Home | History | Annotate | Download | only in util
      1 /*
      2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
      3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      4  *
      5  * This code is free software; you can redistribute it and/or modify it
      6  * under the terms of the GNU General Public License version 2 only, as
      7  * published by the Free Software Foundation.  Oracle designates this
      8  * particular file as subject to the "Classpath" exception as provided
      9  * by Oracle in the LICENSE file that accompanied this code.
     10  *
     11  * This code is distributed in the hope that it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     14  * version 2 for more details (a copy is included in the LICENSE file that
     15  * accompanied this code).
     16  *
     17  * You should have received a copy of the GNU General Public License version
     18  * 2 along with this work; if not, write to the Free Software Foundation,
     19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     20  *
     21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     22  * or visit www.oracle.com if you need additional information or have any
     23  * questions.
     24  */
     25 
     26 package java.util;
     27 
     28 import java.io.IOException;
     29 import java.io.InvalidObjectException;
     30 import java.io.Serializable;
     31 import java.lang.reflect.ParameterizedType;
     32 import java.lang.reflect.Type;
     33 import java.util.function.BiConsumer;
     34 import java.util.function.BiFunction;
     35 import java.util.function.Consumer;
     36 import java.util.function.Function;
     37 
     38 /**
     39  * Hash table based implementation of the <tt>Map</tt> interface.  This
     40  * implementation provides all of the optional map operations, and permits
     41  * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
     42  * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
     43  * unsynchronized and permits nulls.)  This class makes no guarantees as to
     44  * the order of the map; in particular, it does not guarantee that the order
     45  * will remain constant over time.
     46  *
     47  * <p>This implementation provides constant-time performance for the basic
     48  * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
     49  * disperses the elements properly among the buckets.  Iteration over
     50  * collection views requires time proportional to the "capacity" of the
     51  * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
     52  * of key-value mappings).  Thus, it's very important not to set the initial
     53  * capacity too high (or the load factor too low) if iteration performance is
     54  * important.
     55  *
     56  * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
     57  * performance: <i>initial capacity</i> and <i>load factor</i>.  The
     58  * <i>capacity</i> is the number of buckets in the hash table, and the initial
     59  * capacity is simply the capacity at the time the hash table is created.  The
     60  * <i>load factor</i> is a measure of how full the hash table is allowed to
     61  * get before its capacity is automatically increased.  When the number of
     62  * entries in the hash table exceeds the product of the load factor and the
     63  * current capacity, the hash table is <i>rehashed</i> (that is, internal data
     64  * structures are rebuilt) so that the hash table has approximately twice the
     65  * number of buckets.
     66  *
     67  * <p>As a general rule, the default load factor (.75) offers a good
     68  * tradeoff between time and space costs.  Higher values decrease the
     69  * space overhead but increase the lookup cost (reflected in most of
     70  * the operations of the <tt>HashMap</tt> class, including
     71  * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in
     72  * the map and its load factor should be taken into account when
     73  * setting its initial capacity, so as to minimize the number of
     74  * rehash operations.  If the initial capacity is greater than the
     75  * maximum number of entries divided by the load factor, no rehash
     76  * operations will ever occur.
     77  *
     78  * <p>If many mappings are to be stored in a <tt>HashMap</tt>
     79  * instance, creating it with a sufficiently large capacity will allow
     80  * the mappings to be stored more efficiently than letting it perform
     81  * automatic rehashing as needed to grow the table.  Note that using
     82  * many keys with the same {@code hashCode()} is a sure way to slow
     83  * down performance of any hash table. To ameliorate impact, when keys
     84  * are {@link Comparable}, this class may use comparison order among
     85  * keys to help break ties.
     86  *
     87  * <p><strong>Note that this implementation is not synchronized.</strong>
     88  * If multiple threads access a hash map concurrently, and at least one of
     89  * the threads modifies the map structurally, it <i>must</i> be
     90  * synchronized externally.  (A structural modification is any operation
     91  * that adds or deletes one or more mappings; merely changing the value
     92  * associated with a key that an instance already contains is not a
     93  * structural modification.)  This is typically accomplished by
     94  * synchronizing on some object that naturally encapsulates the map.
     95  *
     96  * If no such object exists, the map should be "wrapped" using the
     97  * {@link Collections#synchronizedMap Collections.synchronizedMap}
     98  * method.  This is best done at creation time, to prevent accidental
     99  * unsynchronized access to the map:<pre>
    100  *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
    101  *
    102  * <p>The iterators returned by all of this class's "collection view methods"
    103  * are <i>fail-fast</i>: if the map is structurally modified at any time after
    104  * the iterator is created, in any way except through the iterator's own
    105  * <tt>remove</tt> method, the iterator will throw a
    106  * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
    107  * modification, the iterator fails quickly and cleanly, rather than risking
    108  * arbitrary, non-deterministic behavior at an undetermined time in the
    109  * future.
    110  *
    111  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
    112  * as it is, generally speaking, impossible to make any hard guarantees in the
    113  * presence of unsynchronized concurrent modification.  Fail-fast iterators
    114  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
    115  * Therefore, it would be wrong to write a program that depended on this
    116  * exception for its correctness: <i>the fail-fast behavior of iterators
    117  * should be used only to detect bugs.</i>
    118  *
    119  * <p>This class is a member of the
    120  * <a href="{@docRoot}openjdk-redirect.html?v=8&path=/technotes/guides/collections/index.html">
    121  * Java Collections Framework</a>.
    122  *
    123  * @param <K> the type of keys maintained by this map
    124  * @param <V> the type of mapped values
    125  *
    126  * @author  Doug Lea
    127  * @author  Josh Bloch
    128  * @author  Arthur van Hoff
    129  * @author  Neal Gafter
    130  * @see     Object#hashCode()
    131  * @see     Collection
    132  * @see     Map
    133  * @see     TreeMap
    134  * @see     Hashtable
    135  * @since   1.2
    136  */
    137 public class HashMap<K,V> extends AbstractMap<K,V>
    138     implements Map<K,V>, Cloneable, Serializable {
    139 
    140     private static final long serialVersionUID = 362498820763181265L;
    141 
    142     /*
    143      * Implementation notes.
    144      *
    145      * This map usually acts as a binned (bucketed) hash table, but
    146      * when bins get too large, they are transformed into bins of
    147      * TreeNodes, each structured similarly to those in
    148      * java.util.TreeMap. Most methods try to use normal bins, but
    149      * relay to TreeNode methods when applicable (simply by checking
    150      * instanceof a node).  Bins of TreeNodes may be traversed and
    151      * used like any others, but additionally support faster lookup
    152      * when overpopulated. However, since the vast majority of bins in
    153      * normal use are not overpopulated, checking for existence of
    154      * tree bins may be delayed in the course of table methods.
    155      *
    156      * Tree bins (i.e., bins whose elements are all TreeNodes) are
    157      * ordered primarily by hashCode, but in the case of ties, if two
    158      * elements are of the same "class C implements Comparable<C>",
    159      * type then their compareTo method is used for ordering. (We
    160      * conservatively check generic types via reflection to validate
    161      * this -- see method comparableClassFor).  The added complexity
    162      * of tree bins is worthwhile in providing worst-case O(log n)
    163      * operations when keys either have distinct hashes or are
    164      * orderable, Thus, performance degrades gracefully under
    165      * accidental or malicious usages in which hashCode() methods
    166      * return values that are poorly distributed, as well as those in
    167      * which many keys share a hashCode, so long as they are also
    168      * Comparable. (If neither of these apply, we may waste about a
    169      * factor of two in time and space compared to taking no
    170      * precautions. But the only known cases stem from poor user
    171      * programming practices that are already so slow that this makes
    172      * little difference.)
    173      *
    174      * Because TreeNodes are about twice the size of regular nodes, we
    175      * use them only when bins contain enough nodes to warrant use
    176      * (see TREEIFY_THRESHOLD). And when they become too small (due to
    177      * removal or resizing) they are converted back to plain bins.  In
    178      * usages with well-distributed user hashCodes, tree bins are
    179      * rarely used.  Ideally, under random hashCodes, the frequency of
    180      * nodes in bins follows a Poisson distribution
    181      * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
    182      * parameter of about 0.5 on average for the default resizing
    183      * threshold of 0.75, although with a large variance because of
    184      * resizing granularity. Ignoring variance, the expected
    185      * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
    186      * factorial(k)). The first values are:
    187      *
    188      * 0:    0.60653066
    189      * 1:    0.30326533
    190      * 2:    0.07581633
    191      * 3:    0.01263606
    192      * 4:    0.00157952
    193      * 5:    0.00015795
    194      * 6:    0.00001316
    195      * 7:    0.00000094
    196      * 8:    0.00000006
    197      * more: less than 1 in ten million
    198      *
    199      * The root of a tree bin is normally its first node.  However,
    200      * sometimes (currently only upon Iterator.remove), the root might
    201      * be elsewhere, but can be recovered following parent links
    202      * (method TreeNode.root()).
    203      *
    204      * All applicable internal methods accept a hash code as an
    205      * argument (as normally supplied from a public method), allowing
    206      * them to call each other without recomputing user hashCodes.
    207      * Most internal methods also accept a "tab" argument, that is
    208      * normally the current table, but may be a new or old one when
    209      * resizing or converting.
    210      *
    211      * When bin lists are treeified, split, or untreeified, we keep
    212      * them in the same relative access/traversal order (i.e., field
    213      * Node.next) to better preserve locality, and to slightly
    214      * simplify handling of splits and traversals that invoke
    215      * iterator.remove. When using comparators on insertion, to keep a
    216      * total ordering (or as close as is required here) across
    217      * rebalancings, we compare classes and identityHashCodes as
    218      * tie-breakers.
    219      *
    220      * The use and transitions among plain vs tree modes is
    221      * complicated by the existence of subclass LinkedHashMap. See
    222      * below for hook methods defined to be invoked upon insertion,
    223      * removal and access that allow LinkedHashMap internals to
    224      * otherwise remain independent of these mechanics. (This also
    225      * requires that a map instance be passed to some utility methods
    226      * that may create new nodes.)
    227      *
    228      * The concurrent-programming-like SSA-based coding style helps
    229      * avoid aliasing errors amid all of the twisty pointer operations.
    230      */
    231 
    232     /**
    233      * The default initial capacity - MUST be a power of two.
    234      */
    235     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    236 
    237     /**
    238      * The maximum capacity, used if a higher value is implicitly specified
    239      * by either of the constructors with arguments.
    240      * MUST be a power of two <= 1<<30.
    241      */
    242     static final int MAXIMUM_CAPACITY = 1 << 30;
    243 
    244     /**
    245      * The load factor used when none specified in constructor.
