Home | History | Annotate | Download | only in RenderEngine
      1 /*
      2  * Copyright 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
     18 
     19 #include <GLES2/gl2.h>
     20 #include <GLES2/gl2ext.h>
     21 
     22 #include <utils/String8.h>
     23 #include <utils/Trace.h>
     24 
     25 #include "Description.h"
     26 #include "Program.h"
     27 #include "ProgramCache.h"
     28 
     29 namespace android {
     30 // -----------------------------------------------------------------------------------------------
     31 
     32 /*
     33  * A simple formatter class to automatically add the endl and
     34  * manage the indentation.
     35  */
     36 
     37 class Formatter;
     38 static Formatter& indent(Formatter& f);
     39 static Formatter& dedent(Formatter& f);
     40 
     41 class Formatter {
     42     String8 mString;
     43     int mIndent;
     44     typedef Formatter& (*FormaterManipFunc)(Formatter&);
     45     friend Formatter& indent(Formatter& f);
     46     friend Formatter& dedent(Formatter& f);
     47 
     48 public:
     49     Formatter() : mIndent(0) {}
     50 
     51     String8 getString() const { return mString; }
     52 
     53     friend Formatter& operator<<(Formatter& out, const char* in) {
     54         for (int i = 0; i < out.mIndent; i++) {
     55             out.mString.append("    ");
     56         }
     57         out.mString.append(in);
     58         out.mString.append("\n");
     59         return out;
     60     }
     61     friend inline Formatter& operator<<(Formatter& out, const String8& in) {
     62         return operator<<(out, in.string());
     63     }
     64     friend inline Formatter& operator<<(Formatter& to, FormaterManipFunc func) {
     65         return (*func)(to);
     66     }
     67 };
     68 Formatter& indent(Formatter& f) {
     69     f.mIndent++;
     70     return f;
     71 }
     72 Formatter& dedent(Formatter& f) {
     73     f.mIndent--;
     74     return f;
     75 }
     76 
     77 // -----------------------------------------------------------------------------------------------
     78 
     79 ANDROID_SINGLETON_STATIC_INSTANCE(ProgramCache)
     80 
     81 ProgramCache::ProgramCache() {}
     82 
     83 ProgramCache::~ProgramCache() {}
     84 
     85 void ProgramCache::primeCache(bool hasWideColor) {
     86     uint32_t shaderCount = 0;
     87     uint32_t keyMask = Key::BLEND_MASK | Key::OPACITY_MASK | Key::ALPHA_MASK | Key::TEXTURE_MASK;
     88     // Prime the cache for all combinations of the above masks,
     89     // leaving off the experimental color matrix mask options.
     90 
     91     nsecs_t timeBefore = systemTime();
     92     for (uint32_t keyVal = 0; keyVal <= keyMask; keyVal++) {
     93         Key shaderKey;
     94         shaderKey.set(keyMask, keyVal);
     95         uint32_t tex = shaderKey.getTextureTarget();
     96         if (tex != Key::TEXTURE_OFF && tex != Key::TEXTURE_EXT && tex != Key::TEXTURE_2D) {
     97             continue;
     98         }
     99         Program* program = mCache.valueFor(shaderKey);
    100         if (program == nullptr) {
    101             program = generateProgram(shaderKey);
    102             mCache.add(shaderKey, program);
    103             shaderCount++;
    104         }
    105     }
    106 
    107     // Prime for sRGB->P3 conversion
    108     if (hasWideColor) {
    109         Key shaderKey;
    110         shaderKey.set(Key::BLEND_MASK | Key::TEXTURE_MASK | Key::OUTPUT_TRANSFORM_MATRIX_MASK |
    111                               Key::INPUT_TF_MASK | Key::OUTPUT_TF_MASK,
    112                       Key::BLEND_PREMULT | Key::TEXTURE_EXT | Key::OUTPUT_TRANSFORM_MATRIX_ON |
    113                               Key::INPUT_TF_SRGB | Key::OUTPUT_TF_SRGB);
    114         for (int i = 0; i < 4; i++) {
    115             shaderKey.set(Key::OPACITY_MASK,
    116                           (i & 1) ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT);
    117             shaderKey.set(Key::ALPHA_MASK, (i & 2) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE);
    118             Program* program = mCache.valueFor(shaderKey);
