Home | History | Annotate | Download | only in input
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "VelocityTracker"
     18 //#define LOG_NDEBUG 0
     19 
     20 // Log debug messages about velocity tracking.
     21 #define DEBUG_VELOCITY 0
     22 
     23 // Log debug messages about the progress of the algorithm itself.
     24 #define DEBUG_STRATEGY 0
     25 
     26 #include <inttypes.h>
     27 #include <limits.h>
     28 #include <math.h>
     29 
     30 #include <android-base/stringprintf.h>
     31 #include <cutils/properties.h>
     32 #include <input/VelocityTracker.h>
     33 #include <utils/BitSet.h>
     34 #include <utils/Timers.h>
     35 
     36 namespace android {
     37 
     38 // Nanoseconds per milliseconds.
     39 static const nsecs_t NANOS_PER_MS = 1000000;
     40 
     41 // Threshold for determining that a pointer has stopped moving.
     42 // Some input devices do not send ACTION_MOVE events in the case where a pointer has
     43 // stopped.  We need to detect this case so that we can accurately predict the
     44 // velocity after the pointer starts moving again.
     45 static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
     46 
     47 
     48 static float vectorDot(const float* a, const float* b, uint32_t m) {
     49     float r = 0;
     50     for (size_t i = 0; i < m; i++) {
     51         r += *(a++) * *(b++);
     52     }
     53     return r;
     54 }
     55 
     56 static float vectorNorm(const float* a, uint32_t m) {
     57     float r = 0;
     58     for (size_t i = 0; i < m; i++) {
     59         float t = *(a++);
     60         r += t * t;
     61     }
     62     return sqrtf(r);
     63 }
     64 
     65 #if DEBUG_STRATEGY || DEBUG_VELOCITY
     66 static std::string vectorToString(const float* a, uint32_t m) {
     67     std::string str;
     68     str += "[";
     69     for (size_t i = 0; i < m; i++) {
     70         if (i) {
     71             str += ",";
     72         }
     73         str += android::base::StringPrintf(" %f", *(a++));
     74     }
     75     str += " ]";
     76     return str;
     77 }
     78 #endif
     79 
     80 #if DEBUG_STRATEGY
     81 static std::string matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
     82     std::string str;
     83     str = "[";
     84     for (size_t i = 0; i < m; i++) {
     85         if (i) {
     86             str += ",";
     87         }
     88         str += " [";
     89         for (size_t j = 0; j < n; j++) {
     90             if (j) {
     91                 str += ",";
     92             }
     93             str += android::base::StringPrintf(" %f", a[rowMajor ? i * n + j : j * m + i]);
     94         }
     95         str += " ]";
     96     }
     97     str += " ]";
     98     return str;
     99 }
    100 #endif
    101 
    102 
    103 // --- VelocityTracker ---
    104 
    105 // The default velocity tracker strategy.
    106 // Although other strategies are available for testing and comparison purposes,
    107 // this is the strategy that applications will actually use.  Be very careful
    108 // when adjusting the default strategy because it can dramatically affect
    109 // (often in a bad way) the user experience.
    110 const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
    111 
    112 VelocityTracker::VelocityTracker(const char* strategy) :
    113         mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
    114     char value[PROPERTY_VALUE_MAX];
    115 
    116     // Allow the default strategy to be overridden using a system property for debugging.
    117     if (!strategy) {
    118         int length = property_get("debug.velocitytracker.strategy", value, NULL);
    119         if (length > 0) {
    120             strategy = value;
    121         } else {
    122             strategy = DEFAULT_STRATEGY;
    123         }
    124     }
    125 
    126     // Configure the strategy.
    127     if (!configureStrategy(strategy)) {
    128         ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
    129         if (!configureStrategy(DEFAULT_STRATEGY)) {
    130             LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
    131                     strategy);
    132         }
    133     }
    134 }
    135 
    136 VelocityTracker::~VelocityTracker() {
    137     delete mStrategy;
    138 }
    139 
    140 bool VelocityTracker::configureStrategy(const char* strategy) {
    141     mStrategy = createStrategy(strategy);
    142     return mStrategy != NULL;
    143 }
    144 
    145 VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
    146     if (!strcmp("impulse", strategy)) {
    147         // Physical model of pushing an object.  Quality: VERY GOOD.
    148         // Works with duplicate coordinates, unclean finger liftoff.
    149         return new ImpulseVelocityTrackerStrategy();
    150     }
    151     if (!strcmp("lsq1", strategy)) {
    152         // 1st order least squares.  Quality: POOR.
    153         // Frequently underfits the touch data especially when the finger accelerates
    154         // or changes direction.  Often underestimates velocity.  The direction
    155         // is overly influenced by historical touch points.
    156         return new LeastSquaresVelocityTrackerStrategy(1);
    157     }
    158     if (!strcmp("lsq2", strategy)) {
    159         // 2nd order least squares.  Quality: VERY GOOD.
    160         // Pretty much ideal, but can be confused by certain kinds of touch data,
    161         // particularly if the panel has a tendency to generate delayed,
    162         // duplicate or jittery touch coordinates when the finger is released.
    163         return new LeastSquaresVelocityTrackerStrategy(2);
    164     }
    165     if (!strcmp("lsq3", strategy)) {
    166         // 3rd order least squares.  Quality: UNUSABLE.
    167         // Frequently overfits the touch data yielding wildly divergent estimates
    168         // of the velocity when the finger is released.