    246      */
    247     static final float DEFAULT_LOAD_FACTOR = 0.75f;
    248 
    249     /**
    250      * The bin count threshold for using a tree rather than list for a
    251      * bin.  Bins are converted to trees when adding an element to a
    252      * bin with at least this many nodes. The value must be greater
    253      * than 2 and should be at least 8 to mesh with assumptions in
    254      * tree removal about conversion back to plain bins upon
    255      * shrinkage.
    256      */
    257     static final int TREEIFY_THRESHOLD = 8;
    258 
    259     /**
    260      * The bin count threshold for untreeifying a (split) bin during a
    261      * resize operation. Should be less than TREEIFY_THRESHOLD, and at
    262      * most 6 to mesh with shrinkage detection under removal.
    263      */
    264     static final int UNTREEIFY_THRESHOLD = 6;
    265 
    266     /**
    267      * The smallest table capacity for which bins may be treeified.
    268      * (Otherwise the table is resized if too many nodes in a bin.)
    269      * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
    270      * between resizing and treeification thresholds.
    271      */
    272     static final int MIN_TREEIFY_CAPACITY = 64;
    273 
    274     /**
    275      * Basic hash bin node, used for most entries.  (See below for
    276      * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
    277      */
    278     static class Node<K,V> implements Map.Entry<K,V> {
    279         final int hash;
    280         final K key;
    281         V value;
    282         Node<K,V> next;
    283 
    284         Node(int hash, K key, V value, Node<K,V> next) {
    285             this.hash = hash;
    286             this.key = key;
    287             this.value = value;
    288             this.next = next;
    289         }
    290 
    291         public final K getKey()        { return key; }
    292         public final V getValue()      { return value; }
    293         public final String toString() { return key + "=" + value; }
    294 
    295         public final int hashCode() {
    296             return Objects.hashCode(key) ^ Objects.hashCode(value);
    297         }
    298 
    299         public final V setValue(V newValue) {
    300             V oldValue = value;
    301             value = newValue;
    302             return oldValue;
    303         }
    304 
    305         public final boolean equals(Object o) {
    306             if (o == this)
    307                 return true;
    308             if (o instanceof Map.Entry) {
    309                 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
    310                 if (Objects.equals(key, e.getKey()) &&
    311                     Objects.equals(value, e.getValue()))
    312                     return true;
    313             }
    314             return false;
    315         }
    316     }
    317 
    318     /* ---------------- Static utilities -------------- */
    319 
    320     /**
    321      * Computes key.hashCode() and spreads (XORs) higher bits of hash
    322      * to lower.  Because the table uses power-of-two masking, sets of
    323      * hashes that vary only in bits above the current mask will
    324      * always collide. (Among known examples are sets of Float keys
    325      * holding consecutive whole numbers in small tables.)  So we
    326      * apply a transform that spreads the impact of higher bits
    327      * downward. There is a tradeoff between speed, utility, and
    328      * quality of bit-spreading. Because many common sets of hashes
    329      * are already reasonably distributed (so don't benefit from
    330      * spreading), and because we use trees to handle large sets of
    331      * collisions in bins, we just XOR some shifted bits in the
    332      * cheapest possible way to reduce systematic lossage, as well as
    333      * to incorporate impact of the highest bits that would otherwise
    334      * never be used in index calculations because of table bounds.
    335      */
    336     static final int hash(Object key) {
    337         int h;
    338         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    339     }
    340 
    341     /**
    342      * Returns x's Class if it is of the form "class C implements
    343      * Comparable<C>", else null.
    344      */
    345     static Class<?> comparableClassFor(Object x) {
    346         if (x instanceof Comparable) {
    347             Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
    348             if ((c = x.getClass()) == String.class) // bypass checks
    349                 return c;
    350             if ((ts = c.getGenericInterfaces()) != null) {
    351                 for (int i = 0; i < ts.length; ++i) {
    352                     if (((t = ts[i]) instanceof ParameterizedType) &&
    353                         ((p = (ParameterizedType)t).getRawType() ==
    354                          Comparable.class) &&
    355                         (as = p.getActualTypeArguments()) != null &&
    356                         as.length == 1 && as[0] == c) // type arg is c
    357                         return c;
    358                 }
    359             }
    360         }
    361         return null;
    362     }
    363 
    364     /**
    365      * Returns k.compareTo(x) if x matches kc (k's screened comparable
    366      * class), else 0.
    367      */
    368     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
    369     static int compareComparables(Class<?> kc, Object k, Object x) {
    370         return (x == null || x.getClass() != kc ? 0 :
    371                 ((Comparable)k).compareTo(x));
    372     }
    373 
    374     /**
    375      * Returns a power of two size for the given target capacity.
    376      */
    377     static final int tableSizeFor(int cap) {
    378         int n = cap - 1;
    379         n |= n >>> 1;
    380         n |= n >>> 2;
    381         n |= n >>> 4;
    382         n |= n >>> 8;
    383         n |= n >>> 16;
    384         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    385     }
    386 
    387     /* ---------------- Fields -------------- */
    388 
    389     /**
    390      * The table, initialized on first use, and resized as
    391      * necessary. When allocated, length is always a power of two.
    392      * (We also tolerate length zero in some operations to allow
    393      * bootstrapping mechanics that are currently not needed.)
    394      */
    395     transient Node<K,V>[] table;
    396 
    397     /**
    398      * Holds cached entrySet(). Note that AbstractMap fields are used
    399      * for keySet() and values().
    400      */
    401     transient Set<Map.Entry<K,V>> entrySet;
    402 
    403     /**
    404      * The number of key-value mappings contained in this map.
    405      */
    406     transient int size;
    407 
    408     /**
    409      * The number of times this HashMap has been structurally modified
    410      * Structural modifications are those that change the number of mappings in
    411      * the HashMap or otherwise modify its internal structure (e.g.,
    412      * rehash).  This field is used to make iterators on Collection-views of
    413      * the HashMap fail-fast.  (See ConcurrentModificationException).
    414      */
    415     transient int modCount;
    416 
    417     /**
    418      * The next size value at which to resize (capacity * load factor).
    419      *
    420      * @serial
    421      */
    422     // (The javadoc description is true upon serialization.
    423     // Additionally, if the table array has not been allocated, this
    424     // field holds the initial array capacity, or zero signifying
    425     // DEFAULT_INITIAL_CAPACITY.)
    426     int threshold;
    427 
    428     /**
    429      * The load factor for the hash table.
    430      *
    431      * @serial
    432      */
    433     final float loadFactor;
    434 
    435     /* ---------------- Public operations -------------- */
    436 
    437     /**
    438      * Constructs an empty <tt>HashMap</tt> with the specified initial
    439      * capacity and load factor.
    440      *
    441      * @param  initialCapacity the initial capacity
    442      * @param  loadFactor      the load factor
    443      * @throws IllegalArgumentException if the initial capacity is negative
    444      *         or the load factor is nonpositive
    445      */
    446     public HashMap(int initialCapacity, float loadFactor) {
    447         if (initialCapacity < 0)
    448             throw new IllegalArgumentException("Illegal initial capacity: " +
    449                                                initialCapacity);
    450         if (initialCapacity > MAXIMUM_CAPACITY)
    451             initialCapacity = MAXIMUM_CAPACITY;
    452         if (loadFactor <= 0 || Float.isNaN(loadFactor))
    453             throw new IllegalArgumentException("Illegal load factor: " +
    454                                                loadFactor);
    455         this.loadFactor = loadFactor;
    456         this.threshold = tableSizeFor(initialCapacity);
    457     }
    458 
    459     /**
    460      * Constructs an empty <tt>HashMap</tt> with the specified initial
    461      * capacity and the default load factor (0.75).
    462      *
    463      * @param  initialCapacity the initial capacity.
    464      * @throws IllegalArgumentException if the initial capacity is negative.
    465      */
    466     public HashMap(int initialCapacity) {
    467         this(initialCapacity, DEFAULT_LOAD_FACTOR);
    468     }
    469 
    470     /**
    471      * Constructs an empty <tt>HashMap</tt> with the default initial capacity
    472      * (16) and the default load factor (0.75).
    473      */
    474     public HashMap() {
    475         this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    476     }
    477 
    478     /**
    479      * Constructs a new <tt>HashMap</tt> with the same mappings as the
    480      * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
    481      * default load factor (0.75) and an initial capacity sufficient to
    482      * hold the mappings in the specified <tt>Map</tt>.
    483      *
    484      * @param   m the map whose mappings are to be placed in this map
    485      * @throws  NullPointerException if the specified map is null
    486      */
    487     public HashMap(Map<? extends K, ? extends V> m) {
    488         this.loadFactor = DEFAULT_LOAD_FACTOR;
    489         putMapEntries(m, false);
    490     }
    491 
    492     /**
    493      * Implements Map.putAll and Map constructor
    494      *
    495      * @param m the map
    496      * @param evict false when initially constructing this map, else
    497      * true (relayed to method afterNodeInsertion).
    498      */
    499     final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
    500         int s = m.size();
    501         if (s > 0) {
    502             if (table == null) { // pre-size
    503                 float ft = ((float)s / loadFactor) + 1.0F;
    504                 int t = ((ft < (float)MAXIMUM_CAPACITY) ?
    505                          (int)ft : MAXIMUM_CAPACITY);
    506                 if (t > threshold)
    507                     threshold = tableSizeFor(t);
    508             }
    509             else if (s > threshold)
    510                 resize();
    511             for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
    512                 K key = e.getKey();
    513                 V value = e.getValue();
    514                 putVal(hash(key), key, value, false, evict);
    515             }
    516         }
    517     }
    518 
    519     /**
    520      * Returns the number of key-value mappings in this map.
    521      *
    522      * @return the number of key-value mappings in this map
    523      */
    524     public int size() {
    525         return size;
    526     }
    527 
    528     /**
    529      * Returns <tt>true</tt> if this map contains no key-value mappings.
    530      *
    531      * @return <tt>true</tt> if this map contains no key-value mappings
    532      */
    533     public boolean isEmpty() {
    534         return size == 0;
    535     }
    536 
    537     /**
    538      * Returns the value to which the specified key is mapped,
    539      * or {@code null} if this map contains no mapping for the key.
    540      *
    541      * <p>More formally, if this map contains a mapping from a key
    542      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
    543      * key.equals(k))}, then this method returns {@code v}; otherwise
    544      * it returns {@code null}.  (There can be at most one such mapping.)
    545      *
    546      * <p>A return value of {@code null} does not <i>necessarily</i>
    547      * indicate that the map contains no mapping for the key; it's also
    548      * possible that the map explicitly maps the key to {@code null}.
    549      * The {@link #containsKey containsKey} operation may be used to
    550      * distinguish these two cases.