    119             if (program == nullptr) {
    120                 program = generateProgram(shaderKey);
    121                 mCache.add(shaderKey, program);
    122                 shaderCount++;
    123             }
    124         }
    125     }
    126 
    127     nsecs_t timeAfter = systemTime();
    128     float compileTimeMs = static_cast<float>(timeAfter - timeBefore) / 1.0E6;
    129     ALOGD("shader cache generated - %u shaders in %f ms\n", shaderCount, compileTimeMs);
    130 }
    131 
    132 ProgramCache::Key ProgramCache::computeKey(const Description& description) {
    133     Key needs;
    134     needs.set(Key::TEXTURE_MASK,
    135               !description.mTextureEnabled
    136                       ? Key::TEXTURE_OFF
    137                       : description.mTexture.getTextureTarget() == GL_TEXTURE_EXTERNAL_OES
    138                               ? Key::TEXTURE_EXT
    139                               : description.mTexture.getTextureTarget() == GL_TEXTURE_2D
    140                                       ? Key::TEXTURE_2D
    141                                       : Key::TEXTURE_OFF)
    142             .set(Key::ALPHA_MASK,
    143                  (description.mColor.a < 1) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE)
    144             .set(Key::BLEND_MASK,
    145                  description.mPremultipliedAlpha ? Key::BLEND_PREMULT : Key::BLEND_NORMAL)
    146             .set(Key::OPACITY_MASK,
    147                  description.mOpaque ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT)
    148             .set(Key::Key::INPUT_TRANSFORM_MATRIX_MASK,
    149                  description.hasInputTransformMatrix() ?
    150                      Key::INPUT_TRANSFORM_MATRIX_ON : Key::INPUT_TRANSFORM_MATRIX_OFF)
    151             .set(Key::Key::OUTPUT_TRANSFORM_MATRIX_MASK,
    152                  description.hasOutputTransformMatrix() || description.hasColorMatrix() ||
    153                  (!description.hasInputTransformMatrix() && description.hasSaturationMatrix()) ?
    154                      Key::OUTPUT_TRANSFORM_MATRIX_ON : Key::OUTPUT_TRANSFORM_MATRIX_OFF);
    155 
    156     needs.set(Key::Y410_BT2020_MASK,
    157               description.mY410BT2020 ? Key::Y410_BT2020_ON : Key::Y410_BT2020_OFF);
    158 
    159     if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) {
    160         switch (description.mInputTransferFunction) {
    161             case Description::TransferFunction::LINEAR:
    162             default:
    163                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_LINEAR);
    164                 break;
    165             case Description::TransferFunction::SRGB:
    166                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_SRGB);
    167                 break;
    168             case Description::TransferFunction::ST2084:
    169                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_ST2084);
    170                 break;
    171             case Description::TransferFunction::HLG:
    172                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_HLG);
    173                 break;
    174         }
    175 
    176         switch (description.mOutputTransferFunction) {
    177             case Description::TransferFunction::LINEAR:
    178             default:
    179                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_LINEAR);
    180                 break;
    181             case Description::TransferFunction::SRGB:
    182                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_SRGB);
    183                 break;
    184             case Description::TransferFunction::ST2084:
    185                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_ST2084);
    186                 break;
    187             case Description::TransferFunction::HLG:
    188                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_HLG);
    189                 break;
    190         }
    191     }
    192 
    193     return needs;
    194 }
    195 
    196 // Generate EOTF that converts signal values to relative display light,
    197 // both normalized to [0, 1].
