Home | History | Annotate | Download | only in lang
      1 /*
      2  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
      3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      4  *
      5  * This code is free software; you can redistribute it and/or modify it
      6  * under the terms of the GNU General Public License version 2 only, as
      7  * published by the Free Software Foundation.  Oracle designates this
      8  * particular file as subject to the "Classpath" exception as provided
      9  * by Oracle in the LICENSE file that accompanied this code.
     10  *
     11  * This code is distributed in the hope that it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     14  * version 2 for more details (a copy is included in the LICENSE file that
     15  * accompanied this code).
     16  *
     17  * You should have received a copy of the GNU General Public License version
     18  * 2 along with this work; if not, write to the Free Software Foundation,
     19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     20  *
     21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     22  * or visit www.oracle.com if you need additional information or have any
     23  * questions.
     24  */
     25 
     26 package java.lang;
     27 
     28 import sun.misc.FloatingDecimal;
     29 import sun.misc.FloatConsts;
     30 import sun.misc.DoubleConsts;
     31 
     32 /**
     33  * The {@code Float} class wraps a value of primitive type
     34  * {@code float} in an object. An object of type
     35  * {@code Float} contains a single field whose type is
     36  * {@code float}.
     37  *
     38  * <p>In addition, this class provides several methods for converting a
     39  * {@code float} to a {@code String} and a
     40  * {@code String} to a {@code float}, as well as other
     41  * constants and methods useful when dealing with a
     42  * {@code float}.
     43  *
     44  * @author  Lee Boynton
     45  * @author  Arthur van Hoff
     46  * @author  Joseph D. Darcy
     47  * @since JDK1.0
     48  */
     49 public final class Float extends Number implements Comparable<Float> {
     50     /**
     51      * A constant holding the positive infinity of type
     52      * {@code float}. It is equal to the value returned by
     53      * {@code Float.intBitsToFloat(0x7f800000)}.
     54      */
     55     public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
     56 
     57     /**
     58      * A constant holding the negative infinity of type
     59      * {@code float}. It is equal to the value returned by
     60      * {@code Float.intBitsToFloat(0xff800000)}.
     61      */
     62     public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
     63 
     64     /**
     65      * A constant holding a Not-a-Number (NaN) value of type
     66      * {@code float}.  It is equivalent to the value returned by
     67      * {@code Float.intBitsToFloat(0x7fc00000)}.
     68      */
     69     public static final float NaN = 0.0f / 0.0f;
     70 
     71     /**
     72      * A constant holding the largest positive finite value of type
     73      * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
     74      * It is equal to the hexadecimal floating-point literal
     75      * {@code 0x1.fffffeP+127f} and also equal to
     76      * {@code Float.intBitsToFloat(0x7f7fffff)}.
     77      */
     78     public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
     79 
     80     /**
     81      * A constant holding the smallest positive normal value of type
     82      * {@code float}, 2<sup>-126</sup>.  It is equal to the
     83      * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
     84      * equal to {@code Float.intBitsToFloat(0x00800000)}.
     85      *
     86      * @since 1.6
     87      */
     88     public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
     89 
     90     /**
     91      * A constant holding the smallest positive nonzero value of type
     92      * {@code float}, 2<sup>-149</sup>. It is equal to the
     93      * hexadecimal floating-point literal {@code 0x0.000002P-126f}
     94      * and also equal to {@code Float.intBitsToFloat(0x1)}.
     95      */
     96     public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
     97 
     98     /**
     99      * Maximum exponent a finite {@code float} variable may have.  It
    100      * is equal to the value returned by {@code
    101      * Math.getExponent(Float.MAX_VALUE)}.
    102      *
    103      * @since 1.6
    104      */
    105     public static final int MAX_EXPONENT = 127;
    106 
    107     /**
    108      * Minimum exponent a normalized {@code float} variable may have.
    109      * It is equal to the value returned by {@code
    110      * Math.getExponent(Float.MIN_NORMAL)}.
    111      *
    112      * @since 1.6
    113      */
    114     public static final int MIN_EXPONENT = -126;
    115 
    116     /**
    117      * The number of bits used to represent a {@code float} value.
    118      *
    119      * @since 1.5
    120      */
    121     public static final int SIZE = 32;
    122 
    123     /**
    124      * The number of bytes used to represent a {@code float} value.
    125      *
    126      * @since 1.8
    127      */
    128     public static final int BYTES = SIZE / Byte.SIZE;
    129 
    130     /**
    131      * The {@code Class} instance representing the primitive type
    132      * {@code float}.