    551      *
    552      * @see #put(Object, Object)
    553      */
    554     public V get(Object key) {
    555         Node<K,V> e;
    556         return (e = getNode(hash(key), key)) == null ? null : e.value;
    557     }
    558 
    559     /**
    560      * Implements Map.get and related methods
    561      *
    562      * @param hash hash for key
    563      * @param key the key
    564      * @return the node, or null if none
    565      */
    566     final Node<K,V> getNode(int hash, Object key) {
    567         Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    568         if ((tab = table) != null && (n = tab.length) > 0 &&
    569             (first = tab[(n - 1) & hash]) != null) {
    570             if (first.hash == hash && // always check first node
    571                 ((k = first.key) == key || (key != null && key.equals(k))))
    572                 return first;
    573             if ((e = first.next) != null) {
    574                 if (first instanceof TreeNode)
    575                     return ((TreeNode<K,V>)first).getTreeNode(hash, key);
    576                 do {
    577                     if (e.hash == hash &&
    578                         ((k = e.key) == key || (key != null && key.equals(k))))
    579                         return e;
    580                 } while ((e = e.next) != null);
    581             }
    582         }
    583         return null;
    584     }
    585 
    586     /**
    587      * Returns <tt>true</tt> if this map contains a mapping for the
    588      * specified key.
    589      *
    590      * @param   key   The key whose presence in this map is to be tested
    591      * @return <tt>true</tt> if this map contains a mapping for the specified
    592      * key.
    593      */
    594     public boolean containsKey(Object key) {
    595         return getNode(hash(key), key) != null;
    596     }
    597 
    598     /**
    599      * Associates the specified value with the specified key in this map.
    600      * If the map previously contained a mapping for the key, the old
    601      * value is replaced.
    602      *
    603      * @param key key with which the specified value is to be associated
    604      * @param value value to be associated with the specified key
    605      * @return the previous value associated with <tt>key</tt>, or
    606      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
    607      *         (A <tt>null</tt> return can also indicate that the map
    608      *         previously associated <tt>null</tt> with <tt>key</tt>.)
    609      */
    610     public V put(K key, V value) {
    611         return putVal(hash(key), key, value, false, true);
    612     }
    613 
    614     /**
    615      * Implements Map.put and related methods
    616      *
    617      * @param hash hash for key
    618      * @param key the key
    619      * @param value the value to put
    620      * @param onlyIfAbsent if true, don't change existing value
    621      * @param evict if false, the table is in creation mode.
    622      * @return previous value, or null if none
    623      */
    624     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
    625                    boolean evict) {
    626         Node<K,V>[] tab; Node<K,V> p; int n, i;
    627         if ((tab = table) == null || (n = tab.length) == 0)
    628             n = (tab = resize()).length;
    629         if ((p = tab[i = (n - 1) & hash]) == null)
    630             tab[i] = newNode(hash, key, value, null);
    631         else {
    632             Node<K,V> e; K k;
    633             if (p.hash == hash &&
    634                 ((k = p.key) == key || (key != null && key.equals(k))))
    635                 e = p;
    636             else if (p instanceof TreeNode)
    637                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
    638             else {
    639                 for (int binCount = 0; ; ++binCount) {
    640                     if ((e = p.next) == null) {
    641                         p.next = newNode(hash, key, value, null);
    642                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
    643                             treeifyBin(tab, hash);
    644                         break;
    645                     }
    646                     if (e.hash == hash &&
    647                         ((k = e.key) == key || (key != null && key.equals(k))))
    648                         break;
    649                     p = e;
    650                 }
    651             }
    652             if (e != null) { // existing mapping for key
    653                 V oldValue = e.value;
    654                 if (!onlyIfAbsent || oldValue == null)
    655                     e.value = value;
    656                 afterNodeAccess(e);
    657                 return oldValue;
    658             }
    659         }
    660         ++modCount;
    661         if (++size > threshold)
    662             resize();
    663         afterNodeInsertion(evict);
    664         return null;
    665     }
    666 
    667     /**
    668      * Initializes or doubles table size.  If null, allocates in
    669      * accord with initial capacity target held in field threshold.
    670      * Otherwise, because we are using power-of-two expansion, the
    671      * elements from each bin must either stay at same index, or move
    672      * with a power of two offset in the new table.
    673      *
    674      * @return the table
    675      */
    676     final Node<K,V>[] resize() {
    677         Node<K,V>[] oldTab = table;
    678         int oldCap = (oldTab == null) ? 0 : oldTab.length;
    679         int oldThr = threshold;
    680         int newCap, newThr = 0;
    681         if (oldCap > 0) {
    682             if (oldCap >= MAXIMUM_CAPACITY) {
    683                 threshold = Integer.MAX_VALUE;
    684                 return oldTab;
    685             }
    686             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
    687                      oldCap >= DEFAULT_INITIAL_CAPACITY)
    688                 newThr = oldThr << 1; // double threshold
    689         }
    690         else if (oldThr > 0) // initial capacity was placed in threshold
    691             newCap = oldThr;
    692         else {               // zero initial threshold signifies using defaults
    693             newCap = DEFAULT_INITIAL_CAPACITY;
    694             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    695         }
    696         if (newThr == 0) {
    697             float ft = (float)newCap * loadFactor;
    698             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
    699                       (int)ft : Integer.MAX_VALUE);
    700         }
    701         threshold = newThr;
    702         @SuppressWarnings({"rawtypes","unchecked"})
    703             Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    704         table = newTab;
    705         if (oldTab != null) {
    706             for (int j = 0; j < oldCap; ++j) {
    707                 Node<K,V> e;
    708                 if ((e = oldTab[j]) != null) {
    709                     oldTab[j] = null;
    710                     if (e.next == null)
    711                         newTab[e.hash & (newCap - 1)] = e;
    712                     else if (e instanceof TreeNode)
    713                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
    714                     else { // preserve order
    715                         Node<K,V> loHead = null, loTail = null;
    716                         Node<K,V> hiHead = null, hiTail = null;
    717                         Node<K,V> next;
    718                         do {
    719                             next = e.next;
    720                             if ((e.hash & oldCap) == 0) {
    721                                 if (loTail == null)
    722                                     loHead = e;
    723                                 else
    724                                     loTail.next = e;
    725                                 loTail = e;
    726                             }
    727                             else {
    728                                 if (hiTail == null)
    729                                     hiHead = e;
    730                                 else
    731                                     hiTail.next = e;
    732                                 hiTail = e;
    733                             }
    734                         } while ((e = next) != null);
    735                         if (loTail != null) {
    736                             loTail.next = null;
    737                             newTab[j] = loHead;
    738                         }
    739                         if (hiTail != null) {
    740                             hiTail.next = null;
    741                             newTab[j + oldCap] = hiHead;
    742                         }
    743                     }
    744                 }
    745             }
    746         }
    747         return newTab;
    748     }
    749 
    750     /**
    751      * Replaces all linked nodes in bin at index for given hash unless
    752      * table is too small, in which case resizes instead.
    753      */
    754     final void treeifyBin(Node<K,V>[] tab, int hash) {
    755         int n, index; Node<K,V> e;
    756         if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
    757             resize();
    758         else if ((e = tab[index = (n - 1) & hash]) != null) {
    759             TreeNode<K,V> hd = null, tl = null;
    760             do {
    761                 TreeNode<K,V> p = replacementTreeNode(e, null);
    762                 if (tl == null)
    763                     hd = p;
    764                 else {
    765                     p.prev = tl;
    766                     tl.next = p;
    767                 }
    768                 tl = p;
    769             } while ((e = e.next) != null);
    770             if ((tab[index] = hd) != null)
    771                 hd.treeify(tab);
    772         }
    773     }
    774 
    775     /**
    776      * Copies all of the mappings from the specified map to this map.
    777      * These mappings will replace any mappings that this map had for
    778      * any of the keys currently in the specified map.
    779      *
    780      * @param m mappings to be stored in this map
    781      * @throws NullPointerException if the specified map is null
    782      */
    783     public void putAll(Map<? extends K, ? extends V> m) {
    784         putMapEntries(m, true);
    785     }
    786 
    787     /**
    788      * Removes the mapping for the specified key from this map if present.
    789      *
    790      * @param  key key whose mapping is to be removed from the map
    791      * @return the previous value associated with <tt>key</tt>, or
    792      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
    793      *         (A <tt>null</tt> return can also indicate that the map
    794      *         previously associated <tt>null</tt> with <tt>key</tt>.)
    795      */
    796     public V remove(Object key) {
    797         Node<K,V> e;
    798         return (e = removeNode(hash(key), key, null, false, true)) == null ?
    799             null : e.value;
    800     }
    801 
    802     /**
    803      * Implements Map.remove and related methods
    804      *
    805      * @param hash hash for key
    806      * @param key the key
    807      * @param value the value to match if matchValue, else ignored
    808      * @param matchValue if true only remove if value is equal
    809      * @param movable if false do not move other nodes while removing
    810      * @return the node, or null if none
    811      */
    812     final Node<K,V> removeNode(int hash, Object key, Object value,
    813                                boolean matchValue, boolean movable) {
    814         Node<K,V>[] tab; Node<K,V> p; int n, index;
    815         if ((tab = table) != null && (n = tab.length) > 0 &&
    816             (p = tab[index = (n - 1) & hash]) != null) {
    817             Node<K,V> node = null, e; K k; V v;
    818             if (p.hash == hash &&
    819                 ((k = p.key) == key || (key != null && key.equals(k))))
    820                 node = p;
    821             else if ((e = p.next) != null) {
    822                 if (p instanceof TreeNode)
    823                     node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
    824                 else {
    825                     do {
    826                         if (e.hash == hash &&
    827                             ((k = e.key) == key ||
    828                              (key != null && key.equals(k)))) {
    829                             node = e;
    830                             break;
    831                         }
    832                         p = e;
    833                     } while ((e = e.next) != null);
    834                 }
    835             }
    836             if (node != null && (!matchValue || (v = node.value) == value ||
    837                                  (value != null && value.equals(v)))) {
    838                 if (node instanceof TreeNode)
    839                     ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
    840                 else if (node == p)
    841                     tab[index] = node.next;
    842                 else
    843                     p.next = node.next;
    844                 ++modCount;
    845                 --size;
    846                 afterNodeRemoval(node);
    847                 return node;
    848             }
    849         }
    850         return null;
    851     }
    852 
    853     /**
    854      * Removes all of the mappings from this map.
    855      * The map will be empty after this call returns.