    198 void ProgramCache::generateEOTF(Formatter& fs, const Key& needs) {
    199     switch (needs.getInputTF()) {
    200         case Key::INPUT_TF_SRGB:
    201             fs << R"__SHADER__(
    202                 float EOTF_sRGB(float srgb) {
    203                     return srgb <= 0.04045 ? srgb / 12.92 : pow((srgb + 0.055) / 1.055, 2.4);
    204                 }
    205 
    206                 vec3 EOTF_sRGB(const vec3 srgb) {
    207                     return vec3(EOTF_sRGB(srgb.r), EOTF_sRGB(srgb.g), EOTF_sRGB(srgb.b));
    208                 }
    209 
    210                 vec3 EOTF(const vec3 srgb) {
    211                     return sign(srgb.rgb) * EOTF_sRGB(abs(srgb.rgb));
    212                 }
    213             )__SHADER__";
    214             break;
    215         case Key::INPUT_TF_ST2084:
    216             fs << R"__SHADER__(
    217                 vec3 EOTF(const highp vec3 color) {
    218                     const highp float m1 = (2610.0 / 4096.0) / 4.0;
    219                     const highp float m2 = (2523.0 / 4096.0) * 128.0;
    220                     const highp float c1 = (3424.0 / 4096.0);
    221                     const highp float c2 = (2413.0 / 4096.0) * 32.0;
    222                     const highp float c3 = (2392.0 / 4096.0) * 32.0;
    223 
    224                     highp vec3 tmp = pow(color, 1.0 / vec3(m2));
    225                     tmp = max(tmp - c1, 0.0) / (c2 - c3 * tmp);
    226                     return pow(tmp, 1.0 / vec3(m1));
    227                 }
    228             )__SHADER__";
    229             break;
    230         case Key::INPUT_TF_HLG:
    231             fs << R"__SHADER__(
    232                 highp float EOTF_channel(const highp float channel) {
    233                     const highp float a = 0.17883277;
    234                     const highp float b = 0.28466892;
    235                     const highp float c = 0.55991073;
    236                     return channel <= 0.5 ? channel * channel / 3.0 :
    237                             (exp((channel - c) / a) + b) / 12.0;
    238                 }
    239 
    240                 vec3 EOTF(const highp vec3 color) {
    241                     return vec3(EOTF_channel(color.r), EOTF_channel(color.g),
    242                             EOTF_channel(color.b));
    243                 }
    244             )__SHADER__";
    245             break;
    246         default:
    247             fs << R"__SHADER__(
    248                 vec3 EOTF(const vec3 linear) {
    249                     return linear;
    250                 }
    251             )__SHADER__";
    252             break;
    253     }
    254 }
    255 
    256 void ProgramCache::generateToneMappingProcess(Formatter& fs, const Key& needs) {
    257     // Convert relative light to absolute light.
    258     switch (needs.getInputTF()) {
    259         case Key::INPUT_TF_ST2084:
    260             fs << R"__SHADER__(
    261                 highp vec3 ScaleLuminance(highp vec3 color) {
    262                     return color * 10000.0;
    263                 }
    264             )__SHADER__";
    265             break;
    266         case Key::INPUT_TF_HLG:
    267             fs << R"__SHADER__(
    268                 highp vec3 ScaleLuminance(highp vec3 color) {
    269                     // The formula is:
    270                     // alpha * pow(Y, gamma - 1.0) * color + beta;
    271                     // where alpha is 1000.0, gamma is 1.2, beta is 0.0.
    272                     return color * 1000.0 * pow(color.y, 0.2);
    273                 }
    274             )__SHADER__";
    275             break;
    276         default:
    277             fs << R"__SHADER__(
    278                 highp vec3 ScaleLuminance(highp vec3 color) {
    279                     return color * displayMaxLuminance;
    280                 }
    281             )__SHADER__";
    282             break;
    283     }
    284 
    285     // Tone map absolute light to display luminance range.
    286     switch (needs.getInputTF()) {
    287         case Key::INPUT_TF_ST2084:
    288         case Key::INPUT_TF_HLG:
    289             switch (needs.getOutputTF()) {
    290                 case Key::OUTPUT_TF_HLG:
    291                     // Right now when mixed PQ and HLG contents are presented,
    292                     // HLG content will always be converted to PQ. However, for
    293                     // completeness, we simply clamp the value to [0.0, 1000.0].