    133      *
    134      * @since JDK1.1
    135      */
    136     @SuppressWarnings("unchecked")
    137     public static final Class<Float> TYPE = (Class<Float>) Class.getPrimitiveClass("float");
    138 
    139     /**
    140      * Returns a string representation of the {@code float}
    141      * argument. All characters mentioned below are ASCII characters.
    142      * <ul>
    143      * <li>If the argument is NaN, the result is the string
    144      * "{@code NaN}".
    145      * <li>Otherwise, the result is a string that represents the sign and
    146      *     magnitude (absolute value) of the argument. If the sign is
    147      *     negative, the first character of the result is
    148      *     '{@code -}' ({@code '\u005Cu002D'}); if the sign is
    149      *     positive, no sign character appears in the result. As for
    150      *     the magnitude <i>m</i>:
    151      * <ul>
    152      * <li>If <i>m</i> is infinity, it is represented by the characters
    153      *     {@code "Infinity"}; thus, positive infinity produces
    154      *     the result {@code "Infinity"} and negative infinity
    155      *     produces the result {@code "-Infinity"}.
    156      * <li>If <i>m</i> is zero, it is represented by the characters
    157      *     {@code "0.0"}; thus, negative zero produces the result
    158      *     {@code "-0.0"} and positive zero produces the result
    159      *     {@code "0.0"}.
    160      * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
    161      *      less than 10<sup>7</sup>, then it is represented as the
    162      *      integer part of <i>m</i>, in decimal form with no leading
    163      *      zeroes, followed by '{@code .}'
    164      *      ({@code '\u005Cu002E'}), followed by one or more
    165      *      decimal digits representing the fractional part of
    166      *      <i>m</i>.
    167      * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
    168      *      equal to 10<sup>7</sup>, then it is represented in
    169      *      so-called "computerized scientific notation." Let <i>n</i>
    170      *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
    171      *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
    172      *      be the mathematically exact quotient of <i>m</i> and
    173      *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
    174      *      The magnitude is then represented as the integer part of
    175      *      <i>a</i>, as a single decimal digit, followed by
    176      *      '{@code .}' ({@code '\u005Cu002E'}), followed by
    177      *      decimal digits representing the fractional part of
    178      *      <i>a</i>, followed by the letter '{@code E}'
    179      *      ({@code '\u005Cu0045'}), followed by a representation
    180      *      of <i>n</i> as a decimal integer, as produced by the
    181      *      method {@link java.lang.Integer#toString(int)}.
    182      *
    183      * </ul>
    184      * </ul>
    185      * How many digits must be printed for the fractional part of
    186      * <i>m</i> or <i>a</i>? There must be at least one digit
    187      * to represent the fractional part, and beyond that as many, but
    188      * only as many, more digits as are needed to uniquely distinguish
    189      * the argument value from adjacent values of type
    190      * {@code float}. That is, suppose that <i>x</i> is the
    191      * exact mathematical value represented by the decimal
    192      * representation produced by this method for a finite nonzero
    193      * argument <i>f</i>. Then <i>f</i> must be the {@code float}
    194      * value nearest to <i>x</i>; or, if two {@code float} values are
    195      * equally close to <i>x</i>, then <i>f</i> must be one of
    196      * them and the least significant bit of the significand of
    197      * <i>f</i> must be {@code 0}.
    198      *
    199      * <p>To create localized string representations of a floating-point
    200      * value, use subclasses of {@link java.text.NumberFormat}.
    201      *
    202      * @param   f   the float to be converted.
    203      * @return a string representation of the argument.
    204      */
    205     public static String toString(float f) {
    206         return FloatingDecimal.toJavaFormatString(f);
    207     }
    208 
    209     /**
    210      * Returns a hexadecimal string representation of the
    211      * {@code float} argument. All characters mentioned below are
    212      * ASCII characters.
    213      *
    214      * <ul>
    215      * <li>If the argument is NaN, the result is the string
    216      *     "{@code NaN}".
    217      * <li>Otherwise, the result is a string that represents the sign and
    218      * magnitude (absolute value) of the argument. If the sign is negative,
    219      * the first character of the result is '{@code -}'
    220      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
    221      * appears in the result. As for the magnitude <i>m</i>:
    222      *
    223      * <ul>
    224      * <li>If <i>m</i> is infinity, it is represented by the string
    225      * {@code "Infinity"}; thus, positive infinity produces the
    226      * result {@code "Infinity"} and negative infinity produces
    227      * the result {@code "-Infinity"}.
    228      *
    229      * <li>If <i>m</i> is zero, it is represented by the string
    230      * {@code "0x0.0p0"}; thus, negative zero produces the result
    231      * {@code "-0x0.0p0"} and positive zero produces the result
    232      * {@code "0x0.0p0"}.