    169         return new LeastSquaresVelocityTrackerStrategy(3);
    170     }
    171     if (!strcmp("wlsq2-delta", strategy)) {
    172         // 2nd order weighted least squares, delta weighting.  Quality: EXPERIMENTAL
    173         return new LeastSquaresVelocityTrackerStrategy(2,
    174                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
    175     }
    176     if (!strcmp("wlsq2-central", strategy)) {
    177         // 2nd order weighted least squares, central weighting.  Quality: EXPERIMENTAL
    178         return new LeastSquaresVelocityTrackerStrategy(2,
    179                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
    180     }
    181     if (!strcmp("wlsq2-recent", strategy)) {
    182         // 2nd order weighted least squares, recent weighting.  Quality: EXPERIMENTAL
    183         return new LeastSquaresVelocityTrackerStrategy(2,
    184                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
    185     }
    186     if (!strcmp("int1", strategy)) {
    187         // 1st order integrating filter.  Quality: GOOD.
    188         // Not as good as 'lsq2' because it cannot estimate acceleration but it is
    189         // more tolerant of errors.  Like 'lsq1', this strategy tends to underestimate
    190         // the velocity of a fling but this strategy tends to respond to changes in
    191         // direction more quickly and accurately.
    192         return new IntegratingVelocityTrackerStrategy(1);
    193     }
    194     if (!strcmp("int2", strategy)) {
    195         // 2nd order integrating filter.  Quality: EXPERIMENTAL.
    196         // For comparison purposes only.  Unlike 'int1' this strategy can compensate
    197         // for acceleration but it typically overestimates the effect.
    198         return new IntegratingVelocityTrackerStrategy(2);
    199     }
    200     if (!strcmp("legacy", strategy)) {
    201         // Legacy velocity tracker algorithm.  Quality: POOR.
    202         // For comparison purposes only.  This algorithm is strongly influenced by
    203         // old data points, consistently underestimates velocity and takes a very long
    204         // time to adjust to changes in direction.
    205         return new LegacyVelocityTrackerStrategy();
    206     }
    207     return NULL;
    208 }
    209 
    210 void VelocityTracker::clear() {
    211     mCurrentPointerIdBits.clear();
    212     mActivePointerId = -1;
    213 
    214     mStrategy->clear();
    215 }
    216 
    217 void VelocityTracker::clearPointers(BitSet32 idBits) {
    218     BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
    219     mCurrentPointerIdBits = remainingIdBits;
    220 
    221     if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
    222         mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
    223     }
    224 
    225     mStrategy->clearPointers(idBits);
    226 }
    227 
    228 void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
    229     while (idBits.count() > MAX_POINTERS) {
    230         idBits.clearLastMarkedBit();
    231     }
    232 
    233     if ((mCurrentPointerIdBits.value & idBits.value)
    234             && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
    235 #if DEBUG_VELOCITY
    236         ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
    237                 (eventTime - mLastEventTime) * 0.000001f);
    238 #endif
    239         // We have not received any movements for too long.  Assume that all pointers
    240         // have stopped.
    241         mStrategy->clear();
    242     }
    243     mLastEventTime = eventTime;
    244 
    245     mCurrentPointerIdBits = idBits;
    246     if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
    247         mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
    248     }
    249 
    250     mStrategy->addMovement(eventTime, idBits, positions);
    251 
    252 #if DEBUG_VELOCITY
    253     ALOGD("VelocityTracker: addMovement eventTime=%" PRId64 ", idBits=0x%08x, activePointerId=%d",
    254             eventTime, idBits.value, mActivePointerId);
    255     for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
    256         uint32_t id = iterBits.firstMarkedBit();
    257         uint32_t index = idBits.getIndexOfBit(id);
    258         iterBits.clearBit(id);
    259         Estimator estimator;
    260         getEstimator(id, &estimator);
    261         ALOGD("  %d: position (%0.3f, %0.3f), "
    262                 "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
    263                 id, positions[index].x, positions[index].y,
    264                 int(estimator.degree),
    265                 vectorToString(estimator.xCoeff, estimator.degree + 1).c_str(),
    266                 vectorToString(estimator.yCoeff, estimator.degree + 1).c_str(),
    267                 estimator.confidence);
    268     }
    269 #endif
    270 }
    271 
    272 void VelocityTracker::addMovement(const MotionEvent* event) {
    273     int32_t actionMasked = event->getActionMasked();
    274 
    275     switch (actionMasked) {
    276     case AMOTION_EVENT_ACTION_DOWN:
    277     case AMOTION_EVENT_ACTION_HOVER_ENTER:
    278         // Clear all pointers on down before adding the new movement.
    279         clear();
    280         break;
    281     case AMOTION_EVENT_ACTION_POINTER_DOWN: {
    282         // Start a new movement trace for a pointer that just went down.
    283         // We do this on down instead of on up because the client may want to query the
    284         // final velocity for a pointer that just went up.
    285         BitSet32 downIdBits;
    286         downIdBits.markBit(event->getPointerId(event->getActionIndex()));
    287         clearPointers(downIdBits);
    288         break;
    289     }
    290     case AMOTION_EVENT_ACTION_MOVE:
    291     case AMOTION_EVENT_ACTION_HOVER_MOVE:
    292         break;
    293     default:
    294         // Ignore all other actions because they do not convey any new information about
    295         // pointer movement.  We also want to preserve the last known velocity of the pointers.
    296         // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
    297         // of the pointers that went up.  ACTION_POINTER_UP does include the new position of
    298         // pointers that remained down but we will also receive an ACTION_MOVE with this
    299         // information if any of them actually moved.  Since we don't know how many pointers
    300         // will be going up at once it makes sense to just wait for the following ACTION_MOVE
    301         // before adding the movement.