    856      */
    857     public void clear() {
    858         Node<K,V>[] tab;
    859         modCount++;
    860         if ((tab = table) != null && size > 0) {
    861             size = 0;
    862             for (int i = 0; i < tab.length; ++i)
    863                 tab[i] = null;
    864         }
    865     }
    866 
    867     /**
    868      * Returns <tt>true</tt> if this map maps one or more keys to the
    869      * specified value.
    870      *
    871      * @param value value whose presence in this map is to be tested
    872      * @return <tt>true</tt> if this map maps one or more keys to the
    873      *         specified value
    874      */
    875     public boolean containsValue(Object value) {
    876         Node<K,V>[] tab; V v;
    877         if ((tab = table) != null && size > 0) {
    878             for (int i = 0; i < tab.length; ++i) {
    879                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
    880                     if ((v = e.value) == value ||
    881                         (value != null && value.equals(v)))
    882                         return true;
    883                 }
    884             }
    885         }
    886         return false;
    887     }
    888 
    889     /**
    890      * Returns a {@link Set} view of the keys contained in this map.
    891      * The set is backed by the map, so changes to the map are
    892      * reflected in the set, and vice-versa.  If the map is modified
    893      * while an iteration over the set is in progress (except through
    894      * the iterator's own <tt>remove</tt> operation), the results of
    895      * the iteration are undefined.  The set supports element removal,
    896      * which removes the corresponding mapping from the map, via the
    897      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
    898      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
    899      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
    900      * operations.
    901      *
    902      * @return a set view of the keys contained in this map
    903      */
    904     public Set<K> keySet() {
    905         Set<K> ks = keySet;
    906         if (ks == null) {
    907             ks = new KeySet();
    908             keySet = ks;
    909         }
    910         return ks;
    911     }
    912 
    913     final class KeySet extends AbstractSet<K> {
    914         public final int size()                 { return size; }
    915         public final void clear()               { HashMap.this.clear(); }
    916         public final Iterator<K> iterator()     { return new KeyIterator(); }
    917         public final boolean contains(Object o) { return containsKey(o); }
    918         public final boolean remove(Object key) {
    919             return removeNode(hash(key), key, null, false, true) != null;
    920         }
    921         public final Spliterator<K> spliterator() {
    922             return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
    923         }
    924         public final void forEach(Consumer<? super K> action) {
    925             Node<K,V>[] tab;
    926             if (action == null)
    927                 throw new NullPointerException();
    928             if (size > 0 && (tab = table) != null) {
    929                 int mc = modCount;
    930                 // Android-changed: Detect changes to modCount early.
    931                 for (int i = 0; (i < tab.length && modCount == mc); ++i) {
    932                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
    933                         action.accept(e.key);
    934                 }
    935                 if (modCount != mc)
    936                     throw new ConcurrentModificationException();
    937             }
    938         }
    939     }
    940 
    941     /**
    942      * Returns a {@link Collection} view of the values contained in this map.
    943      * The collection is backed by the map, so changes to the map are
    944      * reflected in the collection, and vice-versa.  If the map is
    945      * modified while an iteration over the collection is in progress
    946      * (except through the iterator's own <tt>remove</tt> operation),
    947      * the results of the iteration are undefined.  The collection
    948      * supports element removal, which removes the corresponding
    949      * mapping from the map, via the <tt>Iterator.remove</tt>,
    950      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
    951      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
    952      * support the <tt>add</tt> or <tt>addAll</tt> operations.
    953      *
    954      * @return a view of the values contained in this map
    955      */
    956     public Collection<V> values() {
    957         Collection<V> vs = values;
    958         if (vs == null) {
    959             vs = new Values();
    960             values = vs;
    961         }
    962         return vs;
    963     }
    964 
    965     final class Values extends AbstractCollection<V> {
    966         public final int size()                 { return size; }
    967         public final void clear()               { HashMap.this.clear(); }
    968         public final Iterator<V> iterator()     { return new ValueIterator(); }
    969         public final boolean contains(Object o) { return containsValue(o); }
    970         public final Spliterator<V> spliterator() {
    971             return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
    972         }
    973         public final void forEach(Consumer<? super V> action) {
    974             Node<K,V>[] tab;
    975             if (action == null)
    976                 throw new NullPointerException();
    977             if (size > 0 && (tab = table) != null) {
    978                 int mc = modCount;
    979                 // Android-changed: Detect changes to modCount early.
    980                 for (int i = 0; (i < tab.length && modCount == mc); ++i) {
    981                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
    982                         action.accept(e.value);
    983                 }
    984                 if (modCount != mc)
    985                     throw new ConcurrentModificationException();
    986             }
    987         }
    988     }
    989 
    990     /**
    991      * Returns a {@link Set} view of the mappings contained in this map.
    992      * The set is backed by the map, so changes to the map are
    993      * reflected in the set, and vice-versa.  If the map is modified
    994      * while an iteration over the set is in progress (except through
    995      * the iterator's own <tt>remove</tt> operation, or through the
    996      * <tt>setValue</tt> operation on a map entry returned by the
    997      * iterator) the results of the iteration are undefined.  The set
    998      * supports element removal, which removes the corresponding
    999      * mapping from the map, via the <tt>Iterator.remove</tt>,
   1000      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
   1001      * <tt>clear</tt> operations.  It does not support the
   1002      * <tt>add</tt> or <tt>addAll</tt> operations.
   1003      *
   1004      * @return a set view of the mappings contained in this map
   1005      */
   1006     public Set<Map.Entry<K,V>> entrySet() {
   1007         Set<Map.Entry<K,V>> es;
   1008         return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
   1009     }
   1010 
   1011     final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
   1012         public final int size()                 { return size; }
   1013         public final void clear()               { HashMap.this.clear(); }
   1014         public final Iterator<Map.Entry<K,V>> iterator() {
   1015             return new EntryIterator();
   1016         }
   1017         public final boolean contains(Object o) {
   1018             if (!(o instanceof Map.Entry))
   1019                 return false;
   1020             Map.Entry<?,?> e = (Map.Entry<?,?>) o;
   1021             Object key = e.getKey();
   1022             Node<K,V> candidate = getNode(hash(key), key);
   1023             return candidate != null && candidate.equals(e);
   1024         }
   1025         public final boolean remove(Object o) {
   1026             if (o instanceof Map.Entry) {
   1027                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
   1028                 Object key = e.getKey();
   1029                 Object value = e.getValue();
   1030                 return removeNode(hash(key), key, value, true, true) != null;
   1031             }
   1032             return false;
   1033         }
   1034         public final Spliterator<Map.Entry<K,V>> spliterator() {
   1035             return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
   1036         }
   1037         public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
   1038             Node<K,V>[] tab;
   1039             if (action == null)
   1040                 throw new NullPointerException();
   1041             if (size > 0 && (tab = table) != null) {
   1042                 int mc = modCount;
   1043                 // Android-changed: Detect changes to modCount early.
   1044                 for (int i = 0; (i < tab.length && modCount == mc); ++i) {
   1045                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
   1046                         action.accept(e);
   1047                 }
   1048                 if (modCount != mc)
   1049                     throw new ConcurrentModificationException();
   1050             }
   1051         }
   1052     }
   1053 
   1054     // Overrides of JDK8 Map extension methods
   1055 
   1056     @Override
   1057     public V getOrDefault(Object key, V defaultValue) {
   1058         Node<K,V> e;
   1059         return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
   1060     }
   1061 
   1062     @Override
   1063     public V putIfAbsent(K key, V value) {
   1064         return putVal(hash(key), key, value, true, true);
   1065     }
   1066 
   1067     @Override
   1068     public boolean remove(Object key, Object value) {
   1069         return removeNode(hash(key), key, value, true, true) != null;
   1070     }
   1071 
   1072     @Override
   1073     public boolean replace(K key, V oldValue, V newValue) {
   1074         Node<K,V> e; V v;
   1075         if ((e = getNode(hash(key), key)) != null &&
   1076             ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
   1077             e.value = newValue;
   1078             afterNodeAccess(e);
   1079             return true;
   1080         }
   1081         return false;
   1082     }
   1083 
   1084     @Override
   1085     public V replace(K key, V value) {
   1086         Node<K,V> e;
   1087         if ((e = getNode(hash(key), key)) != null) {
   1088             V oldValue = e.value;
   1089             e.value = value;
   1090             afterNodeAccess(e);
   1091             return oldValue;
   1092         }
   1093         return null;
   1094     }
   1095 
   1096     @Override
   1097     public V computeIfAbsent(K key,
   1098                              Function<? super K, ? extends V> mappingFunction) {
   1099         if (mappingFunction == null)
   1100             throw new NullPointerException();
   1101         int hash = hash(key);
   1102         Node<K,V>[] tab; Node<K,V> first; int n, i;
   1103         int binCount = 0;
   1104         TreeNode<K,V> t = null;
   1105         Node<K,V> old = null;
   1106         if (size > threshold || (tab = table) == null ||
   1107             (n = tab.length) == 0)
   1108             n = (tab = resize()).length;
   1109         if ((first = tab[i = (n - 1) & hash]) != null) {
   1110             if (first instanceof TreeNode)
   1111                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
   1112             else {
