Home | History | Annotate | Download | only in Effects
      1 /*
      2  * Copyright 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "Daltonizer.h"
     18 #include <math/mat4.h>
     19 
     20 namespace android {
     21 
     22 void Daltonizer::setType(ColorBlindnessType type) {
     23     if (type != mType) {
     24         mDirty = true;
     25         mType = type;
     26     }
     27 }
     28 
     29 void Daltonizer::setMode(ColorBlindnessMode mode) {
     30     if (mode != mMode) {
     31         mDirty = true;
     32         mMode = mode;
     33     }
     34 }
     35 
     36 const mat4& Daltonizer::operator()() {
     37     if (mDirty) {
     38         mDirty = false;
     39         update();
     40     }
     41     return mColorTransform;
     42 }
     43 
     44 void Daltonizer::update() {
     45     if (mType == ColorBlindnessType::None) {
     46         mColorTransform = mat4();
     47         return;
     48     }
     49 
     50     // converts a linear RGB color to the XYZ space
     51     const mat4 rgb2xyz( 0.4124, 0.2126, 0.0193, 0,
     52                         0.3576, 0.7152, 0.1192, 0,
     53                         0.1805, 0.0722, 0.9505, 0,
     54                         0     , 0     , 0     , 1);
     55 
     56     // converts a XYZ color to the LMS space.
     57     const mat4 xyz2lms( 0.7328,-0.7036, 0.0030, 0,
     58                         0.4296, 1.6975, 0.0136, 0,
     59                        -0.1624, 0.0061, 0.9834, 0,
     60                         0     , 0     , 0     , 1);
     61 
     62     // Direct conversion from linear RGB to LMS
     63     const mat4 rgb2lms(xyz2lms*rgb2xyz);
     64 
     65     // And back from LMS to linear RGB
     66     const mat4 lms2rgb(inverse(rgb2lms));
     67 
     68     // To simulate color blindness we need to "remove" the data lost by the absence of
     69     // a cone. This cannot be done by just zeroing out the corresponding LMS component
     70     // because it would create a color outside of the RGB gammut.
     71     // Instead we project the color along the axis of the missing component onto a plane
     72     // within the RGB gammut:
     73     //  - since the projection happens along the axis of the missing component, a
     74     //    color blind viewer perceives the projected color the same.
     75     //  - We use the plane defined by 3 points in LMS space: black, white and
     76     //    blue and red for protanopia/deuteranopia and tritanopia respectively.
     77 
     78     // LMS space red
     79     const vec3& lms_r(rgb2lms[0].rgb);
     80     // LMS space blue
     81     const vec3& lms_b(rgb2lms[2].rgb);
     82     // LMS space white
     83     const vec3 lms_w((rgb2lms * vec4(1)).rgb);
     84 
     85     // To find the planes we solve the a*L + b*M + c*S = 0 equation for the LMS values
     86     // of the three known points. This equation is trivially solved, and has for
     87     // solution the following cross-products:
     88     const vec3 p0 = cross(lms_w, lms_b);    // protanopia/deuteranopia
     89     const vec3 p1 = cross(lms_w, lms_r);    // tritanopia
     90 
     91     // The following 3 matrices perform the projection of a LMS color onto the given plane
     92     // along the selected axis
     93 
     94     // projection for protanopia (L = 0)
     95     const mat4 lms2lmsp(  0.0000, 0.0000, 0.0000, 0,
     96                     -p0.y / p0.x, 1.0000, 0.0000, 0,
     97                     -p0.z / p0.x, 0.0000, 1.0000, 0,
     98                           0     , 0     , 0     , 1);
     99 
    100     // projection for deuteranopia (M = 0)
    101     const mat4 lms2lmsd(  1.0000, -p0.x / p0.y, 0.0000, 0,
    102                           0.0000,       0.0000, 0.0000, 0,
    103                           0.0000, -p0.z / p0.y, 1.0000, 0,
    104                           0     ,       0     , 0     , 1);
    105 
    106     // projection for tritanopia (S = 0)
    107     const mat4 lms2lmst(  1.0000, 0.0000, -p1.x / p1.z, 0,
    108                           0.0000, 1.0000, -p1.y / p1.z, 0,
    109                           0.0000, 0.0000,       0.0000, 0,
    110                           0     ,       0     , 0     , 1);
    111 
    112     // We will calculate the error between the color and the color viewed by
    113     // a color blind user and "spread" this error onto the healthy cones.
    114     // The matrices below perform this last step and have been chosen arbitrarily.
    115 
    116     // The amount of correction can be adjusted here.
    117 
    118     // error spread for protanopia
    119     const mat4 errp(    1.0, 0.7, 0.7, 0,
    120                         0.0, 1.0, 0.0, 0,
    121                         0.0, 0.0, 1.0, 0,
    122                           0,   0,   0, 1);
    123 
    124     // error spread for deuteranopia
    125     const mat4 errd(    1.0, 0.0, 0.0, 0,
    126                         0.7, 1.0, 0.7, 0,
    127                         0.0, 0.0, 1.0, 0,
    128                           0,   0,   0, 1);
    129 
    130     // error spread for tritanopia
    131     const mat4 errt(    1.0, 0.0, 0.0, 0,
    132                         0.0, 1.0, 0.0, 0,
    133                         0.7, 0.7, 1.0, 0,
    134                           0,   0,   0, 1);
    135 
    136     // And the magic happens here...
    137     // We construct the matrix that will perform the whole correction.
    138 
    139     // simulation: type of color blindness to simulate:
    140     // set to either lms2lmsp, lms2lmsd, lms2lmst
    141     mat4 simulation;
    142 
    143     // correction: type of color blindness correction (should match the simulation above):
    144     // set to identity, errp, errd, errt ([0] for simulation only)
    145     mat4 correction(0);
    146 
    147     switch (mType) {
    148         case ColorBlindnessType::Protanomaly:
    149             simulation = lms2lmsp;
    150             if (mMode == ColorBlindnessMode::Correction)
    151                 correction = errp;
    152             break;
    153         case ColorBlindnessType::Deuteranomaly:
    154             simulation = lms2lmsd;
    155             if (mMode == ColorBlindnessMode::Correction)
    156                 correction = errd;
    157             break;
    158         case ColorBlindnessType::Tritanomaly:
    159             simulation = lms2lmst;
    160             if (mMode == ColorBlindnessMode::Correction)
    161                 correction = errt;
    162             break;
    163         case ColorBlindnessType::None:
    164             // We already caught this at the beginning of the method, but the
    165             // compiler doesn't know that
    166             break;
    167     }
    168 
    169     mColorTransform = lms2rgb *
    170         (simulation * rgb2lms + correction * (rgb2lms - simulation * rgb2lms));
    171 }
    172 
    173 } /* namespace android */
    174