    302         return;
    303     }
    304 
    305     size_t pointerCount = event->getPointerCount();
    306     if (pointerCount > MAX_POINTERS) {
    307         pointerCount = MAX_POINTERS;
    308     }
    309 
    310     BitSet32 idBits;
    311     for (size_t i = 0; i < pointerCount; i++) {
    312         idBits.markBit(event->getPointerId(i));
    313     }
    314 
    315     uint32_t pointerIndex[MAX_POINTERS];
    316     for (size_t i = 0; i < pointerCount; i++) {
    317         pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
    318     }
    319 
    320     nsecs_t eventTime;
    321     Position positions[pointerCount];
    322 
    323     size_t historySize = event->getHistorySize();
    324     for (size_t h = 0; h < historySize; h++) {
    325         eventTime = event->getHistoricalEventTime(h);
    326         for (size_t i = 0; i < pointerCount; i++) {
    327             uint32_t index = pointerIndex[i];
    328             positions[index].x = event->getHistoricalRawX(i, h);
    329             positions[index].y = event->getHistoricalRawY(i, h);
    330         }
    331         addMovement(eventTime, idBits, positions);
    332     }
    333 
    334     eventTime = event->getEventTime();
    335     for (size_t i = 0; i < pointerCount; i++) {
    336         uint32_t index = pointerIndex[i];
    337         positions[index].x = event->getRawX(i);
    338         positions[index].y = event->getRawY(i);
    339     }
    340     addMovement(eventTime, idBits, positions);
    341 }
    342 
    343 bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
    344     Estimator estimator;
    345     if (getEstimator(id, &estimator) && estimator.degree >= 1) {
    346         *outVx = estimator.xCoeff[1];
    347         *outVy = estimator.yCoeff[1];
    348         return true;
    349     }
    350     *outVx = 0;
    351     *outVy = 0;
    352     return false;
    353 }
    354 
    355 bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
    356     return mStrategy->getEstimator(id, outEstimator);
    357 }
    358 
    359 
    360 // --- LeastSquaresVelocityTrackerStrategy ---
    361 
    362 LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
    363         uint32_t degree, Weighting weighting) :
    364         mDegree(degree), mWeighting(weighting) {
    365     clear();
    366 }
    367 
    368 LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
    369 }
    370 
    371 void LeastSquaresVelocityTrackerStrategy::clear() {
    372     mIndex = 0;
    373     mMovements[0].idBits.clear();
    374 }
    375 
    376 void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    377     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
    378     mMovements[mIndex].idBits = remainingIdBits;
    379 }
    380 
    381 void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
    382         const VelocityTracker::Position* positions) {
    383     if (++mIndex == HISTORY_SIZE) {
    384         mIndex = 0;
    385     }
    386 
    387     Movement& movement = mMovements[mIndex];
    388     movement.eventTime = eventTime;
    389     movement.idBits = idBits;
    390     uint32_t count = idBits.count();
    391     for (uint32_t i = 0; i < count; i++) {
    392         movement.positions[i] = positions[i];
    393     }
    394 }
    395 
    396 /**
    397  * Solves a linear least squares problem to obtain a N degree polynomial that fits
    398  * the specified input data as nearly as possible.
    399  *
    400  * Returns true if a solution is found, false otherwise.
    401  *
    402  * The input consists of two vectors of data points X and Y with indices 0..m-1
    403  * along with a weight vector W of the same size.
    404  *
    405  * The output is a vector B with indices 0..n that describes a polynomial
    406  * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
    407  * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
    408  *
    409  * Accordingly, the weight vector W should be initialized by the caller with the
    410  * reciprocal square root of the variance of the error in each input data point.
    411  * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
    412  * The weights express the relative importance of each data point.  If the weights are
    413  * all 1, then the data points are considered to be of equal importance when fitting
    414  * the polynomial.  It is a good idea to choose weights that diminish the importance
    415  * of data points that may have higher than usual error margins.
    416  *
    417  * Errors among data points are assumed to be independent.  W is represented here
    418  * as a vector although in the literature it is typically taken to be a diagonal matrix.
    419  *
    420  * That is to say, the function that generated the input data can be approximated
    421  * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
    422  *
    423  * The coefficient of determination (R^2) is also returned to describe the goodness
    424  * of fit of the model for the given data.  It is a value between 0 and 1, where 1
    425  * indicates perfect correspondence.
    426  *
    427  * This function first expands the X vector to a m by n matrix A such that
    428  * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
    429  * multiplies it by w[i]./
    430  *
    431  * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
    432  * and an m by n upper triangular matrix R.  Because R is upper triangular (lower
    433  * part is all zeroes), we can simplify the decomposition into an m by n matrix
    434  * Q1 and a n by n matrix R1 such that A = Q1 R1.
    435  *
    436  * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
    437  * to find B.
    438  *
    439  * For efficiency, we lay out A and Q column-wise in memory because we frequently
    440  * operate on the column vectors.  Conversely, we lay out R row-wise.
    441  *
    442  * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
    443  * http://en.wikipedia.org/wiki/Gram-Schmidt
    444  */
    445 static bool solveLeastSquares(const float* x, const float* y,
    446         const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
    447 #if DEBUG_STRATEGY
    448     ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
    449             vectorToString(x, m).c_str(), vectorToString(y, m).c_str(),
    450             vectorToString(w, m).c_str());
    451 #endif
    452 
    453     // Expand the X vector to a matrix A, pre-multiplied by the weights.