    233      *
    234      * <li>If <i>m</i> is a {@code float} value with a
    235      * normalized representation, substrings are used to represent the
    236      * significand and exponent fields.  The significand is
    237      * represented by the characters {@code "0x1."}
    238      * followed by a lowercase hexadecimal representation of the rest
    239      * of the significand as a fraction.  Trailing zeros in the
    240      * hexadecimal representation are removed unless all the digits
    241      * are zero, in which case a single zero is used. Next, the
    242      * exponent is represented by {@code "p"} followed
    243      * by a decimal string of the unbiased exponent as if produced by
    244      * a call to {@link Integer#toString(int) Integer.toString} on the
    245      * exponent value.
    246      *
    247      * <li>If <i>m</i> is a {@code float} value with a subnormal
    248      * representation, the significand is represented by the
    249      * characters {@code "0x0."} followed by a
    250      * hexadecimal representation of the rest of the significand as a
    251      * fraction.  Trailing zeros in the hexadecimal representation are
    252      * removed. Next, the exponent is represented by
    253      * {@code "p-126"}.  Note that there must be at
    254      * least one nonzero digit in a subnormal significand.
    255      *
    256      * </ul>
    257      *
    258      * </ul>
    259      *
    260      * <table border>
    261      * <caption>Examples</caption>
    262      * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
    263      * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
    264      * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
    265      * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
    266      * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
    267      * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
    268      * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
    269      * <tr><td>{@code Float.MAX_VALUE}</td>
    270      *     <td>{@code 0x1.fffffep127}</td>
    271      * <tr><td>{@code Minimum Normal Value}</td>
    272      *     <td>{@code 0x1.0p-126}</td>
    273      * <tr><td>{@code Maximum Subnormal Value}</td>
    274      *     <td>{@code 0x0.fffffep-126}</td>
    275      * <tr><td>{@code Float.MIN_VALUE}</td>
    276      *     <td>{@code 0x0.000002p-126}</td>
    277      * </table>
    278      * @param   f   the {@code float} to be converted.
    279      * @return a hex string representation of the argument.
    280      * @since 1.5
    281      * @author Joseph D. Darcy
    282      */
    283     public static String toHexString(float f) {
    284         if (Math.abs(f) < FloatConsts.MIN_NORMAL
    285             &&  f != 0.0f ) {// float subnormal
    286             // Adjust exponent to create subnormal double, then
    287             // replace subnormal double exponent with subnormal float
    288             // exponent
    289             String s = Double.toHexString(Math.scalb((double)f,
    290                                                      /* -1022+126 */
    291                                                      DoubleConsts.MIN_EXPONENT-
    292                                                      FloatConsts.MIN_EXPONENT));
    293             return s.replaceFirst("p-1022$", "p-126");
    294         }
    295         else // double string will be the same as float string
    296             return Double.toHexString(f);
    297     }
    298 
    299     /**
    300      * Returns a {@code Float} object holding the
    301      * {@code float} value represented by the argument string
    302      * {@code s}.
    303      *
    304      * <p>If {@code s} is {@code null}, then a
    305      * {@code NullPointerException} is thrown.
    306      *
    307      * <p>Leading and trailing whitespace characters in {@code s}
    308      * are ignored.  Whitespace is removed as if by the {@link
    309      * String#trim} method; that is, both ASCII space and control
    310      * characters are removed. The rest of {@code s} should
    311      * constitute a <i>FloatValue</i> as described by the lexical
    312      * syntax rules:
    313      *
    314      * <blockquote>
    315      * <dl>
    316      * <dt><i>FloatValue:</i>
    317      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
    318      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
    319      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
    320      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
    321      * <dd><i>SignedInteger</i>
    322      * </dl>
    323      *
    324      * <dl>
    325      * <dt><i>HexFloatingPointLiteral</i>:
    326      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
    327      * </dl>
    328      *
    329      * <dl>
    330      * <dt><i>HexSignificand:</i>
    331      * <dd><i>HexNumeral</i>
    332      * <dd><i>HexNumeral</i> {@code .}
    333      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
    334      *     </i>{@code .}<i> HexDigits</i>
    335      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
    336      *     </i>{@code .} <i>HexDigits</i>
    337      * </dl>
    338      *
    339      * <dl>
    340      * <dt><i>BinaryExponent:</i>
    341      * <dd><i>BinaryExponentIndicator SignedInteger</i>
    342      * </dl>
    343      *
    344      * <dl>
    345      * <dt><i>BinaryExponentIndicator:</i>
    346      * <dd>{@code p}
    347      * <dd>{@code P}
    348      * </dl>
    349      *
    350      * </blockquote>
    351      *
    352      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
    353      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
    354      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
    355      * sections of
    356      * <cite>The Java&trade; Language Specification</cite>,
    357      * except that underscores are not accepted between digits.