   1113                 Node<K,V> e = first; K k;
   1114                 do {
   1115                     if (e.hash == hash &&
   1116                         ((k = e.key) == key || (key != null && key.equals(k)))) {
   1117                         old = e;
   1118                         break;
   1119                     }
   1120                     ++binCount;
   1121                 } while ((e = e.next) != null);
   1122             }
   1123             V oldValue;
   1124             if (old != null && (oldValue = old.value) != null) {
   1125                 afterNodeAccess(old);
   1126                 return oldValue;
   1127             }
   1128         }
   1129         V v = mappingFunction.apply(key);
   1130         if (v == null) {
   1131             return null;
   1132         } else if (old != null) {
   1133             old.value = v;
   1134             afterNodeAccess(old);
   1135             return v;
   1136         }
   1137         else if (t != null)
   1138             t.putTreeVal(this, tab, hash, key, v);
   1139         else {
   1140             tab[i] = newNode(hash, key, v, first);
   1141             if (binCount >= TREEIFY_THRESHOLD - 1)
   1142                 treeifyBin(tab, hash);
   1143         }
   1144         ++modCount;
   1145         ++size;
   1146         afterNodeInsertion(true);
   1147         return v;
   1148     }
   1149 
   1150     public V computeIfPresent(K key,
   1151                               BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
   1152         if (remappingFunction == null)
   1153             throw new NullPointerException();
   1154         Node<K,V> e; V oldValue;
   1155         int hash = hash(key);
   1156         if ((e = getNode(hash, key)) != null &&
   1157             (oldValue = e.value) != null) {
   1158             V v = remappingFunction.apply(key, oldValue);
   1159             if (v != null) {
   1160                 e.value = v;
   1161                 afterNodeAccess(e);
   1162                 return v;
   1163             }
   1164             else
   1165                 removeNode(hash, key, null, false, true);
   1166         }
   1167         return null;
   1168     }
   1169 
   1170     @Override
   1171     public V compute(K key,
   1172                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
   1173         if (remappingFunction == null)
   1174             throw new NullPointerException();
   1175         int hash = hash(key);
   1176         Node<K,V>[] tab; Node<K,V> first; int n, i;
   1177         int binCount = 0;
   1178         TreeNode<K,V> t = null;
   1179         Node<K,V> old = null;
   1180         if (size > threshold || (tab = table) == null ||
   1181             (n = tab.length) == 0)
   1182             n = (tab = resize()).length;
   1183         if ((first = tab[i = (n - 1) & hash]) != null) {
   1184             if (first instanceof TreeNode)
   1185                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
   1186             else {
   1187                 Node<K,V> e = first; K k;
   1188                 do {
   1189                     if (e.hash == hash &&
   1190                         ((k = e.key) == key || (key != null && key.equals(k)))) {
   1191                         old = e;
   1192                         break;
   1193                     }
   1194                     ++binCount;
   1195                 } while ((e = e.next) != null);
   1196             }
   1197         }
   1198         V oldValue = (old == null) ? null : old.value;
   1199         V v = remappingFunction.apply(key, oldValue);
   1200         if (old != null) {
   1201             if (v != null) {
   1202                 old.value = v;
   1203                 afterNodeAccess(old);
   1204             }
   1205             else
   1206                 removeNode(hash, key, null, false, true);
   1207         }
   1208         else if (v != null) {
   1209             if (t != null)
   1210                 t.putTreeVal(this, tab, hash, key, v);
   1211             else {
   1212                 tab[i] = newNode(hash, key, v, first);
   1213                 if (binCount >= TREEIFY_THRESHOLD - 1)
   1214                     treeifyBin(tab, hash);
   1215             }
   1216             ++modCount;
   1217             ++size;
   1218             afterNodeInsertion(true);
   1219         }
   1220         return v;
   1221     }
   1222 
   1223     @Override
   1224     public V merge(K key, V value,
   1225                    BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
   1226         if (value == null)
   1227             throw new NullPointerException();
   1228         if (remappingFunction == null)
   1229             throw new NullPointerException();
   1230         int hash = hash(key);
   1231         Node<K,V>[] tab; Node<K,V> first; int n, i;
   1232         int binCount = 0;
   1233         TreeNode<K,V> t = null;
   1234         Node<K,V> old = null;
   1235         if (size > threshold || (tab = table) == null ||
   1236             (n = tab.length) == 0)
   1237             n = (tab = resize()).length;
   1238         if ((first = tab[i = (n - 1) & hash]) != null) {
   1239             if (first instanceof TreeNode)
   1240                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
   1241             else {
   1242                 Node<K,V> e = first; K k;
   1243                 do {
   1244                     if (e.hash == hash &&
   1245                         ((k = e.key) == key || (key != null && key.equals(k)))) {
   1246                         old = e;
   1247                         break;
   1248                     }
   1249                     ++binCount;
   1250                 } while ((e = e.next) != null);
   1251             }
   1252         }
   1253         if (old != null) {
   1254             V v;
   1255             if (old.value != null)
   1256                 v = remappingFunction.apply(old.value, value);
   1257             else
   1258                 v = value;
   1259             if (v != null) {
   1260                 old.value = v;
   1261                 afterNodeAccess(old);
   1262             }
   1263             else
   1264                 removeNode(hash, key, null, false, true);
   1265             return v;
   1266         }
   1267         if (value != null) {
   1268             if (t != null)
   1269                 t.putTreeVal(this, tab, hash, key, value);
   1270             else {
   1271                 tab[i] = newNode(hash, key, value, first);
   1272                 if (binCount >= TREEIFY_THRESHOLD - 1)
   1273                     treeifyBin(tab, hash);
   1274             }
   1275             ++modCount;
   1276             ++size;
   1277             afterNodeInsertion(true);
   1278         }
   1279         return value;
   1280     }
   1281 
   1282     @Override
   1283     public void forEach(BiConsumer<? super K, ? super V> action) {
   1284         Node<K,V>[] tab;
   1285         if (action == null)
   1286             throw new NullPointerException();
   1287         if (size > 0 && (tab = table) != null) {
   1288             int mc = modCount;
   1289             // Android-changed: Detect changes to modCount early.
   1290             for (int i = 0; (i < tab.length && mc == modCount); ++i) {
   1291                 for (Node<K,V> e = tab[i]; e != null; e = e.next)
   1292                     action.accept(e.key, e.value);
   1293             }
   1294             if (modCount != mc)
   1295                 throw new ConcurrentModificationException();
   1296         }
   1297     }
   1298 
   1299     @Override
   1300     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
   1301         Node<K,V>[] tab;
   1302         if (function == null)
   1303             throw new NullPointerException();
   1304         if (size > 0 && (tab = table) != null) {
   1305             int mc = modCount;
   1306             for (int i = 0; i < tab.length; ++i) {
   1307                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
   1308                     e.value = function.apply(e.key, e.value);
   1309                 }
   1310             }
   1311             if (modCount != mc)
   1312                 throw new ConcurrentModificationException();
   1313         }
   1314     }
   1315 
   1316     /* ------------------------------------------------------------ */
   1317     // Cloning and serialization
   1318 
   1319     /**
   1320      * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
   1321      * values themselves are not cloned.
   1322      *
   1323      * @return a shallow copy of this map
   1324      */
   1325     @SuppressWarnings("unchecked")
   1326     @Override
   1327     public Object clone() {
   1328         HashMap<K,V> result;
   1329         try {
   1330             result = (HashMap<K,V>)super.clone();
   1331         } catch (CloneNotSupportedException e) {
   1332             // this shouldn't happen, since we are Cloneable
   1333             throw new InternalError(e);
   1334         }
   1335         result.reinitialize();
   1336         result.putMapEntries(this, false);
   1337         return result;
   1338     }
   1339 
   1340     // These methods are also used when serializing HashSets
   1341     final float loadFactor() { return loadFactor; }
   1342     final int capacity() {
   1343         return (table != null) ? table.length :
   1344             (threshold > 0) ? threshold :
   1345             DEFAULT_INITIAL_CAPACITY;
   1346     }
   1347 
   1348     /**
   1349      * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
   1350      * serialize it).
   1351      *
   1352      * @serialData The <i>capacity</i> of the HashMap (the length of the
   1353      *             bucket array) is emitted (int), followed by the
   1354      *             <i>size</i> (an int, the number of key-value
   1355      *             mappings), followed by the key (Object) and value (Object)
   1356      *             for each key-value mapping.  The key-value mappings are
   1357      *             emitted in no particular order.
   1358      */
   1359     private void writeObject(java.io.ObjectOutputStream s)
   1360         throws IOException {
   1361         int buckets = capacity();
   1362         // Write out the threshold, loadfactor, and any hidden stuff
   1363         s.defaultWriteObject();
   1364         s.writeInt(buckets);
   1365         s.writeInt(size);
   1366         internalWriteEntries(s);
   1367     }
   1368 
   1369     /**
   1370      * Reconstitute the {@code HashMap} instance from a stream (i.e.,
   1371      * deserialize it).
   1372      */
   1373     private void readObject(java.io.ObjectInputStream s)
   1374         throws IOException, ClassNotFoundException {
   1375         // Read in the threshold (ignored), loadfactor, and any hidden stuff
   1376         s.defaultReadObject();
   1377         reinitialize();
   1378         if (loadFactor <= 0 || Float.isNaN(loadFactor))
   1379             throw new InvalidObjectException("Illegal load factor: " +
   1380                                              loadFactor);
   1381         s.readInt();                // Read and ignore number of buckets
   1382         int mappings = s.readInt(); // Read number of mappings (size)
   1383         if (mappings < 0)
   1384             throw new InvalidObjectException("Illegal mappings count: " +
   1385                                              mappings);
   1386         else if (mappings > 0) { // (if zero, use defaults)
   1387             // Size the table using given load factor only if within
   1388             // range of 0.25...4.0
   1389             float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
   1390             float fc = (float)mappings / lf + 1.0f;
   1391             int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
   1392                        DEFAULT_INITIAL_CAPACITY :
   1393                        (fc >= MAXIMUM_CAPACITY) ?