    454     float a[n][m]; // column-major order
    455     for (uint32_t h = 0; h < m; h++) {
    456         a[0][h] = w[h];
    457         for (uint32_t i = 1; i < n; i++) {
    458             a[i][h] = a[i - 1][h] * x[h];
    459         }
    460     }
    461 #if DEBUG_STRATEGY
    462     ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).c_str());
    463 #endif
    464 
    465     // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
    466     float q[n][m]; // orthonormal basis, column-major order
    467     float r[n][n]; // upper triangular matrix, row-major order
    468     for (uint32_t j = 0; j < n; j++) {
    469         for (uint32_t h = 0; h < m; h++) {
    470             q[j][h] = a[j][h];
    471         }
    472         for (uint32_t i = 0; i < j; i++) {
    473             float dot = vectorDot(&q[j][0], &q[i][0], m);
    474             for (uint32_t h = 0; h < m; h++) {
    475                 q[j][h] -= dot * q[i][h];
    476             }
    477         }
    478 
    479         float norm = vectorNorm(&q[j][0], m);
    480         if (norm < 0.000001f) {
    481             // vectors are linearly dependent or zero so no solution
    482 #if DEBUG_STRATEGY
    483             ALOGD("  - no solution, norm=%f", norm);
    484 #endif
    485             return false;
    486         }
    487 
    488         float invNorm = 1.0f / norm;
    489         for (uint32_t h = 0; h < m; h++) {
    490             q[j][h] *= invNorm;
    491         }
    492         for (uint32_t i = 0; i < n; i++) {
    493             r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
    494         }
    495     }
    496 #if DEBUG_STRATEGY
    497     ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).c_str());
    498     ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).c_str());
    499 
    500     // calculate QR, if we factored A correctly then QR should equal A
    501     float qr[n][m];
    502     for (uint32_t h = 0; h < m; h++) {
    503         for (uint32_t i = 0; i < n; i++) {
    504             qr[i][h] = 0;
    505             for (uint32_t j = 0; j < n; j++) {
    506                 qr[i][h] += q[j][h] * r[j][i];
    507             }
    508         }
    509     }
    510     ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).c_str());
    511 #endif
    512 
    513     // Solve R B = Qt W Y to find B.  This is easy because R is upper triangular.
    514     // We just work from bottom-right to top-left calculating B's coefficients.
    515     float wy[m];
    516     for (uint32_t h = 0; h < m; h++) {
    517         wy[h] = y[h] * w[h];
    518     }
    519     for (uint32_t i = n; i != 0; ) {
    520         i--;
    521         outB[i] = vectorDot(&q[i][0], wy, m);
    522         for (uint32_t j = n - 1; j > i; j--) {
    523             outB[i] -= r[i][j] * outB[j];
    524         }
    525         outB[i] /= r[i][i];
    526     }
    527 #if DEBUG_STRATEGY
    528     ALOGD("  - b=%s", vectorToString(outB, n).c_str());
    529 #endif
    530 
    531     // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
    532     // SSerr is the residual sum of squares (variance of the error),
    533     // and SStot is the total sum of squares (variance of the data) where each
    534     // has been weighted.
    535     float ymean = 0;
    536     for (uint32_t h = 0; h < m; h++) {
    537         ymean += y[h];
    538     }
    539     ymean /= m;
    540 
    541     float sserr = 0;
    542     float sstot = 0;
    543     for (uint32_t h = 0; h < m; h++) {
    544         float err = y[h] - outB[0];
    545         float term = 1;
    546         for (uint32_t i = 1; i < n; i++) {
    547             term *= x[h];
    548             err -= term * outB[i];
    549         }
    550         sserr += w[h] * w[h] * err * err;
    551         float var = y[h] - ymean;
    552         sstot += w[h] * w[h] * var * var;
    553     }
    554     *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
    555 #if DEBUG_STRATEGY
    556     ALOGD("  - sserr=%f", sserr);
    557     ALOGD("  - sstot=%f", sstot);
    558     ALOGD("  - det=%f", *outDet);
    559 #endif
    560     return true;
    561 }
    562 
    563 /*
    564  * Optimized unweighted second-order least squares fit. About 2x speed improvement compared to
    565  * the default implementation
    566  */
    567 static float solveUnweightedLeastSquaresDeg2(const float* x, const float* y, size_t count) {
    568     float sxi = 0, sxiyi = 0, syi = 0, sxi2 = 0, sxi3 = 0, sxi2yi = 0, sxi4 = 0;
    569 
    570     for (size_t i = 0; i < count; i++) {
    571         float xi = x[i];
    572         float yi = y[i];
    573         float xi2 = xi*xi;
    574         float xi3 = xi2*xi;
    575         float xi4 = xi3*xi;
    576         float xi2yi = xi2*yi;
    577         float xiyi = xi*yi;
    578 
    579         sxi += xi;
    580         sxi2 += xi2;
    581         sxiyi += xiyi;
    582         sxi2yi += xi2yi;
    583         syi += yi;
    584         sxi3 += xi3;
    585         sxi4 += xi4;
    586     }
    587 
    588     float Sxx = sxi2 - sxi*sxi / count;
    589     float Sxy = sxiyi - sxi*syi / count;
    590     float Sxx2 = sxi3 - sxi*sxi2 / count;
    591     float Sx2y = sxi2yi - sxi2*syi / count;
    592     float Sx2x2 = sxi4 - sxi2*sxi2 / count;
    593 
    594     float numerator = Sxy*Sx2x2 - Sx2y*Sxx2;
    595     float denominator = Sxx*Sx2x2 - Sxx2*Sxx2;
    596     if (denominator == 0) {
    597         ALOGW("division by 0 when computing velocity, Sxx=%f, Sx2x2=%f, Sxx2=%f", Sxx, Sx2x2, Sxx2);
    598         return 0;
    599     }
    600     return numerator/denominator;
    601 }
    602 
    603 bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
    604         VelocityTracker::Estimator* outEstimator) const {
    605     outEstimator->clear();
    606 
    607     // Iterate over movement samples in reverse time order and collect samples.