    358      * If {@code s} does not have the form of
    359      * a <i>FloatValue</i>, then a {@code NumberFormatException}
    360      * is thrown. Otherwise, {@code s} is regarded as
    361      * representing an exact decimal value in the usual
    362      * "computerized scientific notation" or as an exact
    363      * hexadecimal value; this exact numerical value is then
    364      * conceptually converted to an "infinitely precise"
    365      * binary value that is then rounded to type {@code float}
    366      * by the usual round-to-nearest rule of IEEE 754 floating-point
    367      * arithmetic, which includes preserving the sign of a zero
    368      * value.
    369      *
    370      * Note that the round-to-nearest rule also implies overflow and
    371      * underflow behaviour; if the exact value of {@code s} is large
    372      * enough in magnitude (greater than or equal to ({@link
    373      * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
    374      * rounding to {@code float} will result in an infinity and if the
    375      * exact value of {@code s} is small enough in magnitude (less
    376      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
    377      * result in a zero.
    378      *
    379      * Finally, after rounding a {@code Float} object representing
    380      * this {@code float} value is returned.
    381      *
    382      * <p>To interpret localized string representations of a
    383      * floating-point value, use subclasses of {@link
    384      * java.text.NumberFormat}.
    385      *
    386      * <p>Note that trailing format specifiers, specifiers that
    387      * determine the type of a floating-point literal
    388      * ({@code 1.0f} is a {@code float} value;
    389      * {@code 1.0d} is a {@code double} value), do
    390      * <em>not</em> influence the results of this method.  In other
    391      * words, the numerical value of the input string is converted
    392      * directly to the target floating-point type.  In general, the
    393      * two-step sequence of conversions, string to {@code double}
    394      * followed by {@code double} to {@code float}, is
    395      * <em>not</em> equivalent to converting a string directly to
    396      * {@code float}.  For example, if first converted to an
    397      * intermediate {@code double} and then to
    398      * {@code float}, the string<br>
    399      * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
    400      * results in the {@code float} value
    401      * {@code 1.0000002f}; if the string is converted directly to
    402      * {@code float}, <code>1.000000<b>1</b>f</code> results.
    403      *
    404      * <p>To avoid calling this method on an invalid string and having
    405      * a {@code NumberFormatException} be thrown, the documentation
    406      * for {@link Double#valueOf Double.valueOf} lists a regular
    407      * expression which can be used to screen the input.
    408      *
    409      * @param   s   the string to be parsed.
    410      * @return  a {@code Float} object holding the value
    411      *          represented by the {@code String} argument.
    412      * @throws  NumberFormatException  if the string does not contain a
    413      *          parsable number.
    414      */
    415     public static Float valueOf(String s) throws NumberFormatException {
    416         return new Float(parseFloat(s));
    417     }
    418 
    419     /**
    420      * Returns a {@code Float} instance representing the specified
    421      * {@code float} value.
    422      * If a new {@code Float} instance is not required, this method
    423      * should generally be used in preference to the constructor
    424      * {@link #Float(float)}, as this method is likely to yield
    425      * significantly better space and time performance by caching
    426      * frequently requested values.
    427      *
    428      * @param  f a float value.
    429      * @return a {@code Float} instance representing {@code f}.
    430      * @since  1.5
    431      */
    432     public static Float valueOf(float f) {
    433         return new Float(f);
    434     }
    435 
    436     /**
    437      * Returns a new {@code float} initialized to the value
    438      * represented by the specified {@code String}, as performed
    439      * by the {@code valueOf} method of class {@code Float}.
    440      *
    441      * @param  s the string to be parsed.
    442      * @return the {@code float} value represented by the string
    443      *         argument.
    444      * @throws NullPointerException  if the string is null
    445      * @throws NumberFormatException if the string does not contain a
    446      *               parsable {@code float}.
    447      * @see    java.lang.Float#valueOf(String)
    448      * @since 1.2
    449      */
    450     public static float parseFloat(String s) throws NumberFormatException {
    451         return FloatingDecimal.parseFloat(s);
    452     }
    453 
    454     /**
    455      * Returns {@code true} if the specified number is a
    456      * Not-a-Number (NaN) value, {@code false} otherwise.
    457      *
    458      * @param   v   the value to be tested.
    459      * @return  {@code true} if the argument is NaN;
    460      *          {@code false} otherwise.
    461      */
    462     public static boolean isNaN(float v) {
    463         return (v != v);
    464     }
    465 
    466     /**
    467      * Returns {@code true} if the specified number is infinitely
    468      * large in magnitude, {@code false} otherwise.