    294                     fs << R"__SHADER__(
    295                         highp vec3 ToneMap(highp vec3 color) {
    296                             return clamp(color, 0.0, 1000.0);
    297                         }
    298                     )__SHADER__";
    299                     break;
    300                 case Key::OUTPUT_TF_ST2084:
    301                     fs << R"__SHADER__(
    302                         highp vec3 ToneMap(highp vec3 color) {
    303                             return color;
    304                         }
    305                     )__SHADER__";
    306                     break;
    307                 default:
    308                     fs << R"__SHADER__(
    309                         highp vec3 ToneMap(highp vec3 color) {
    310                             const float maxMasteringLumi = 1000.0;
    311                             const float maxContentLumi = 1000.0;
    312                             const float maxInLumi = min(maxMasteringLumi, maxContentLumi);
    313                             float maxOutLumi = displayMaxLuminance;
    314 
    315                             float nits = color.y;
    316 
    317                             // clamp to max input luminance
    318                             nits = clamp(nits, 0.0, maxInLumi);
    319 
    320                             // scale [0.0, maxInLumi] to [0.0, maxOutLumi]
    321                             if (maxInLumi <= maxOutLumi) {
    322                                 nits *= maxOutLumi / maxInLumi;
    323                             } else {
    324                                 // three control points
    325                                 const float x0 = 10.0;
    326                                 const float y0 = 17.0;
    327                                 float x1 = maxOutLumi * 0.75;
    328                                 float y1 = x1;
    329                                 float x2 = x1 + (maxInLumi - x1) / 2.0;
    330                                 float y2 = y1 + (maxOutLumi - y1) * 0.75;
    331 
    332                                 // horizontal distances between the last three control points
    333                                 float h12 = x2 - x1;
    334                                 float h23 = maxInLumi - x2;
    335                                 // tangents at the last three control points
    336                                 float m1 = (y2 - y1) / h12;
    337                                 float m3 = (maxOutLumi - y2) / h23;
    338                                 float m2 = (m1 + m3) / 2.0;
    339 
    340                                 if (nits < x0) {
    341                                     // scale [0.0, x0] to [0.0, y0] linearly
    342                                     float slope = y0 / x0;
    343                                     nits *= slope;
    344                                 } else if (nits < x1) {
    345                                     // scale [x0, x1] to [y0, y1] linearly
    346                                     float slope = (y1 - y0) / (x1 - x0);
    347                                     nits = y0 + (nits - x0) * slope;
    348                                 } else if (nits < x2) {
    349                                     // scale [x1, x2] to [y1, y2] using Hermite interp
    350                                     float t = (nits - x1) / h12;
    351                                     nits = (y1 * (1.0 + 2.0 * t) + h12 * m1 * t) * (1.0 - t) * (1.0 - t) +
    352                                             (y2 * (3.0 - 2.0 * t) + h12 * m2 * (t - 1.0)) * t * t;
    353                                 } else {
    354                                     // scale [x2, maxInLumi] to [y2, maxOutLumi] using Hermite interp
    355                                     float t = (nits - x2) / h23;
    356                                     nits = (y2 * (1.0 + 2.0 * t) + h23 * m2 * t) * (1.0 - t) * (1.0 - t) +
    357                                             (maxOutLumi * (3.0 - 2.0 * t) + h23 * m3 * (t - 1.0)) * t * t;
    358                                 }
    359                             }
    360 
    361                             return color * (nits / max(1e-6, color.y));
    362                         }
    363                     )__SHADER__";
    364                     break;
    365             }
    366             break;
    367         default:
    368             // inverse tone map; the output luminance can be up to maxOutLumi.