    608     float x[HISTORY_SIZE];
    609     float y[HISTORY_SIZE];
    610     float w[HISTORY_SIZE];
    611     float time[HISTORY_SIZE];
    612     uint32_t m = 0;
    613     uint32_t index = mIndex;
    614     const Movement& newestMovement = mMovements[mIndex];
    615     do {
    616         const Movement& movement = mMovements[index];
    617         if (!movement.idBits.hasBit(id)) {
    618             break;
    619         }
    620 
    621         nsecs_t age = newestMovement.eventTime - movement.eventTime;
    622         if (age > HORIZON) {
    623             break;
    624         }
    625 
    626         const VelocityTracker::Position& position = movement.getPosition(id);
    627         x[m] = position.x;
    628         y[m] = position.y;
    629         w[m] = chooseWeight(index);
    630         time[m] = -age * 0.000000001f;
    631         index = (index == 0 ? HISTORY_SIZE : index) - 1;
    632     } while (++m < HISTORY_SIZE);
    633 
    634     if (m == 0) {
    635         return false; // no data
    636     }
    637 
    638     // Calculate a least squares polynomial fit.
    639     uint32_t degree = mDegree;
    640     if (degree > m - 1) {
    641         degree = m - 1;
    642     }
    643     if (degree >= 1) {
    644         if (degree == 2 && mWeighting == WEIGHTING_NONE) { // optimize unweighted, degree=2 fit
    645             outEstimator->time = newestMovement.eventTime;
    646             outEstimator->degree = 2;
    647             outEstimator->confidence = 1;
    648             outEstimator->xCoeff[0] = 0; // only slope is calculated, set rest of coefficients = 0
    649             outEstimator->yCoeff[0] = 0;
    650             outEstimator->xCoeff[1] = solveUnweightedLeastSquaresDeg2(time, x, m);
    651             outEstimator->yCoeff[1] = solveUnweightedLeastSquaresDeg2(time, y, m);
    652             outEstimator->xCoeff[2] = 0;
    653             outEstimator->yCoeff[2] = 0;
    654             return true;
    655         }
    656 
    657         float xdet, ydet;
    658         uint32_t n = degree + 1;
    659         if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
    660                 && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
    661             outEstimator->time = newestMovement.eventTime;
    662             outEstimator->degree = degree;
    663             outEstimator->confidence = xdet * ydet;
    664 #if DEBUG_STRATEGY
    665             ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
    666                     int(outEstimator->degree),
    667                     vectorToString(outEstimator->xCoeff, n).c_str(),
    668                     vectorToString(outEstimator->yCoeff, n).c_str(),
    669                     outEstimator->confidence);
    670 #endif
    671             return true;
    672         }
    673     }
    674 
    675     // No velocity data available for this pointer, but we do have its current position.
    676     outEstimator->xCoeff[0] = x[0];
    677     outEstimator->yCoeff[0] = y[0];
    678     outEstimator->time = newestMovement.eventTime;
    679     outEstimator->degree = 0;
    680     outEstimator->confidence = 1;
    681     return true;
    682 }
    683 
    684 float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
    685     switch (mWeighting) {
    686     case WEIGHTING_DELTA: {
    687         // Weight points based on how much time elapsed between them and the next
    688         // point so that points that "cover" a shorter time span are weighed less.
    689         //   delta  0ms: 0.5
    690         //   delta 10ms: 1.0
    691         if (index == mIndex) {
    692             return 1.0f;
    693         }
    694         uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
    695         float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
    696                 * 0.000001f;
    697         if (deltaMillis < 0) {
    698             return 0.5f;
    699         }
    700         if (deltaMillis < 10) {
    701             return 0.5f + deltaMillis * 0.05;
    702         }
    703         return 1.0f;
    704     }
    705 
    706     case WEIGHTING_CENTRAL: {
    707         // Weight points based on their age, weighing very recent and very old points less.
    708         //   age  0ms: 0.5
    709         //   age 10ms: 1.0
    710         //   age 50ms: 1.0
    711         //   age 60ms: 0.5
    712         float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
    713                 * 0.000001f;
    714         if (ageMillis < 0) {
    715             return 0.5f;
    716         }
    717         if (ageMillis < 10) {
    718             return 0.5f + ageMillis * 0.05;
    719         }
    720         if (ageMillis < 50) {
    721             return 1.0f;
    722         }
    723         if (ageMillis < 60) {
    724             return 0.5f + (60 - ageMillis) * 0.05;
    725         }
    726         return 0.5f;
    727     }
    728 
    729     case WEIGHTING_RECENT: {
    730         // Weight points based on their age, weighing older points less.