    469      *
    470      * @param   v   the value to be tested.
    471      * @return  {@code true} if the argument is positive infinity or
    472      *          negative infinity; {@code false} otherwise.
    473      */
    474     public static boolean isInfinite(float v) {
    475         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
    476     }
    477 
    478 
    479     /**
    480      * Returns {@code true} if the argument is a finite floating-point
    481      * value; returns {@code false} otherwise (for NaN and infinity
    482      * arguments).
    483      *
    484      * @param f the {@code float} value to be tested
    485      * @return {@code true} if the argument is a finite
    486      * floating-point value, {@code false} otherwise.
    487      * @since 1.8
    488      */
    489      public static boolean isFinite(float f) {
    490         return Math.abs(f) <= FloatConsts.MAX_VALUE;
    491     }
    492 
    493     /**
    494      * The value of the Float.
    495      *
    496      * @serial
    497      */
    498     private final float value;
    499 
    500     /**
    501      * Constructs a newly allocated {@code Float} object that
    502      * represents the primitive {@code float} argument.
    503      *
    504      * @param   value   the value to be represented by the {@code Float}.
    505      */
    506     public Float(float value) {
    507         this.value = value;
    508     }
    509 
    510     /**
    511      * Constructs a newly allocated {@code Float} object that
    512      * represents the argument converted to type {@code float}.
    513      *
    514      * @param   value   the value to be represented by the {@code Float}.
    515      */
    516     public Float(double value) {
    517         this.value = (float)value;
    518     }
    519 
    520     /**
    521      * Constructs a newly allocated {@code Float} object that
    522      * represents the floating-point value of type {@code float}
    523      * represented by the string. The string is converted to a
    524      * {@code float} value as if by the {@code valueOf} method.
    525      *
    526      * @param      s   a string to be converted to a {@code Float}.
    527      * @throws  NumberFormatException  if the string does not contain a
    528      *               parsable number.
    529      * @see        java.lang.Float#valueOf(java.lang.String)
    530      */
    531     public Float(String s) throws NumberFormatException {
    532         value = parseFloat(s);
    533     }
    534 
    535     /**
    536      * Returns {@code true} if this {@code Float} value is a
    537      * Not-a-Number (NaN), {@code false} otherwise.
    538      *
    539      * @return  {@code true} if the value represented by this object is
    540      *          NaN; {@code false} otherwise.
    541      */
    542     public boolean isNaN() {
    543         return isNaN(value);
    544     }
    545 
    546     /**
    547      * Returns {@code true} if this {@code Float} value is
    548      * infinitely large in magnitude, {@code false} otherwise.
    549      *
    550      * @return  {@code true} if the value represented by this object is
    551      *          positive infinity or negative infinity;
    552      *          {@code false} otherwise.
    553      */
    554     public boolean isInfinite() {
    555         return isInfinite(value);
    556     }
    557 
    558     /**
    559      * Returns a string representation of this {@code Float} object.
    560      * The primitive {@code float} value represented by this object
    561      * is converted to a {@code String} exactly as if by the method
    562      * {@code toString} of one argument.
    563      *
    564      * @return  a {@code String} representation of this object.
    565      * @see java.lang.Float#toString(float)
    566      */
    567     public String toString() {
    568         return Float.toString(value);
    569     }
    570 
    571     /**
    572      * Returns the value of this {@code Float} as a {@code byte} after
    573      * a narrowing primitive conversion.
    574      *
    575      * @return  the {@code float} value represented by this object
    576      *          converted to type {@code byte}
    577      * @jls 5.1.3 Narrowing Primitive Conversions
    578      */
    579     public byte byteValue() {
    580         return (byte)value;
    581     }
    582 
    583     /**
    584      * Returns the value of this {@code Float} as a {@code short}
    585      * after a narrowing primitive conversion.
    586      *
    587      * @return  the {@code float} value represented by this object
    588      *          converted to type {@code short}
    589      * @jls 5.1.3 Narrowing Primitive Conversions
    590      * @since JDK1.1
    591      */
    592     public short shortValue() {
    593         return (short)value;
    594     }
    595 
    596     /**
    597      * Returns the value of this {@code Float} as an {@code int} after
    598      * a narrowing primitive conversion.
    599      *
    600      * @return  the {@code float} value represented by this object
    601      *          converted to type {@code int}
    602      * @jls 5.1.3 Narrowing Primitive Conversions
    603      */
    604     public int intValue() {
    605         return (int)value;
    606     }
    607 
    608     /**
    609      * Returns value of this {@code Float} as a {@code long} after a
    610      * narrowing primitive conversion.