   1394                        MAXIMUM_CAPACITY :
   1395                        tableSizeFor((int)fc));
   1396             float ft = (float)cap * lf;
   1397             threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
   1398                          (int)ft : Integer.MAX_VALUE);
   1399             @SuppressWarnings({"rawtypes","unchecked"})
   1400                 Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
   1401             table = tab;
   1402 
   1403             // Read the keys and values, and put the mappings in the HashMap
   1404             for (int i = 0; i < mappings; i++) {
   1405                 @SuppressWarnings("unchecked")
   1406                     K key = (K) s.readObject();
   1407                 @SuppressWarnings("unchecked")
   1408                     V value = (V) s.readObject();
   1409                 putVal(hash(key), key, value, false, false);
   1410             }
   1411         }
   1412     }
   1413 
   1414     /* ------------------------------------------------------------ */
   1415     // iterators
   1416 
   1417     abstract class HashIterator {
   1418         Node<K,V> next;        // next entry to return
   1419         Node<K,V> current;     // current entry
   1420         int expectedModCount;  // for fast-fail
   1421         int index;             // current slot
   1422 
   1423         HashIterator() {
   1424             expectedModCount = modCount;
   1425             Node<K,V>[] t = table;
   1426             current = next = null;
   1427             index = 0;
   1428             if (t != null && size > 0) { // advance to first entry
   1429                 do {} while (index < t.length && (next = t[index++]) == null);
   1430             }
   1431         }
   1432 
   1433         public final boolean hasNext() {
   1434             return next != null;
   1435         }
   1436 
   1437         final Node<K,V> nextNode() {
   1438             Node<K,V>[] t;
   1439             Node<K,V> e = next;
   1440             if (modCount != expectedModCount)
   1441                 throw new ConcurrentModificationException();
   1442             if (e == null)
   1443                 throw new NoSuchElementException();
   1444             if ((next = (current = e).next) == null && (t = table) != null) {
   1445                 do {} while (index < t.length && (next = t[index++]) == null);
   1446             }
   1447             return e;
   1448         }
   1449 
   1450         public final void remove() {
   1451             Node<K,V> p = current;
   1452             if (p == null)
   1453                 throw new IllegalStateException();
   1454             if (modCount != expectedModCount)
   1455                 throw new ConcurrentModificationException();
   1456             current = null;
   1457             K key = p.key;
   1458             removeNode(hash(key), key, null, false, false);
   1459             expectedModCount = modCount;
   1460         }
   1461     }
   1462 
   1463     final class KeyIterator extends HashIterator
   1464         implements Iterator<K> {
   1465         public final K next() { return nextNode().key; }
   1466     }
   1467 
   1468     final class ValueIterator extends HashIterator
   1469         implements Iterator<V> {
   1470         public final V next() { return nextNode().value; }
   1471     }
   1472 
   1473     final class EntryIterator extends HashIterator
   1474         implements Iterator<Map.Entry<K,V>> {
   1475         public final Map.Entry<K,V> next() { return nextNode(); }
   1476     }
   1477 
   1478     /* ------------------------------------------------------------ */
   1479     // spliterators
   1480 
   1481     static class HashMapSpliterator<K,V> {
   1482         final HashMap<K,V> map;
   1483         Node<K,V> current;          // current node
   1484         int index;                  // current index, modified on advance/split
   1485         int fence;                  // one past last index
   1486         int est;                    // size estimate
   1487         int expectedModCount;       // for comodification checks
   1488 
   1489         HashMapSpliterator(HashMap<K,V> m, int origin,
   1490                            int fence, int est,
   1491                            int expectedModCount) {
   1492             this.map = m;
   1493             this.index = origin;
   1494             this.fence = fence;
   1495             this.est = est;
   1496             this.expectedModCount = expectedModCount;
   1497         }
   1498 
   1499         final int getFence() { // initialize fence and size on first use
   1500             int hi;
   1501             if ((hi = fence) < 0) {
   1502                 HashMap<K,V> m = map;
   1503                 est = m.size;
   1504                 expectedModCount = m.modCount;
   1505                 Node<K,V>[] tab = m.table;
   1506                 hi = fence = (tab == null) ? 0 : tab.length;
   1507             }
   1508             return hi;
   1509         }
   1510 
   1511         public final long estimateSize() {
   1512             getFence(); // force init
   1513             return (long) est;
   1514         }
   1515     }
   1516 
   1517     static final class KeySpliterator<K,V>
   1518         extends HashMapSpliterator<K,V>
   1519         implements Spliterator<K> {
   1520         KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
   1521                        int expectedModCount) {
   1522             super(m, origin, fence, est, expectedModCount);
   1523         }
   1524 
   1525         public KeySpliterator<K,V> trySplit() {
   1526             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
   1527             return (lo >= mid || current != null) ? null :
   1528                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
   1529                                         expectedModCount);
   1530         }
   1531 
   1532         public void forEachRemaining(Consumer<? super K> action) {
   1533             int i, hi, mc;
   1534             if (action == null)
   1535                 throw new NullPointerException();
   1536             HashMap<K,V> m = map;
   1537             Node<K,V>[] tab = m.table;
   1538             if ((hi = fence) < 0) {
   1539                 mc = expectedModCount = m.modCount;
   1540                 hi = fence = (tab == null) ? 0 : tab.length;
   1541             }
   1542             else
   1543                 mc = expectedModCount;
   1544             if (tab != null && tab.length >= hi &&
   1545                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
   1546                 Node<K,V> p = current;
   1547                 current = null;
   1548                 do {
   1549                     if (p == null)
   1550                         p = tab[i++];
   1551                     else {
   1552                         action.accept(p.key);
   1553                         p = p.next;
   1554                     }
   1555                 } while (p != null || i < hi);
   1556                 if (m.modCount != mc)
   1557                     throw new ConcurrentModificationException();
   1558             }
   1559         }
   1560 
   1561         public boolean tryAdvance(Consumer<? super K> action) {
   1562             int hi;
   1563             if (action == null)
   1564                 throw new NullPointerException();
   1565             Node<K,V>[] tab = map.table;
   1566             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
   1567                 while (current != null || index < hi) {
   1568                     if (current == null)
   1569                         current = tab[index++];
   1570                     else {
   1571                         K k = current.key;
   1572                         current = current.next;
   1573                         action.accept(k);
   1574                         if (map.modCount != expectedModCount)
   1575                             throw new ConcurrentModificationException();
   1576                         return true;
   1577                     }
   1578                 }
   1579             }
   1580             return false;
   1581         }
   1582 
   1583         public int characteristics() {
   1584             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
   1585                 Spliterator.DISTINCT;
   1586         }
   1587     }
   1588 
   1589     static final class ValueSpliterator<K,V>
   1590         extends HashMapSpliterator<K,V>
   1591         implements Spliterator<V> {
   1592         ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
   1593                          int expectedModCount) {
   1594             super(m, origin, fence, est, expectedModCount);
   1595         }
   1596 
   1597         public ValueSpliterator<K,V> trySplit() {
   1598             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
   1599             return (lo >= mid || current != null) ? null :
   1600                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
   1601                                           expectedModCount);
   1602         }
   1603 
   1604         public void forEachRemaining(Consumer<? super V> action) {
   1605             int i, hi, mc;
   1606             if (action == null)
   1607                 throw new NullPointerException();
   1608             HashMap<K,V> m = map;
   1609             Node<K,V>[] tab = m.table;
   1610             if ((hi = fence) < 0) {
   1611                 mc = expectedModCount = m.modCount;
   1612                 hi = fence = (tab == null) ? 0 : tab.length;
   1613             }
   1614             else
   1615                 mc = expectedModCount;
   1616             if (tab != null && tab.length >= hi &&
   1617                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
   1618                 Node<K,V> p = current;
   1619                 current = null;
   1620                 do {
   1621                     if (p == null)
   1622                         p = tab[i++];
   1623                     else {
   1624                         action.accept(p.value);
   1625                         p = p.next;
   1626                     }
   1627                 } while (p != null || i < hi);
   1628                 if (m.modCount != mc)
   1629                     throw new ConcurrentModificationException();
   1630             }
   1631         }
   1632 
   1633         public boolean tryAdvance(Consumer<? super V> action) {
   1634             int hi;
   1635             if (action == null)
   1636                 throw new NullPointerException();
   1637             Node<K,V>[] tab = map.table;
   1638             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
   1639                 while (current != null || index < hi) {
   1640                     if (current == null)
   1641                         current = tab[index++];
   1642                     else {
   1643                         V v = current.value;
   1644                         current = current.next;
   1645                         action.accept(v);
   1646                         if (map.modCount != expectedModCount)
   1647                             throw new ConcurrentModificationException();
   1648                         return true;
   1649                     }
   1650                 }
   1651             }
   1652             return false;
   1653         }
   1654 
   1655         public int characteristics() {
   1656             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
   1657         }
   1658     }
   1659 
   1660     static final class EntrySpliterator<K,V>
   1661         extends HashMapSpliterator<K,V>
   1662         implements Spliterator<Map.Entry<K,V>> {
   1663         EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
   1664                          int expectedModCount) {
   1665             super(m, origin, fence, est, expectedModCount);
   1666         }
   1667 
   1668         public EntrySpliterator<K,V> trySplit() {
   1669             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
   1670             return (lo >= mid || current != null) ? null :
   1671                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
   1672                                           expectedModCount);
   1673         }
   1674 
   1675         public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
   1676             int i, hi, mc;
   1677             if (action == null)
   1678                 throw new NullPointerException();
   1679             HashMap<K,V> m = map;
   1680             Node<K,V>[] tab = m.table;
   1681             if ((hi = fence) < 0) {
   1682                 mc = expectedModCount = m.modCount;
   1683                 hi = fence = (tab == null) ? 0 : tab.length;
   1684             }
   1685             else
   1686                 mc = expectedModCount;
   1687             if (tab != null && tab.length >= hi &&
   1688                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
   1689                 Node<K,V> p = current;
   1690                 current = null;
   1691                 do {
   1692                     if (p == null)
   1693                         p = tab[i++];
   1694                     else {
   1695                         action.accept(p);
   1696                         p = p.next;
   1697                     }
   1698                 } while (p != null || i < hi);
   1699                 if (m.modCount != mc)
   1700                     throw new ConcurrentModificationException();
   1701             }
   1702         }
   1703 
   1704         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
   1705             int hi;
   1706             if (action == null)
   1707                 throw new NullPointerException();
   1708             Node<K,V>[] tab = map.table;
   1709             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
   1710                 while (current != null || index < hi) {
   1711                     if (current == null)
   1712                         current = tab[index++];
   1713                     else {
   1714                         Node<K,V> e = current;
   1715                         current = current.next;
   1716                         action.accept(e);
   1717                         if (map.modCount != expectedModCount)
   1718                             throw new ConcurrentModificationException();
   1719                         return true;
   1720                     }
   1721                 }
   1722             }
   1723             return false;
   1724         }
   1725 
   1726         public int characteristics() {
   1727             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
   1728                 Spliterator.DISTINCT;
   1729         }
   1730     }
   1731 
   1732     /* ------------------------------------------------------------ */
   1733     // LinkedHashMap support
   1734 
   1735 
   1736     /*
   1737      * The following package-protected methods are designed to be
   1738      * overridden by LinkedHashMap, but not by any other subclass.
   1739      * Nearly all other internal methods are also package-protected
   1740      * but are declared final, so can be used by LinkedHashMap, view
   1741      * classes, and HashSet.
   1742      */
   1743 
   1744     // Create a regular (non-tree) node
   1745     Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
   1746         return new Node<>(hash, key, value, next);
   1747     }
   1748 
   1749     // For conversion from TreeNodes to plain nodes
   1750     Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
   1751         return new Node<>(p.hash, p.key, p.value, next);
   1752     }
   1753 
   1754     // Create a tree bin node
   1755     TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
   1756         return new TreeNode<>(hash, key, value, next);
   1757     }
   1758 
   1759     // For treeifyBin
   1760     TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
   1761         return new TreeNode<>(p.hash, p.key, p.value, next);
   1762     }
   1763 
   1764     /**
   1765      * Reset to initial default state.  Called by clone and readObject.
   1766      */
   1767     void reinitialize() {
   1768         table = null;
   1769         entrySet = null;
   1770         keySet = null;
   1771         values = null;
   1772         modCount = 0;
   1773         threshold = 0;
   1774         size = 0;
   1775     }
   1776 
   1777     // Callbacks to allow LinkedHashMap post-actions
   1778     void afterNodeAccess(Node<K,V> p) { }
   1779     void afterNodeInsertion(boolean evict) { }
   1780     void afterNodeRemoval(Node<K,V> p) { }
   1781 
   1782     // Called only from writeObject, to ensure compatible ordering.