    731         //   age   0ms: 1.0
    732         //   age  50ms: 1.0
    733         //   age 100ms: 0.5
    734         float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
    735                 * 0.000001f;
    736         if (ageMillis < 50) {
    737             return 1.0f;
    738         }
    739         if (ageMillis < 100) {
    740             return 0.5f + (100 - ageMillis) * 0.01f;
    741         }
    742         return 0.5f;
    743     }
    744 
    745     case WEIGHTING_NONE:
    746     default:
    747         return 1.0f;
    748     }
    749 }
    750 
    751 
    752 // --- IntegratingVelocityTrackerStrategy ---
    753 
    754 IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
    755         mDegree(degree) {
    756 }
    757 
    758 IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
    759 }
    760 
    761 void IntegratingVelocityTrackerStrategy::clear() {
    762     mPointerIdBits.clear();
    763 }
    764 
    765 void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    766     mPointerIdBits.value &= ~idBits.value;
    767 }
    768 
    769 void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
    770         const VelocityTracker::Position* positions) {
    771     uint32_t index = 0;
    772     for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
    773         uint32_t id = iterIdBits.clearFirstMarkedBit();
    774         State& state = mPointerState[id];
    775         const VelocityTracker::Position& position = positions[index++];
    776         if (mPointerIdBits.hasBit(id)) {
    777             updateState(state, eventTime, position.x, position.y);
    778         } else {
    779             initState(state, eventTime, position.x, position.y);
    780         }
    781     }
    782 
    783     mPointerIdBits = idBits;
    784 }
    785 
    786 bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
    787         VelocityTracker::Estimator* outEstimator) const {
    788     outEstimator->clear();
    789 
    790     if (mPointerIdBits.hasBit(id)) {
    791         const State& state = mPointerState[id];
    792         populateEstimator(state, outEstimator);
    793         return true;
    794     }
    795 
    796     return false;
    797 }
    798 
    799 void IntegratingVelocityTrackerStrategy::initState(State& state,
    800         nsecs_t eventTime, float xpos, float ypos) const {
    801     state.updateTime = eventTime;
    802     state.degree = 0;
    803 
    804     state.xpos = xpos;
    805     state.xvel = 0;
    806     state.xaccel = 0;
    807     state.ypos = ypos;
    808     state.yvel = 0;
    809     state.yaccel = 0;
    810 }
    811 
    812 void IntegratingVelocityTrackerStrategy::updateState(State& state,
    813         nsecs_t eventTime, float xpos, float ypos) const {
    814     const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
    815     const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
    816 
    817     if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
    818         return;
    819     }
    820 
    821     float dt = (eventTime - state.updateTime) * 0.000000001f;
    822     state.updateTime = eventTime;
    823 
    824     float xvel = (xpos - state.xpos) / dt;
    825     float yvel = (ypos - state.ypos) / dt;
    826     if (state.degree == 0) {
    827         state.xvel = xvel;
    828         state.yvel = yvel;
    829         state.degree = 1;
    830     } else {
    831         float alpha = dt / (FILTER_TIME_CONSTANT + dt);
    832         if (mDegree == 1) {
    833             state.xvel += (xvel - state.xvel) * alpha;
    834             state.yvel += (yvel - state.yvel) * alpha;
    835         } else {
    836             float xaccel = (xvel - state.xvel) / dt;
    837             float yaccel = (yvel - state.yvel) / dt;
    838             if (state.degree == 1) {
    839                 state.xaccel = xaccel;
    840                 state.yaccel = yaccel;
    841                 state.degree = 2;
    842             } else {
    843                 state.xaccel += (xaccel - state.xaccel) * alpha;
    844                 state.yaccel += (yaccel - state.yaccel) * alpha;
    845             }
    846             state.xvel += (state.xaccel * dt) * alpha;
    847             state.yvel += (state.yaccel * dt) * alpha;
    848         }
    849     }
    850     state.xpos = xpos;
    851     state.ypos = ypos;
    852 }
    853 
    854 void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
    855         VelocityTracker::Estimator* outEstimator) const {
    856     outEstimator->time = state.updateTime;
    857     outEstimator->confidence = 1.0f;
    858     outEstimator->degree = state.degree;
    859     outEstimator->xCoeff[0] = state.xpos;
    860     outEstimator->xCoeff[1] = state.xvel;
    861     outEstimator->xCoeff[2] = state.xaccel / 2;
    862     outEstimator->yCoeff[0] = state.ypos;
    863     outEstimator->yCoeff[1] = state.yvel;
    864     outEstimator->yCoeff[2] = state.yaccel / 2;
    865 }
    866 
    867 
    868 // --- LegacyVelocityTrackerStrategy ---
    869 
    870 LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
    871     clear();
    872 }
    873 
    874 LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
    875 }
    876 
    877 void LegacyVelocityTrackerStrategy::clear() {
    878     mIndex = 0;
    879     mMovements[0].idBits.clear();
    880 }
    881 
    882 void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    883     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
    884     mMovements[mIndex].idBits = remainingIdBits;
    885 }
    886 
    887 void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
    888         const VelocityTracker::Position* positions) {
    889     if (++mIndex == HISTORY_SIZE) {
    890         mIndex = 0;
    891     }
    892 
    893     Movement& movement = mMovements[mIndex];
    894     movement.eventTime = eventTime;
    895     movement.idBits = idBits;
    896     uint32_t count = idBits.count();
    897     for (uint32_t i = 0; i < count; i++) {
    898         movement.positions[i] = positions[i];
    899     }
    900 }
    901 
    902 bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
    903         VelocityTracker::Estimator* outEstimator) const {
    904     outEstimator->clear();
    905 
    906     const Movement& newestMovement = mMovements[mIndex];
    907     if (!newestMovement.idBits.hasBit(id)) {
    908         return false; // no data
    909     }
    910 
    911     // Find the oldest sample that contains the pointer and that is not older than HORIZON.
    912     nsecs_t minTime = newestMovement.eventTime - HORIZON;
    913     uint32_t oldestIndex = mIndex;
    914     uint32_t numTouches = 1;
    915     do {
    916         uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
    917         const Movement& nextOldestMovement = mMovements[nextOldestIndex];
    918         if (!nextOldestMovement.idBits.hasBit(id)
    919                 || nextOldestMovement.eventTime < minTime) {
    920             break;
    921         }
    922         oldestIndex = nextOldestIndex;
    923     } while (++numTouches < HISTORY_SIZE);
    924 
    925     // Calculate an exponentially weighted moving average of the velocity estimate
    926     // at different points in time measured relative to the oldest sample.
    927     // This is essentially an IIR filter.  Newer samples are weighted more heavily
    928     // than older samples.  Samples at equal time points are weighted more or less
    929     // equally.
    930     //
    931     // One tricky problem is that the sample data may be poorly conditioned.
    932     // Sometimes samples arrive very close together in time which can cause us to
    933     // overestimate the velocity at that time point.  Most samples might be measured
    934     // 16ms apart but some consecutive samples could be only 0.5sm apart because
    935     // the hardware or driver reports them irregularly or in bursts.