    611      *
    612      * @return  the {@code float} value represented by this object
    613      *          converted to type {@code long}
    614      * @jls 5.1.3 Narrowing Primitive Conversions
    615      */
    616     public long longValue() {
    617         return (long)value;
    618     }
    619 
    620     /**
    621      * Returns the {@code float} value of this {@code Float} object.
    622      *
    623      * @return the {@code float} value represented by this object
    624      */
    625     public float floatValue() {
    626         return value;
    627     }
    628 
    629     /**
    630      * Returns the value of this {@code Float} as a {@code double}
    631      * after a widening primitive conversion.
    632      *
    633      * @return the {@code float} value represented by this
    634      *         object converted to type {@code double}
    635      * @jls 5.1.2 Widening Primitive Conversions
    636      */
    637     public double doubleValue() {
    638         return (double)value;
    639     }
    640 
    641     /**
    642      * Returns a hash code for this {@code Float} object. The
    643      * result is the integer bit representation, exactly as produced
    644      * by the method {@link #floatToIntBits(float)}, of the primitive
    645      * {@code float} value represented by this {@code Float}
    646      * object.
    647      *
    648      * @return a hash code value for this object.
    649      */
    650     @Override
    651     public int hashCode() {
    652         return Float.hashCode(value);
    653     }
    654 
    655     /**
    656      * Returns a hash code for a {@code float} value; compatible with
    657      * {@code Float.hashCode()}.
    658      *
    659      * @param value the value to hash
    660      * @return a hash code value for a {@code float} value.
    661      * @since 1.8
    662      */
    663     public static int hashCode(float value) {
    664         return floatToIntBits(value);
    665     }
    666 
    667     /**
    668 
    669      * Compares this object against the specified object.  The result
    670      * is {@code true} if and only if the argument is not
    671      * {@code null} and is a {@code Float} object that
    672      * represents a {@code float} with the same value as the
    673      * {@code float} represented by this object. For this
    674      * purpose, two {@code float} values are considered to be the
    675      * same if and only if the method {@link #floatToIntBits(float)}
    676      * returns the identical {@code int} value when applied to
    677      * each.
    678      *
    679      * <p>Note that in most cases, for two instances of class
    680      * {@code Float}, {@code f1} and {@code f2}, the value
    681      * of {@code f1.equals(f2)} is {@code true} if and only if
    682      *
    683      * <blockquote><pre>
    684      *   f1.floatValue() == f2.floatValue()
    685      * </pre></blockquote>
    686      *
    687      * <p>also has the value {@code true}. However, there are two exceptions:
    688      * <ul>
    689      * <li>If {@code f1} and {@code f2} both represent
    690      *     {@code Float.NaN}, then the {@code equals} method returns
    691      *     {@code true}, even though {@code Float.NaN==Float.NaN}
    692      *     has the value {@code false}.
    693      * <li>If {@code f1} represents {@code +0.0f} while
    694      *     {@code f2} represents {@code -0.0f}, or vice
    695      *     versa, the {@code equal} test has the value
    696      *     {@code false}, even though {@code 0.0f==-0.0f}
    697      *     has the value {@code true}.
    698      * </ul>
    699      *
    700      * This definition allows hash tables to operate properly.
    701      *
    702      * @param obj the object to be compared
    703      * @return  {@code true} if the objects are the same;
    704      *          {@code false} otherwise.
    705      * @see java.lang.Float#floatToIntBits(float)
    706      */
    707     public boolean equals(Object obj) {
    708         return (obj instanceof Float)
    709                && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
    710     }
    711 
    712     /**
    713      * Returns a representation of the specified floating-point value
    714      * according to the IEEE 754 floating-point "single format" bit
    715      * layout.
    716      *
    717      * <p>Bit 31 (the bit that is selected by the mask
    718      * {@code 0x80000000}) represents the sign of the floating-point
    719      * number.
    720      * Bits 30-23 (the bits that are selected by the mask
    721      * {@code 0x7f800000}) represent the exponent.
    722      * Bits 22-0 (the bits that are selected by the mask
    723      * {@code 0x007fffff}) represent the significand (sometimes called
    724      * the mantissa) of the floating-point number.
    725      *
    726      * <p>If the argument is positive infinity, the result is
    727      * {@code 0x7f800000}.
    728      *
    729      * <p>If the argument is negative infinity, the result is
    730      * {@code 0xff800000}.
    731      *
    732      * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
    733      *
    734      * <p>In all cases, the result is an integer that, when given to the
    735      * {@link #intBitsToFloat(int)} method, will produce a floating-point
    736      * value the same as the argument to {@code floatToIntBits}
    737      * (except all NaN values are collapsed to a single
    738      * "canonical" NaN value).