   1783     void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
   1784         Node<K,V>[] tab;
   1785         if (size > 0 && (tab = table) != null) {
   1786             for (int i = 0; i < tab.length; ++i) {
   1787                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
   1788                     s.writeObject(e.key);
   1789                     s.writeObject(e.value);
   1790                 }
   1791             }
   1792         }
   1793     }
   1794 
   1795     /* ------------------------------------------------------------ */
   1796     // Tree bins
   1797 
   1798     /**
   1799      * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
   1800      * extends Node) so can be used as extension of either regular or
   1801      * linked node.
   1802      */
   1803     static final class TreeNode<K,V> extends LinkedHashMap.LinkedHashMapEntry<K,V> {
   1804         TreeNode<K,V> parent;  // red-black tree links
   1805         TreeNode<K,V> left;
   1806         TreeNode<K,V> right;
   1807         TreeNode<K,V> prev;    // needed to unlink next upon deletion
   1808         boolean red;
   1809         TreeNode(int hash, K key, V val, Node<K,V> next) {
   1810             super(hash, key, val, next);
   1811         }
   1812 
   1813         /**
   1814          * Returns root of tree containing this node.
   1815          */
   1816         final TreeNode<K,V> root() {
   1817             for (TreeNode<K,V> r = this, p;;) {
   1818                 if ((p = r.parent) == null)
   1819                     return r;
   1820                 r = p;
   1821             }
   1822         }
   1823 
   1824         /**
   1825          * Ensures that the given root is the first node of its bin.
   1826          */
   1827         static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
   1828             int n;
   1829             if (root != null && tab != null && (n = tab.length) > 0) {
   1830                 int index = (n - 1) & root.hash;
   1831                 TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
   1832                 if (root != first) {
   1833                     Node<K,V> rn;
   1834                     tab[index] = root;
   1835                     TreeNode<K,V> rp = root.prev;
   1836                     if ((rn = root.next) != null)
   1837                         ((TreeNode<K,V>)rn).prev = rp;
   1838                     if (rp != null)
   1839                         rp.next = rn;
   1840                     if (first != null)
   1841                         first.prev = root;
   1842                     root.next = first;
   1843                     root.prev = null;
   1844                 }
   1845                 assert checkInvariants(root);
   1846             }
   1847         }
   1848 
   1849         /**
   1850          * Finds the node starting at root p with the given hash and key.
   1851          * The kc argument caches comparableClassFor(key) upon first use
   1852          * comparing keys.
   1853          */
   1854         final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
   1855             TreeNode<K,V> p = this;
   1856             do {
   1857                 int ph, dir; K pk;
   1858                 TreeNode<K,V> pl = p.left, pr = p.right, q;
   1859                 if ((ph = p.hash) > h)
   1860                     p = pl;
   1861                 else if (ph < h)
   1862                     p = pr;
   1863                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
   1864                     return p;
   1865                 else if (pl == null)
   1866                     p = pr;
   1867                 else if (pr == null)
   1868                     p = pl;
   1869                 else if ((kc != null ||
   1870                           (kc = comparableClassFor(k)) != null) &&
   1871                          (dir = compareComparables(kc, k, pk)) != 0)
   1872                     p = (dir < 0) ? pl : pr;
   1873                 else if ((q = pr.find(h, k, kc)) != null)
   1874                     return q;
   1875                 else
   1876                     p = pl;
   1877             } while (p != null);
   1878             return null;
   1879         }
   1880 
   1881         /**
   1882          * Calls find for root node.
   1883          */
   1884         final TreeNode<K,V> getTreeNode(int h, Object k) {
   1885             return ((parent != null) ? root() : this).find(h, k, null);
   1886         }
   1887 
   1888         /**
   1889          * Tie-breaking utility for ordering insertions when equal
   1890          * hashCodes and non-comparable. We don't require a total
   1891          * order, just a consistent insertion rule to maintain
   1892          * equivalence across rebalancings. Tie-breaking further than
   1893          * necessary simplifies testing a bit.
   1894          */
   1895         static int tieBreakOrder(Object a, Object b) {
   1896             int d;
   1897             if (a == null || b == null ||
   1898                 (d = a.getClass().getName().
   1899                  compareTo(b.getClass().getName())) == 0)
   1900                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
   1901                      -1 : 1);
   1902             return d;
   1903         }
   1904 
   1905         /**
   1906          * Forms tree of the nodes linked from this node.
   1907          * @return root of tree
   1908          */
   1909         final void treeify(Node<K,V>[] tab) {
   1910             TreeNode<K,V> root = null;
   1911             for (TreeNode<K,V> x = this, next; x != null; x = next) {
   1912                 next = (TreeNode<K,V>)x.next;
   1913                 x.left = x.right = null;
   1914                 if (root == null) {
   1915                     x.parent = null;
   1916                     x.red = false;
   1917                     root = x;
   1918                 }
   1919                 else {
   1920                     K k = x.key;
   1921                     int h = x.hash;
   1922                     Class<?> kc = null;
   1923                     for (TreeNode<K,V> p = root;;) {
   1924                         int dir, ph;
   1925                         K pk = p.key;
   1926                         if ((ph = p.hash) > h)
   1927                             dir = -1;
   1928                         else if (ph < h)
   1929                             dir = 1;
   1930                         else if ((kc == null &&
   1931                                   (kc = comparableClassFor(k)) == null) ||
   1932                                  (dir = compareComparables(kc, k, pk)) == 0)
   1933                             dir = tieBreakOrder(k, pk);
   1934 
   1935                         TreeNode<K,V> xp = p;
   1936                         if ((p = (dir <= 0) ? p.left : p.right) == null) {
   1937                             x.parent = xp;
   1938                             if (dir <= 0)
   1939                                 xp.left = x;
   1940                             else
   1941                                 xp.right = x;
   1942                             root = balanceInsertion(root, x);
   1943                             break;
   1944                         }
   1945                     }
   1946                 }
   1947             }
   1948             moveRootToFront(tab, root);
   1949         }
   1950 
   1951         /**
   1952          * Returns a list of non-TreeNodes replacing those linked from
   1953          * this node.
   1954          */
   1955         final Node<K,V> untreeify(HashMap<K,V> map) {
   1956             Node<K,V> hd = null, tl = null;
   1957             for (Node<K,V> q = this; q != null; q = q.next) {
   1958                 Node<K,V> p = map.replacementNode(q, null);
   1959                 if (tl == null)
   1960                     hd = p;
   1961                 else
   1962                     tl.next = p;
   1963                 tl = p;
   1964             }
   1965             return hd;
   1966         }
   1967 
   1968         /**
   1969          * Tree version of putVal.
   1970          */
   1971         final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
   1972                                        int h, K k, V v) {
   1973             Class<?> kc = null;
   1974             boolean searched = false;
   1975             TreeNode<K,V> root = (parent != null) ? root() : this;
   1976             for (TreeNode<K,V> p = root;;) {
   1977                 int dir, ph; K pk;
   1978                 if ((ph = p.hash) > h)
   1979                     dir = -1;
   1980                 else if (ph < h)
   1981                     dir = 1;
   1982                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
   1983                     return p;
   1984                 else if ((kc == null &&
   1985                           (kc = comparableClassFor(k)) == null) ||
   1986                          (dir = compareComparables(kc, k, pk)) == 0) {
   1987                     if (!searched) {
   1988                         TreeNode<K,V> q, ch;
   1989                         searched = true;
   1990                         if (((ch = p.left) != null &&
   1991                              (q = ch.find(h, k, kc)) != null) ||
   1992                             ((ch = p.right) != null &&
   1993                              (q = ch.find(h, k, kc)) != null))
   1994                             return q;
   1995                     }
   1996                     dir = tieBreakOrder(k, pk);
   1997                 }
   1998 
   1999                 TreeNode<K,V> xp = p;
   2000                 if ((p = (dir <= 0) ? p.left : p.right) == null) {
   2001                     Node<K,V> xpn = xp.next;
   2002                     TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
   2003                     if (dir <= 0)
   2004                         xp.left = x;
   2005                     else
   2006                         xp.right = x;
   2007                     xp.next = x;
   2008                     x.parent = x.prev = xp;
   2009                     if (xpn != null)
   2010                         ((TreeNode<K,V>)xpn).prev = x;
   2011                     moveRootToFront(tab, balanceInsertion(root, x));
   2012                     return null;
   2013                 }
   2014             }
   2015         }
   2016 
   2017         /**
   2018          * Removes the given node, that must be present before this call.
   2019          * This is messier than typical red-black deletion code because we
   2020          * cannot swap the contents of an interior node with a leaf
   2021          * successor that is pinned by "next" pointers that are accessible
   2022          * independently during traversal. So instead we swap the tree
   2023          * linkages. If the current tree appears to have too few nodes,
   2024          * the bin is converted back to a plain bin. (The test triggers
   2025          * somewhere between 2 and 6 nodes, depending on tree structure).
   2026          */
   2027         final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
   2028                                   boolean movable) {
   2029             int n;
   2030             if (tab == null || (n = tab.length) == 0)
   2031                 return;
   2032             int index = (n - 1) & hash;
   2033             TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
   2034             TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
   2035             if (pred == null)
   2036                 tab[index] = first = succ;
   2037             else
   2038                 pred.next = succ;
   2039             if (succ != null)
   2040                 succ.prev = pred;
   2041             if (first == null)
   2042                 return;
   2043             if (root.parent != null)
   2044                 root = root.root();
   2045             if (root == null || root.right == null ||
   2046                 (rl = root.left) == null || rl.left == null) {
   2047                 tab[index] = first.untreeify(map);  // too small
   2048                 return;
   2049             }
   2050             TreeNode<K,V> p = this, pl = left, pr = right, replacement;
   2051             if (pl != null && pr != null) {
   2052                 TreeNode<K,V> s = pr, sl;
   2053                 while ((sl = s.left) != null) // find successor
   2054                     s = sl;
   2055                 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
   2056                 TreeNode<K,V> sr = s.right;
   2057                 TreeNode<K,V> pp = p.parent;
   2058                 if (s == pr) { // p was s's direct parent
   2059                     p.parent = s;
   2060                     s.right = p;
   2061                 }
   2062                 else {
   2063                     TreeNode<K,V> sp = s.parent;
   2064                     if ((p.parent = sp) != null) {
   2065                         if (s == sp.left)
   2066                             sp.left = p;
   2067                         else
   2068                             sp.right = p;
   2069                     }
   2070                     if ((s.right = pr) != null)
   2071                         pr.parent = s;
   2072                 }
   2073                 p.left = null;
   2074                 if ((p.right = sr) != null)
   2075                     sr.parent = p;
   2076                 if ((s.left = pl) != null)
   2077                     pl.parent = s;
   2078                 if ((s.parent = pp) == null)
   2079                     root = s;
   2080                 else if (p == pp.left)
   2081                     pp.left = s;
   2082                 else
   2083                     pp.right = s;
   2084                 if (sr != null)
   2085                     replacement = sr;
   2086                 else
   2087                     replacement = p;
   2088             }
   2089             else if (pl != null)
   2090                 replacement = pl;
   2091             else if (pr != null)
   2092                 replacement = pr;
   2093             else
   2094                 replacement = p;
   2095             if (replacement != p) {
   2096                 TreeNode<K,V> pp = replacement.parent = p.parent;
   2097                 if (pp == null)
   2098                     root = replacement;
   2099                 else if (p == pp.left)
   2100                     pp.left = replacement;
   2101                 else
   2102                     pp.right = replacement;
   2103                 p.left = p.right = p.parent = null;
   2104             }
   2105 
   2106             TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
   2107 
   2108             if (replacement == p) {  // detach
   2109                 TreeNode<K,V> pp = p.parent;
   2110                 p.parent = null;
   2111                 if (pp != null) {
   2112                     if (p == pp.left)
   2113                         pp.left = null;
   2114                     else if (p == pp.right)
   2115                         pp.right = null;
   2116                 }
   2117             }
   2118             if (movable)
   2119                 moveRootToFront(tab, r);
   2120         }
   2121 
   2122         /**
   2123          * Splits nodes in a tree bin into lower and upper tree bins,
   2124          * or untreeifies if now too small. Called only from resize;
   2125          * see above discussion about split bits and indices.