    369             fs << R"__SHADER__(
    370                 highp vec3 ToneMap(highp vec3 color) {
    371                     const float maxOutLumi = 3000.0;
    372 
    373                     const float x0 = 5.0;
    374                     const float y0 = 2.5;
    375                     float x1 = displayMaxLuminance * 0.7;
    376                     float y1 = maxOutLumi * 0.15;
    377                     float x2 = displayMaxLuminance * 0.9;
    378                     float y2 = maxOutLumi * 0.45;
    379                     float x3 = displayMaxLuminance;
    380                     float y3 = maxOutLumi;
    381 
    382                     float c1 = y1 / 3.0;
    383                     float c2 = y2 / 2.0;
    384                     float c3 = y3 / 1.5;
    385 
    386                     float nits = color.y;
    387 
    388                     float scale;
    389                     if (nits <= x0) {
    390                         // scale [0.0, x0] to [0.0, y0] linearly
    391                         const float slope = y0 / x0;
    392                         nits *= slope;
    393                     } else if (nits <= x1) {
    394                         // scale [x0, x1] to [y0, y1] using a curve
    395                         float t = (nits - x0) / (x1 - x0);
    396                         nits = (1.0 - t) * (1.0 - t) * y0 + 2.0 * (1.0 - t) * t * c1 + t * t * y1;
    397                     } else if (nits <= x2) {
    398                         // scale [x1, x2] to [y1, y2] using a curve
    399                         float t = (nits - x1) / (x2 - x1);
    400                         nits = (1.0 - t) * (1.0 - t) * y1 + 2.0 * (1.0 - t) * t * c2 + t * t * y2;
    401                     } else {
    402                         // scale [x2, x3] to [y2, y3] using a curve
    403                         float t = (nits - x2) / (x3 - x2);
    404                         nits = (1.0 - t) * (1.0 - t) * y2 + 2.0 * (1.0 - t) * t * c3 + t * t * y3;
    405                     }
    406 
    407                     return color * (nits / max(1e-6, color.y));
    408                 }
    409             )__SHADER__";
    410             break;
    411     }
    412 
    413     // convert absolute light to relative light.
    414     switch (needs.getOutputTF()) {
    415         case Key::OUTPUT_TF_ST2084:
    416             fs << R"__SHADER__(
    417                 highp vec3 NormalizeLuminance(highp vec3 color) {
    418                     return color / 10000.0;
    419                 }
    420             )__SHADER__";
    421             break;
    422         case Key::OUTPUT_TF_HLG:
    423             fs << R"__SHADER__(
    424                 highp vec3 NormalizeLuminance(highp vec3 color) {
    425                     return color / 1000.0 * pow(color.y / 1000.0, -0.2 / 1.2);
    426                 }
    427             )__SHADER__";
    428             break;
    429         default:
    430             fs << R"__SHADER__(
    431                 highp vec3 NormalizeLuminance(highp vec3 color) {
    432                     return color / displayMaxLuminance;
    433                 }
    434             )__SHADER__";
    435             break;
    436     }
    437 }
    438 
    439 // Generate OOTF that modifies the relative scence light to relative display light.
    440 void ProgramCache::generateOOTF(Formatter& fs, const ProgramCache::Key& needs) {
    441     if (!needs.needsToneMapping()) {
    442         fs << R"__SHADER__(
    443             highp vec3 OOTF(const highp vec3 color) {
    444                 return color;
    445             }
    446         )__SHADER__";
    447     } else {
    448         generateToneMappingProcess(fs, needs);
    449         fs << R"__SHADER__(
    450             highp vec3 OOTF(const highp vec3 color) {
    451                 return NormalizeLuminance(ToneMap(ScaleLuminance(color)));
    452             }
    453         )__SHADER__";
    454     }
    455 }
    456 
    457 // Generate OETF that converts relative display light to signal values,
    458 // both normalized to [0, 1]
    459 void ProgramCache::generateOETF(Formatter& fs, const Key& needs) {
    460     switch (needs.getOutputTF()) {
    461         case Key::OUTPUT_TF_SRGB:
    462             fs << R"__SHADER__(
    463                 float OETF_sRGB(const float linear) {
    464                     return linear <= 0.0031308 ?