    739      *
    740      * @param   value   a floating-point number.
    741      * @return the bits that represent the floating-point number.
    742      */
    743     public static int floatToIntBits(float value) {
    744         int result = floatToRawIntBits(value);
    745         // Check for NaN based on values of bit fields, maximum
    746         // exponent and nonzero significand.
    747         if ( ((result & FloatConsts.EXP_BIT_MASK) ==
    748               FloatConsts.EXP_BIT_MASK) &&
    749              (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
    750             result = 0x7fc00000;
    751         return result;
    752     }
    753 
    754     /**
    755      * Returns a representation of the specified floating-point value
    756      * according to the IEEE 754 floating-point "single format" bit
    757      * layout, preserving Not-a-Number (NaN) values.
    758      *
    759      * <p>Bit 31 (the bit that is selected by the mask
    760      * {@code 0x80000000}) represents the sign of the floating-point
    761      * number.
    762      * Bits 30-23 (the bits that are selected by the mask
    763      * {@code 0x7f800000}) represent the exponent.
    764      * Bits 22-0 (the bits that are selected by the mask
    765      * {@code 0x007fffff}) represent the significand (sometimes called
    766      * the mantissa) of the floating-point number.
    767      *
    768      * <p>If the argument is positive infinity, the result is
    769      * {@code 0x7f800000}.
    770      *
    771      * <p>If the argument is negative infinity, the result is
    772      * {@code 0xff800000}.
    773      *
    774      * <p>If the argument is NaN, the result is the integer representing
    775      * the actual NaN value.  Unlike the {@code floatToIntBits}
    776      * method, {@code floatToRawIntBits} does not collapse all the
    777      * bit patterns encoding a NaN to a single "canonical"
    778      * NaN value.
    779      *
    780      * <p>In all cases, the result is an integer that, when given to the
    781      * {@link #intBitsToFloat(int)} method, will produce a
    782      * floating-point value the same as the argument to
    783      * {@code floatToRawIntBits}.
    784      *
    785      * @param   value   a floating-point number.
    786      * @return the bits that represent the floating-point number.
    787      * @since 1.3
    788      */
    789     public static native int floatToRawIntBits(float value);
    790 
    791     /**
    792      * Returns the {@code float} value corresponding to a given
    793      * bit representation.
    794      * The argument is considered to be a representation of a
    795      * floating-point value according to the IEEE 754 floating-point
    796      * "single format" bit layout.
    797      *
    798      * <p>If the argument is {@code 0x7f800000}, the result is positive
    799      * infinity.
    800      *
    801      * <p>If the argument is {@code 0xff800000}, the result is negative
    802      * infinity.
    803      *
    804      * <p>If the argument is any value in the range
    805      * {@code 0x7f800001} through {@code 0x7fffffff} or in
    806      * the range {@code 0xff800001} through
    807      * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
    808      * floating-point operation provided by Java can distinguish
    809      * between two NaN values of the same type with different bit
    810      * patterns.  Distinct values of NaN are only distinguishable by
    811      * use of the {@code Float.floatToRawIntBits} method.
    812      *
    813      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
    814      * values that can be computed from the argument:
    815      *
    816      * <blockquote><pre>{@code
    817      * int s = ((bits >> 31) == 0) ? 1 : -1;
    818      * int e = ((bits >> 23) & 0xff);
    819      * int m = (e == 0) ?
    820      *                 (bits & 0x7fffff) << 1 :
    821      *                 (bits & 0x7fffff) | 0x800000;
    822      * }</pre></blockquote>
    823      *
    824      * Then the floating-point result equals the value of the mathematical
    825      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
    826      *
    827      * <p>Note that this method may not be able to return a
    828      * {@code float} NaN with exactly same bit pattern as the
    829      * {@code int} argument.  IEEE 754 distinguishes between two
    830      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
    831      * differences between the two kinds of NaN are generally not
    832      * visible in Java.  Arithmetic operations on signaling NaNs turn
    833      * them into quiet NaNs with a different, but often similar, bit
    834      * pattern.  However, on some processors merely copying a
    835      * signaling NaN also performs that conversion.  In particular,
    836      * copying a signaling NaN to return it to the calling method may
    837      * perform this conversion.  So {@code intBitsToFloat} may
    838      * not be able to return a {@code float} with a signaling NaN
    839      * bit pattern.  Consequently, for some {@code int} values,
    840      * {@code floatToRawIntBits(intBitsToFloat(start))} may
    841      * <i>not</i> equal {@code start}.  Moreover, which
    842      * particular bit patterns represent signaling NaNs is platform
    843      * dependent; although all NaN bit patterns, quiet or signaling,
    844      * must be in the NaN range identified above.