   2126          *
   2127          * @param map the map
   2128          * @param tab the table for recording bin heads
   2129          * @param index the index of the table being split
   2130          * @param bit the bit of hash to split on
   2131          */
   2132         final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
   2133             TreeNode<K,V> b = this;
   2134             // Relink into lo and hi lists, preserving order
   2135             TreeNode<K,V> loHead = null, loTail = null;
   2136             TreeNode<K,V> hiHead = null, hiTail = null;
   2137             int lc = 0, hc = 0;
   2138             for (TreeNode<K,V> e = b, next; e != null; e = next) {
   2139                 next = (TreeNode<K,V>)e.next;
   2140                 e.next = null;
   2141                 if ((e.hash & bit) == 0) {
   2142                     if ((e.prev = loTail) == null)
   2143                         loHead = e;
   2144                     else
   2145                         loTail.next = e;
   2146                     loTail = e;
   2147                     ++lc;
   2148                 }
   2149                 else {
   2150                     if ((e.prev = hiTail) == null)
   2151                         hiHead = e;
   2152                     else
   2153                         hiTail.next = e;
   2154                     hiTail = e;
   2155                     ++hc;
   2156                 }
   2157             }
   2158 
   2159             if (loHead != null) {
   2160                 if (lc <= UNTREEIFY_THRESHOLD)
   2161                     tab[index] = loHead.untreeify(map);
   2162                 else {
   2163                     tab[index] = loHead;
   2164                     if (hiHead != null) // (else is already treeified)
   2165                         loHead.treeify(tab);
   2166                 }
   2167             }
   2168             if (hiHead != null) {
   2169                 if (hc <= UNTREEIFY_THRESHOLD)
   2170                     tab[index + bit] = hiHead.untreeify(map);
   2171                 else {
   2172                     tab[index + bit] = hiHead;
   2173                     if (loHead != null)
   2174                         hiHead.treeify(tab);
   2175                 }
   2176             }
   2177         }
   2178 
   2179         /* ------------------------------------------------------------ */
   2180         // Red-black tree methods, all adapted from CLR
   2181 
   2182         static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
   2183                                               TreeNode<K,V> p) {
   2184             TreeNode<K,V> r, pp, rl;
   2185             if (p != null && (r = p.right) != null) {
   2186                 if ((rl = p.right = r.left) != null)
   2187                     rl.parent = p;
   2188                 if ((pp = r.parent = p.parent) == null)
   2189                     (root = r).red = false;
   2190                 else if (pp.left == p)
   2191                     pp.left = r;
   2192                 else
   2193                     pp.right = r;
   2194                 r.left = p;
   2195                 p.parent = r;
   2196             }
   2197             return root;
   2198         }
   2199 
   2200         static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
   2201                                                TreeNode<K,V> p) {
   2202             TreeNode<K,V> l, pp, lr;
   2203             if (p != null && (l = p.left) != null) {
   2204                 if ((lr = p.left = l.right) != null)
   2205                     lr.parent = p;
   2206                 if ((pp = l.parent = p.parent) == null)
   2207                     (root = l).red = false;
   2208                 else if (pp.right == p)
   2209                     pp.right = l;
   2210                 else
   2211                     pp.left = l;
   2212                 l.right = p;
   2213                 p.parent = l;
   2214             }
   2215             return root;
   2216         }
   2217 
   2218         static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
   2219                                                     TreeNode<K,V> x) {
   2220             x.red = true;
   2221             for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
   2222                 if ((xp = x.parent) == null) {
   2223                     x.red = false;
   2224                     return x;
   2225                 }
   2226                 else if (!xp.red || (xpp = xp.parent) == null)
   2227                     return root;
   2228                 if (xp == (xppl = xpp.left)) {
   2229                     if ((xppr = xpp.right) != null && xppr.red) {
   2230                         xppr.red = false;
   2231                         xp.red = false;
   2232                         xpp.red = true;
   2233                         x = xpp;
   2234                     }
   2235                     else {
   2236                         if (x == xp.right) {
   2237                             root = rotateLeft(root, x = xp);
   2238                             xpp = (xp = x.parent) == null ? null : xp.parent;
   2239                         }
   2240                         if (xp != null) {
   2241                             xp.red = false;
   2242                             if (xpp != null) {
   2243                                 xpp.red = true;
   2244                                 root = rotateRight(root, xpp);
   2245                             }
   2246                         }
   2247                     }
   2248                 }
   2249                 else {
   2250                     if (xppl != null && xppl.red) {
   2251                         xppl.red = false;
   2252                         xp.red = false;
   2253                         xpp.red = true;
   2254                         x = xpp;
   2255                     }
   2256                     else {
   2257                         if (x == xp.left) {
   2258                             root = rotateRight(root, x = xp);
   2259                             xpp = (xp = x.parent) == null ? null : xp.parent;
   2260                         }
   2261                         if (xp != null) {
   2262                             xp.red = false;
   2263                             if (xpp != null) {
   2264                                 xpp.red = true;
   2265                                 root = rotateLeft(root, xpp);
   2266                             }
   2267                         }
   2268                     }
   2269                 }
   2270             }
   2271         }
   2272 
   2273         static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
   2274                                                    TreeNode<K,V> x) {
   2275             for (TreeNode<K,V> xp, xpl, xpr;;)  {
   2276                 if (x == null || x == root)
   2277                     return root;
   2278                 else if ((xp = x.parent) == null) {
   2279                     x.red = false;
   2280                     return x;
   2281                 }
   2282                 else if (x.red) {
   2283                     x.red = false;
   2284                     return root;
   2285                 }
   2286                 else if ((xpl = xp.left) == x) {
   2287                     if ((xpr = xp.right) != null && xpr.red) {
   2288                         xpr.red = false;
   2289                         xp.red = true;
   2290                         root = rotateLeft(root, xp);
   2291                         xpr = (xp = x.parent) == null ? null : xp.right;
   2292                     }
   2293                     if (xpr == null)
   2294                         x = xp;
   2295                     else {
   2296                         TreeNode<K,V> sl = xpr.left, sr = xpr.right;
   2297                         if ((sr == null || !sr.red) &&
   2298                             (sl == null || !sl.red)) {
   2299                             xpr.red = true;
   2300                             x = xp;
   2301                         }
   2302                         else {
   2303                             if (sr == null || !sr.red) {
   2304                                 if (sl != null)
   2305                                     sl.red = false;
   2306                                 xpr.red = true;
   2307                                 root = rotateRight(root, xpr);
   2308                                 xpr = (xp = x.parent) == null ?
   2309                                     null : xp.right;
   2310                             }
   2311                             if (xpr != null) {
   2312                                 xpr.red = (xp == null) ? false : xp.red;
   2313                                 if ((sr = xpr.right) != null)
   2314                                     sr.red = false;
   2315                             }
   2316                             if (xp != null) {
   2317                                 xp.red = false;
   2318                                 root = rotateLeft(root, xp);
   2319                             }
   2320                             x = root;
   2321                         }
   2322                     }
   2323                 }
   2324                 else { // symmetric
   2325                     if (xpl != null && xpl.red) {
   2326                         xpl.red = false;
   2327                         xp.red = true;
   2328                         root = rotateRight(root, xp);
   2329                         xpl = (xp = x.parent) == null ? null : xp.left;
   2330                     }
   2331                     if (xpl == null)
   2332                         x = xp;
   2333                     else {
   2334                         TreeNode<K,V> sl = xpl.left, sr = xpl.right;
   2335                         if ((sl == null || !sl.red) &&
   2336                             (sr == null || !sr.red)) {
   2337                             xpl.red = true;
   2338                             x = xp;
   2339                         }
   2340                         else {
   2341                             if (sl == null || !sl.red) {
   2342                                 if (sr != null)
   2343                                     sr.red = false;
   2344                                 xpl.red = true;
   2345                                 root = rotateLeft(root, xpl);
   2346                                 xpl = (xp = x.parent) == null ?
   2347                                     null : xp.left;
   2348                             }
   2349                             if (xpl != null) {
   2350                                 xpl.red = (xp == null) ? false : xp.red;
   2351                                 if ((sl = xpl.left) != null)
   2352                                     sl.red = false;
   2353                             }
   2354                             if (xp != null) {
   2355                                 xp.red = false;
   2356                                 root = rotateRight(root, xp);
   2357                             }
   2358                             x = root;
   2359                         }
   2360                     }
   2361                 }
   2362             }
   2363         }
   2364 
   2365         /**
   2366          * Recursive invariant check
   2367          */
   2368         static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
   2369             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
   2370                 tb = t.prev, tn = (TreeNode<K,V>)t.next;
   2371             if (tb != null && tb.next != t)
   2372                 return false;
   2373             if (tn != null && tn.prev != t)
   2374                 return false;
   2375             if (tp != null && t != tp.left && t != tp.right)
   2376                 return false;
   2377             if (tl != null && (tl.parent != t || tl.hash > t.hash))
   2378                 return false;
   2379             if (tr != null && (tr.parent != t || tr.hash < t.hash))
   2380                 return false;
   2381             if (t.red && tl != null && tl.red && tr != null && tr.red)
   2382                 return false;
   2383             if (tl != null && !checkInvariants(tl))
   2384                 return false;
   2385             if (tr != null && !checkInvariants(tr))
   2386                 return false;
   2387             return true;
   2388         }
   2389     }
   2390 
   2391 }
   2392