    465                             linear * 12.92 : (pow(linear, 1.0 / 2.4) * 1.055) - 0.055;
    466                 }
    467 
    468                 vec3 OETF_sRGB(const vec3 linear) {
    469                     return vec3(OETF_sRGB(linear.r), OETF_sRGB(linear.g), OETF_sRGB(linear.b));
    470                 }
    471 
    472                 vec3 OETF(const vec3 linear) {
    473                     return sign(linear.rgb) * OETF_sRGB(abs(linear.rgb));
    474                 }
    475             )__SHADER__";
    476             break;
    477         case Key::OUTPUT_TF_ST2084:
    478             fs << R"__SHADER__(
    479                 vec3 OETF(const vec3 linear) {
    480                     const highp float m1 = (2610.0 / 4096.0) / 4.0;
    481                     const highp float m2 = (2523.0 / 4096.0) * 128.0;
    482                     const highp float c1 = (3424.0 / 4096.0);
    483                     const highp float c2 = (2413.0 / 4096.0) * 32.0;
    484                     const highp float c3 = (2392.0 / 4096.0) * 32.0;
    485 
    486                     highp vec3 tmp = pow(linear, vec3(m1));
    487                     tmp = (c1 + c2 * tmp) / (1.0 + c3 * tmp);
    488                     return pow(tmp, vec3(m2));
    489                 }
    490             )__SHADER__";
    491             break;
    492         case Key::OUTPUT_TF_HLG:
    493             fs << R"__SHADER__(
    494                 highp float OETF_channel(const highp float channel) {
    495                     const highp float a = 0.17883277;
    496                     const highp float b = 0.28466892;
    497                     const highp float c = 0.55991073;
    498                     return channel <= 1.0 / 12.0 ? sqrt(3.0 * channel) :
    499                             a * log(12.0 * channel - b) + c;
    500                 }
    501 
    502                 vec3 OETF(const highp vec3 color) {
    503                     return vec3(OETF_channel(color.r), OETF_channel(color.g),
    504                             OETF_channel(color.b));
    505                 }
    506             )__SHADER__";
    507             break;
    508         default:
    509             fs << R"__SHADER__(
    510                 vec3 OETF(const vec3 linear) {
    511                     return linear;
    512                 }
    513             )__SHADER__";
    514             break;
    515     }
    516 }
    517 
    518 String8 ProgramCache::generateVertexShader(const Key& needs) {
    519     Formatter vs;
    520     if (needs.isTexturing()) {
    521         vs << "attribute vec4 texCoords;"
    522            << "varying vec2 outTexCoords;";
    523     }
    524     vs << "attribute vec4 position;"
    525        << "uniform mat4 projection;"
    526        << "uniform mat4 texture;"
    527        << "void main(void) {" << indent << "gl_Position = projection * position;";
    528     if (needs.isTexturing()) {
    529         vs << "outTexCoords = (texture * texCoords).st;";
    530     }
    531     vs << dedent << "}";
    532     return vs.getString();
    533 }
    534 
    535 String8 ProgramCache::generateFragmentShader(const Key& needs) {
    536     Formatter fs;
    537     if (needs.getTextureTarget() == Key::TEXTURE_EXT) {
    538         fs << "#extension GL_OES_EGL_image_external : require";
    539     }
    540 
    541     // default precision is required-ish in fragment shaders
    542     fs << "precision mediump float;";
    543 
    544     if (needs.getTextureTarget() == Key::TEXTURE_EXT) {
    545         fs << "uniform samplerExternalOES sampler;"
    546            << "varying vec2 outTexCoords;";
    547     } else if (needs.getTextureTarget() == Key::TEXTURE_2D) {
    548         fs << "uniform sampler2D sampler;"
    549            << "varying vec2 outTexCoords;";
    550     }
    551 
    552     if (needs.getTextureTarget() == Key::TEXTURE_OFF || needs.hasAlpha()) {
    553         fs << "uniform vec4 color;";
    554     }
    555 
    556     if (needs.isY410BT2020()) {
    557         fs << R"__SHADER__(
    558             vec3 convertY410BT2020(const vec3 color) {
    559                 const vec3 offset = vec3(0.0625, 0.5, 0.5);
    560                 const mat3 transform = mat3(
    561                     vec3(1.1678,  1.1678, 1.1678),
    562                     vec3(   0.0, -0.1878, 2.1481),
    563                     vec3(1.6836, -0.6523,   0.0));
    564                 // Y is in G, U is in R, and V is in B
    565                 return clamp(transform * (color.grb - offset), 0.0, 1.0);
    566             }
    567             )__SHADER__";
    568     }
    569 
    570     if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) {
    571         // Currently, display maximum luminance is needed when doing tone mapping.
