = 0;
    337     bool cs_pair = false;
    338     bool training_round = false;
    339     (void)argc;
    340     (void)argv;
    341 
    342     // Parse arguments.
    343     for (int i = 1; i < argc; i++) {
    344         if (string(argv[i]) == "--help") {
    345             cout << "Usage: binderThroughputTest [OPTIONS]" << endl;
    346             cout << "\t-i N    : Specify number of iterations." << endl;
    347             cout << "\t-m N    : Specify expected max latency in microseconds." << endl;
    348             cout << "\t-p      : Split workers into client/server pairs." << endl;
    349             cout << "\t-s N    : Specify payload size." << endl;
    350             cout << "\t-t N    : Run training round." << endl;
    351             cout << "\t-w N    : Specify total number of workers." << endl;
    352             return 0;
    353         }
    354         if (string(argv[i]) == "-w") {
    355             workers = atoi(argv[i+1]);
    356             i++;
    357             continue;
    358         }
    359         if (string(argv[i]) == "-i") {
    360             iterations = atoi(argv[i+1]);
    361             i++;
    362             continue;
    363         }
    364         if (string(argv[i]) == "-s") {
    365             payload_size = atoi(argv[i+1]);
    366             i++;
    367         }
    368         if (string(argv[i]) == "-p") {
    369             // client/server pairs instead of spreading
    370             // requests to all workers. If true, half
    371             // the workers become clients and half servers
    372             cs_pair = true;
    373         }
    374         if (string(argv[i]) == "-t") {
    375             // Run one training round before actually collecting data
    376             // to get an approximation of max latency.
    377             training_round = true;
    378         }
    379         if (string(argv[i]) == "-m") {
    380             // Caller specified the max latency in microseconds.
    381             // No need to run training round in this case.
    382             if (atoi(argv[i+1]) > 0) {
    383                 max_time_bucket = strtoull(argv[i+1], (char **)NULL, 10) * 1000;
    384                 time_per_bucket = max_time_bucket / num_buckets;
    385                 i++;
    386             } else {
    387                 cout << "Max latency -m must be positive." << endl;
    388                 exit(EXIT_FAILURE);
    389             }
    390         }
    391     }
    392 
    393     if (training_round) {
    394         cout << "Start training round" << endl;
    395         run_main(iterations, workers, payload_size, cs_pair, training_round=true);
    396         cout << "Completed training round" << endl << endl;
    397     }
    398 
    399     run_main(iterations, workers, payload_size, cs_pair);
    400     return 0;
    401 }
    402