    936     float accumVx = 0;
    937     float accumVy = 0;
    938     uint32_t index = oldestIndex;
    939     uint32_t samplesUsed = 0;
    940     const Movement& oldestMovement = mMovements[oldestIndex];
    941     const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
    942     nsecs_t lastDuration = 0;
    943 
    944     while (numTouches-- > 1) {
    945         if (++index == HISTORY_SIZE) {
    946             index = 0;
    947         }
    948         const Movement& movement = mMovements[index];
    949         nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
    950 
    951         // If the duration between samples is small, we may significantly overestimate
    952         // the velocity.  Consequently, we impose a minimum duration constraint on the
    953         // samples that we include in the calculation.
    954         if (duration >= MIN_DURATION) {
    955             const VelocityTracker::Position& position = movement.getPosition(id);
    956             float scale = 1000000000.0f / duration; // one over time delta in seconds
    957             float vx = (position.x - oldestPosition.x) * scale;
    958             float vy = (position.y - oldestPosition.y) * scale;
    959             accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
    960             accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
    961             lastDuration = duration;
    962             samplesUsed += 1;
    963         }
    964     }
    965 
    966     // Report velocity.
    967     const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
    968     outEstimator->time = newestMovement.eventTime;
    969     outEstimator->confidence = 1;
    970     outEstimator->xCoeff[0] = newestPosition.x;
    971     outEstimator->yCoeff[0] = newestPosition.y;
    972     if (samplesUsed) {
    973         outEstimator->xCoeff[1] = accumVx;
    974         outEstimator->yCoeff[1] = accumVy;
    975         outEstimator->degree = 1;
    976     } else {
    977         outEstimator->degree = 0;
    978     }
    979     return true;
    980 }
    981 
    982 // --- ImpulseVelocityTrackerStrategy ---
    983 
    984 ImpulseVelocityTrackerStrategy::ImpulseVelocityTrackerStrategy() {
    985     clear();
    986 }
    987 
    988 ImpulseVelocityTrackerStrategy::~ImpulseVelocityTrackerStrategy() {
    989 }
    990 
    991 void ImpulseVelocityTrackerStrategy::clear() {
    992     mIndex = 0;
    993     mMovements[0].idBits.clear();
    994 }
    995 
    996 void ImpulseVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    997     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
    998     mMovements[mIndex].idBits = remainingIdBits;
    999 }
   1000 
   1001 void ImpulseVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
   1002         const VelocityTracker::Position* positions) {
   1003     if (++mIndex == HISTORY_SIZE) {
   1004         mIndex = 0;
   1005     }
   1006 
   1007     Movement& movement = mMovements[mIndex];
   1008     movement.eventTime = eventTime;
   1009     movement.idBits = idBits;
   1010     uint32_t count = idBits.count();
   1011     for (uint32_t i = 0; i < count; i++) {
   1012         movement.positions[i] = positions[i];
   1013     }
   1014 }
   1015 
   1016 /**
   1017  * Calculate the total impulse provided to the screen and the resulting velocity.
   1018  *
   1019  * The touchscreen is modeled as a physical object.
   1020  * Initial condition is discussed below, but for now suppose that v(t=0) = 0
   1021  *
   1022  * The kinetic energy of the object at the release is E=0.5*m*v^2
   1023  * Then vfinal = sqrt(2E/m). The goal is to calculate E.
   1024  *
   1025  * The kinetic energy at the release is equal to the total work done on the object by the finger.
   1026  * The total work W is the sum of all dW along the path.
   1027  *
   1028  * dW = F*dx, where dx is the piece of path traveled.
   1029  * Force is change of momentum over time, F = dp/dt = m dv/dt.
   1030  * Then substituting:
   1031  * dW = m (dv/dt) * dx = m * v * dv
   1032  *
   1033  * Summing along the path, we get:
   1034  * W = sum(dW) = sum(m * v * dv) = m * sum(v * dv)
   1035  * Since the mass stays constant, the equation for final velocity is:
   1036  * vfinal = sqrt(2*sum(v * dv))
   1037  *
   1038  * Here,
   1039  * dv : change of velocity = (v[i+1]-v[i])
   1040  * dx : change of distance = (x[i+1]-x[i])
   1041  * dt : change of time = (t[i+1]-t[i])
   1042  * v : instantaneous velocity = dx/dt
   1043  *
   1044  * The final formula is:
   1045  * vfinal = sqrt(2) * sqrt(sum((v[i]-v[i-1])*|v[i]|)) for all i
   1046  * The absolute value is needed to properly account for the sign. If the velocity over a
   1047  * particular segment descreases, then this indicates braking, which means that negative
   1048  * work was done. So for two positive, but decreasing, velocities, this contribution would be
   1049  * negative and will cause a smaller final velocity.
   1050  *
   1051  * Initial condition
   1052  * There are two ways to deal with initial condition:
   1053  * 1) Assume that v(0) = 0, which would mean that the screen is initially at rest.
   1054  * This is not entirely accurate. We are only taking the past X ms of touch data, where X is
   1055  * currently equal to 100. However, a touch event that created a fling probably lasted for longer
   1056  * than that, which would mean that the user has already been interacting with the touchscreen
   1057  * and it has probably already been moving.
   1058  * 2) Assume that the touchscreen has already been moving at a certain velocity, calculate this
   1059  * initial velocity and the equivalent energy, and start with this initial energy.