    572         if (needs.needsToneMapping()) {
    573             fs << "uniform float displayMaxLuminance;";
    574         }
    575 
    576         if (needs.hasInputTransformMatrix()) {
    577             fs << "uniform mat4 inputTransformMatrix;";
    578             fs << R"__SHADER__(
    579                 highp vec3 InputTransform(const highp vec3 color) {
    580                     return vec3(inputTransformMatrix * vec4(color, 1.0));
    581                 }
    582             )__SHADER__";
    583         } else {
    584             fs << R"__SHADER__(
    585                 highp vec3 InputTransform(const highp vec3 color) {
    586                     return color;
    587                 }
    588             )__SHADER__";
    589         }
    590 
    591         // the transformation from a wider colorspace to a narrower one can
    592         // result in >1.0 or <0.0 pixel values
    593         if (needs.hasOutputTransformMatrix()) {
    594             fs << "uniform mat4 outputTransformMatrix;";
    595             fs << R"__SHADER__(
    596                 highp vec3 OutputTransform(const highp vec3 color) {
    597                     return clamp(vec3(outputTransformMatrix * vec4(color, 1.0)), 0.0, 1.0);
    598                 }
    599             )__SHADER__";
    600         } else {
    601             fs << R"__SHADER__(
    602                 highp vec3 OutputTransform(const highp vec3 color) {
    603                     return clamp(color, 0.0, 1.0);
    604                 }
    605             )__SHADER__";
    606         }
    607 
    608         generateEOTF(fs, needs);
    609         generateOOTF(fs, needs);
    610         generateOETF(fs, needs);
    611     }
    612 
    613     fs << "void main(void) {" << indent;
    614     if (needs.isTexturing()) {
    615         fs << "gl_FragColor = texture2D(sampler, outTexCoords);";
    616         if (needs.isY410BT2020()) {
    617             fs << "gl_FragColor.rgb = convertY410BT2020(gl_FragColor.rgb);";
    618         }
    619     } else {
    620         fs << "gl_FragColor.rgb = color.rgb;";
    621         fs << "gl_FragColor.a = 1.0;";
    622     }
    623     if (needs.isOpaque()) {
    624         fs << "gl_FragColor.a = 1.0;";
    625     }
    626     if (needs.hasAlpha()) {
    627         // modulate the current alpha value with alpha set
    628         if (needs.isPremultiplied()) {
    629             // ... and the color too if we're premultiplied
    630             fs << "gl_FragColor *= color.a;";
    631         } else {
    632             fs << "gl_FragColor.a *= color.a;";
    633         }
    634     }
    635 
    636     if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) {
    637         if (!needs.isOpaque() && needs.isPremultiplied()) {
    638             // un-premultiply if needed before linearization
    639             // avoid divide by 0 by adding 0.5/256 to the alpha channel
    640             fs << "gl_FragColor.rgb = gl_FragColor.rgb / (gl_FragColor.a + 0.0019);";
    641         }
    642         fs << "gl_FragColor.rgb = OETF(OutputTransform(OOTF(InputTransform(EOTF(gl_FragColor.rgb)))));";
    643         if (!needs.isOpaque() && needs.isPremultiplied()) {
    644             // and re-premultiply if needed after gamma correction
    645             fs << "gl_FragColor.rgb = gl_FragColor.rgb * (gl_FragColor.a + 0.0019);";
    646         }
    647     }
    648 
    649     fs << dedent << "}";
    650     return fs.getString();
    651 }
    652 
    653 Program* ProgramCache::generateProgram(const Key& needs) {
    654     ATRACE_CALL();
    655 
    656     // vertex shader
    657     String8 vs = generateVertexShader(needs);
    658 
    659     // fragment shader
    660     String8 fs = generateFragmentShader(needs);
    661 
    662     Program* program = new Program(needs, vs.string(), fs.string());
    663     return program;
    664 }
    665 
    666 void ProgramCache::useProgram(const Description& description) {
    667     // generate the key for the shader based on the description
    668     Key needs(computeKey(description));
    669 
    670     // look-up the program in the cache
    671     Program* program = mCache.valueFor(needs);
    672     if (program == nullptr) {
    673         // we didn't find our program, so generate one...
    674         nsecs_t time = -systemTime();
    675         program = generateProgram(needs);
    676         mCache.add(needs, program);
    677         time += systemTime();
    678 
    679         ALOGV(">>> generated new program: needs=%08X, time=%u ms (%zu programs)", needs.mKey,
    680               uint32_t(ns2ms(time)), mCache.size());
    681     }
    682 
    683     // here we have a suitable program for this description
    684     if (program->isValid()) {
    685         program->use();
    686         program->setUniforms(description);
    687     }
    688 }
    689 
    690 } /* namespace android */
    691