    845      *
    846      * @param   bits   an integer.
    847      * @return  the {@code float} floating-point value with the same bit
    848      *          pattern.
    849      */
    850     public static native float intBitsToFloat(int bits);
    851 
    852     /**
    853      * Compares two {@code Float} objects numerically.  There are
    854      * two ways in which comparisons performed by this method differ
    855      * from those performed by the Java language numerical comparison
    856      * operators ({@code <, <=, ==, >=, >}) when
    857      * applied to primitive {@code float} values:
    858      *
    859      * <ul><li>
    860      *          {@code Float.NaN} is considered by this method to
    861      *          be equal to itself and greater than all other
    862      *          {@code float} values
    863      *          (including {@code Float.POSITIVE_INFINITY}).
    864      * <li>
    865      *          {@code 0.0f} is considered by this method to be greater
    866      *          than {@code -0.0f}.
    867      * </ul>
    868      *
    869      * This ensures that the <i>natural ordering</i> of {@code Float}
    870      * objects imposed by this method is <i>consistent with equals</i>.
    871      *
    872      * @param   anotherFloat   the {@code Float} to be compared.
    873      * @return  the value {@code 0} if {@code anotherFloat} is
    874      *          numerically equal to this {@code Float}; a value
    875      *          less than {@code 0} if this {@code Float}
    876      *          is numerically less than {@code anotherFloat};
    877      *          and a value greater than {@code 0} if this
    878      *          {@code Float} is numerically greater than
    879      *          {@code anotherFloat}.
    880      *
    881      * @since   1.2
    882      * @see Comparable#compareTo(Object)
    883      */
    884     public int compareTo(Float anotherFloat) {
    885         return Float.compare(value, anotherFloat.value);
    886     }
    887 
    888     /**
    889      * Compares the two specified {@code float} values. The sign
    890      * of the integer value returned is the same as that of the
    891      * integer that would be returned by the call:
    892      * <pre>
    893      *    new Float(f1).compareTo(new Float(f2))
    894      * </pre>
    895      *
    896      * @param   f1        the first {@code float} to compare.
    897      * @param   f2        the second {@code float} to compare.
    898      * @return  the value {@code 0} if {@code f1} is
    899      *          numerically equal to {@code f2}; a value less than
    900      *          {@code 0} if {@code f1} is numerically less than
    901      *          {@code f2}; and a value greater than {@code 0}
    902      *          if {@code f1} is numerically greater than
    903      *          {@code f2}.
    904      * @since 1.4
    905      */
    906     public static int compare(float f1, float f2) {
    907         if (f1 < f2)
    908             return -1;           // Neither val is NaN, thisVal is smaller
    909         if (f1 > f2)
    910             return 1;            // Neither val is NaN, thisVal is larger
    911 
    912         // Cannot use floatToRawIntBits because of possibility of NaNs.
    913         int thisBits    = Float.floatToIntBits(f1);
    914         int anotherBits = Float.floatToIntBits(f2);
    915 
    916         return (thisBits == anotherBits ?  0 : // Values are equal
    917                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
    918                  1));                          // (0.0, -0.0) or (NaN, !NaN)
    919     }
    920 
    921     /**
    922      * Adds two {@code float} values together as per the + operator.
    923      *
    924      * @param a the first operand
    925      * @param b the second operand
    926      * @return the sum of {@code a} and {@code b}
    927      * @jls 4.2.4 Floating-Point Operations
    928      * @see java.util.function.BinaryOperator
    929      * @since 1.8
    930      */
    931     public static float sum(float a, float b) {
    932         return a + b;
    933     }
    934 
    935     /**
    936      * Returns the greater of two {@code float} values
    937      * as if by calling {@link Math#max(float, float) Math.max}.
    938      *
    939      * @param a the first operand
    940      * @param b the second operand
    941      * @return the greater of {@code a} and {@code b}
    942      * @see java.util.function.BinaryOperator
    943      * @since 1.8
    944      */
    945     public static float max(float a, float b) {
    946         return Math.max(a, b);
    947     }
    948 
    949     /**
    950      * Returns the smaller of two {@code float} values
    951      * as if by calling {@link Math#min(float, float) Math.min}.
    952      *
    953      * @param a the first operand
    954      * @param b the second operand
    955      * @return the smaller of {@code a} and {@code b}
    956      * @see java.util.function.BinaryOperator
    957      * @since 1.8
    958      */
    959     public static float min(float a, float b) {
    960         return Math.min(a, b);
    961     }
    962 
    963     /** use serialVersionUID from JDK 1.0.2 for interoperability */
    964     private static final long serialVersionUID = -2671257302660747028L;
    965 }
    966