   1060  * Consider an example where we have the following data, consisting of 3 points:
   1061  *                 time: t0, t1, t2
   1062  *                 x   : x0, x1, x2
   1063  *                 v   : 0 , v1, v2
   1064  * Here is what will happen in each of these scenarios:
   1065  * 1) By directly applying the formula above with the v(0) = 0 boundary condition, we will get
   1066  * vfinal = sqrt(2*(|v1|*(v1-v0) + |v2|*(v2-v1))). This can be simplified since v0=0
   1067  * vfinal = sqrt(2*(|v1|*v1 + |v2|*(v2-v1))) = sqrt(2*(v1^2 + |v2|*(v2 - v1)))
   1068  * since velocity is a real number
   1069  * 2) If we treat the screen as already moving, then it must already have an energy (per mass)
   1070  * equal to 1/2*v1^2. Then the initial energy should be 1/2*v1*2, and only the second segment
   1071  * will contribute to the total kinetic energy (since we can effectively consider that v0=v1).
   1072  * This will give the following expression for the final velocity:
   1073  * vfinal = sqrt(2*(1/2*v1^2 + |v2|*(v2-v1)))
   1074  * This analysis can be generalized to an arbitrary number of samples.
   1075  *
   1076  *
   1077  * Comparing the two equations above, we see that the only mathematical difference
   1078  * is the factor of 1/2 in front of the first velocity term.
   1079  * This boundary condition would allow for the "proper" calculation of the case when all of the
   1080  * samples are equally spaced in time and distance, which should suggest a constant velocity.
   1081  *
   1082  * Note that approach 2) is sensitive to the proper ordering of the data in time, since
   1083  * the boundary condition must be applied to the oldest sample to be accurate.
   1084  */
   1085 static float kineticEnergyToVelocity(float work) {
   1086     static constexpr float sqrt2 = 1.41421356237;
   1087     return (work < 0 ? -1.0 : 1.0) * sqrtf(fabsf(work)) * sqrt2;
   1088 }
   1089 
   1090 static float calculateImpulseVelocity(const nsecs_t* t, const float* x, size_t count) {
   1091     // The input should be in reversed time order (most recent sample at index i=0)
   1092     // t[i] is in nanoseconds, but due to FP arithmetic, convert to seconds inside this function
   1093     static constexpr float SECONDS_PER_NANO = 1E-9;
   1094 
   1095     if (count < 2) {
   1096         return 0; // if 0 or 1 points, velocity is zero
   1097     }
   1098     if (t[1] > t[0]) { // Algorithm will still work, but not perfectly
   1099         ALOGE("Samples provided to calculateImpulseVelocity in the wrong order");
   1100     }
   1101     if (count == 2) { // if 2 points, basic linear calculation
   1102         if (t[1] == t[0]) {
   1103             ALOGE("Events have identical time stamps t=%" PRId64 ", setting velocity = 0", t[0]);
   1104             return 0;
   1105         }
   1106         return (x[1] - x[0]) / (SECONDS_PER_NANO * (t[1] - t[0]));
   1107     }
   1108     // Guaranteed to have at least 3 points here
   1109     float work = 0;
   1110     for (size_t i = count - 1; i > 0 ; i--) { // start with the oldest sample and go forward in time
   1111         if (t[i] == t[i-1]) {
   1112             ALOGE("Events have identical time stamps t=%" PRId64 ", skipping sample", t[i]);
   1113             continue;
   1114         }
   1115         float vprev = kineticEnergyToVelocity(work); // v[i-1]
   1116         float vcurr = (x[i] - x[i-1]) / (SECONDS_PER_NANO * (t[i] - t[i-1])); // v[i]
   1117         work += (vcurr - vprev) * fabsf(vcurr);
   1118         if (i == count - 1) {
   1119             work *= 0.5; // initial condition, case 2) above
   1120         }
   1121     }
   1122     return kineticEnergyToVelocity(work);
   1123 }
   1124 
   1125 bool ImpulseVelocityTrackerStrategy::getEstimator(uint32_t id,
   1126         VelocityTracker::Estimator* outEstimator) const {
   1127     outEstimator->clear();
   1128 
   1129     // Iterate over movement samples in reverse time order and collect samples.
   1130     float x[HISTORY_SIZE];
   1131     float y[HISTORY_SIZE];
   1132     nsecs_t time[HISTORY_SIZE];
   1133     size_t m = 0; // number of points that will be used for fitting
   1134     size_t index = mIndex;
   1135     const Movement& newestMovement = mMovements[mIndex];
   1136     do {
   1137         const Movement& movement = mMovements[index];
   1138         if (!movement.idBits.hasBit(id)) {
   1139             break;
   1140         }
   1141 
   1142         nsecs_t age = newestMovement.eventTime - movement.eventTime;
   1143         if (age > HORIZON) {
   1144             break;
   1145         }
   1146 
   1147         const VelocityTracker::Position& position = movement.getPosition(id);
   1148         x[m] = position.x;
   1149         y[m] = position.y;
   1150         time[m] = movement.eventTime;
   1151         index = (index == 0 ? HISTORY_SIZE : index) - 1;
   1152     } while (++m < HISTORY_SIZE);
   1153 
   1154     if (m == 0) {
   1155         return false; // no data
   1156     }
   1157     outEstimator->xCoeff[0] = 0;
   1158     outEstimator->yCoeff[0] = 0;
   1159     outEstimator->xCoeff[1] = calculateImpulseVelocity(time, x, m);
   1160     outEstimator->yCoeff[1] = calculateImpulseVelocity(time, y, m);
   1161     outEstimator->xCoeff[2] = 0;
   1162     outEstimator->yCoeff[2] = 0;
   1163     outEstimator->time = newestMovement.eventTime;
   1164     outEstimator->degree = 2; // similar results to 2nd degree fit
   1165     outEstimator->confidence = 1;
   1166 #if DEBUG_STRATEGY
   1167     ALOGD("velocity: (%f, %f)", outEstimator->xCoeff[1], outEstimator->yCoeff[1]);
   1168 #endif
   1169     return true;
   1170 }
   1171 
   1172 } // namespace android
   1173