Home | History | Annotate | Download | only in stream
      1 /*
      2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
      3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      4  *
      5  * This code is free software; you can redistribute it and/or modify it
      6  * under the terms of the GNU General Public License version 2 only, as
      7  * published by the Free Software Foundation.  Oracle designates this
      8  * particular file as subject to the "Classpath" exception as provided
      9  * by Oracle in the LICENSE file that accompanied this code.
     10  *
     11  * This code is distributed in the hope that it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     14  * version 2 for more details (a copy is included in the LICENSE file that
     15  * accompanied this code).
     16  *
     17  * You should have received a copy of the GNU General Public License version
     18  * 2 along with this work; if not, write to the Free Software Foundation,
     19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     20  *
     21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     22  * or visit www.oracle.com if you need additional information or have any
     23  * questions.
     24  */
     25 package java.util.stream;
     26 
     27 import java.nio.charset.Charset;
     28 import java.util.Arrays;
     29 import java.util.Collection;
     30 import java.util.Comparator;
     31 import java.util.Iterator;
     32 import java.util.Objects;
     33 import java.util.Optional;
     34 import java.util.Spliterator;
     35 import java.util.Spliterators;
     36 import java.util.concurrent.ConcurrentHashMap;
     37 import java.util.function.BiConsumer;
     38 import java.util.function.BiFunction;
     39 import java.util.function.BinaryOperator;
     40 import java.util.function.Consumer;
     41 import java.util.function.Function;
     42 import java.util.function.IntFunction;
     43 import java.util.function.Predicate;
     44 import java.util.function.Supplier;
     45 import java.util.function.ToDoubleFunction;
     46 import java.util.function.ToIntFunction;
     47 import java.util.function.ToLongFunction;
     48 import java.util.function.UnaryOperator;
     49 
     50 /**
     51  * A sequence of elements supporting sequential and parallel aggregate
     52  * operations.  The following example illustrates an aggregate operation using
     53  * {@link Stream} and {@link IntStream}:
     54  *
     55  * <pre>{@code
     56  *     int sum = widgets.stream()
     57  *                      .filter(w -> w.getColor() == RED)
     58  *                      .mapToInt(w -> w.getWeight())
     59  *                      .sum();
     60  * }</pre>
     61  *
     62  * In this example, {@code widgets} is a {@code Collection<Widget>}.  We create
     63  * a stream of {@code Widget} objects via {@link Collection#stream Collection.stream()},
     64  * filter it to produce a stream containing only the red widgets, and then
     65  * transform it into a stream of {@code int} values representing the weight of
     66  * each red widget. Then this stream is summed to produce a total weight.
     67  *
     68  * <p>In addition to {@code Stream}, which is a stream of object references,
     69  * there are primitive specializations for {@link IntStream}, {@link LongStream},
     70  * and {@link DoubleStream}, all of which are referred to as "streams" and
     71  * conform to the characteristics and restrictions described here.
     72  *
     73  * <p>To perform a computation, stream
     74  * <a href="package-summary.html#StreamOps">operations</a> are composed into a
     75  * <em>stream pipeline</em>.  A stream pipeline consists of a source (which
     76  * might be an array, a collection, a generator function, an I/O channel,
     77  * etc), zero or more <em>intermediate operations</em> (which transform a
     78  * stream into another stream, such as {@link Stream#filter(Predicate)}), and a
     79  * <em>terminal operation</em> (which produces a result or side-effect, such
     80  * as {@link Stream#count()} or {@link Stream#forEach(Consumer)}).
     81  * Streams are lazy; computation on the source data is only performed when the
     82  * terminal operation is initiated, and source elements are consumed only
     83  * as needed.
     84  *
     85  * <p>Collections and streams, while bearing some superficial similarities,
     86  * have different goals.  Collections are primarily concerned with the efficient
     87  * management of, and access to, their elements.  By contrast, streams do not
     88  * provide a means to directly access or manipulate their elements, and are
     89  * instead concerned with declaratively describing their source and the
     90  * computational operations which will be performed in aggregate on that source.
     91  * However, if the provided stream operations do not offer the desired
     92  * functionality, the {@link #iterator()} and {@link #spliterator()} operations
     93  * can be used to perform a controlled traversal.
     94  *
     95  * <p>A stream pipeline, like the "widgets" example above, can be viewed as
     96  * a <em>query</em> on the stream source.  Unless the source was explicitly
     97  * designed for concurrent modification (such as a {@link ConcurrentHashMap}),
     98  * unpredictable or erroneous behavior may result from modifying the stream
     99  * source while it is being queried.
    100  *
    101  * <p>Most stream operations accept parameters that describe user-specified
    102  * behavior, such as the lambda expression {@code w -> w.getWeight()} passed to
    103  * {@code mapToInt} in the example above.  To preserve correct behavior,
    104  * these <em>behavioral parameters</em>:
    105  * <ul>
    106  * <li>must be <a href="package-summary.html#NonInterference">non-interfering</a>
    107  * (they do not modify the stream source); and</li>
    108  * <li>in most cases must be <a href="package-summary.html#Statelessness">stateless</a>
    109  * (their result should not depend on any state that might change during execution
    110  * of the stream pipeline).</li>
    111  * </ul>
    112  *
    113  * <p>Such parameters are always instances of a
    114  * <a href="../function/package-summary.html">functional interface</a> such
    115  * as {@link java.util.function.Function}, and are often lambda expressions or
    116  * method references.  Unless otherwise specified these parameters must be
    117  * <em>non-null</em>.
    118  *
    119  * <p>A stream should be operated on (invoking an intermediate or terminal stream
    120  * operation) only once.  This rules out, for example, "forked" streams, where
    121  * the same source feeds two or more pipelines, or multiple traversals of the
    122  * same stream.  A stream implementation may throw {@link IllegalStateException}
    123  * if it detects that the stream is being reused. However, since some stream
    124  * operations may return their receiver rather than a new stream object, it may
    125  * not be possible to detect reuse in all cases.
    126  *
    127  * <p>Streams have a {@link #close()} method and implement {@link AutoCloseable},
    128  * but nearly all stream instances do not actually need to be closed after use.
    129  * Generally, only streams whose source is an IO channel will require closing.  Most streams
    130  * are backed by collections, arrays, or generating functions, which require no
    131  * special resource management.  (If a stream does require closing, it can be
    132  * declared as a resource in a {@code try}-with-resources statement.)
    133  *
    134  * <p>Stream pipelines may execute either sequentially or in
    135  * <a href="package-summary.html#Parallelism">parallel</a>.  This
    136  * execution mode is a property of the stream.  Streams are created
    137  * with an initial choice of sequential or parallel execution.  (For example,
    138  * {@link Collection#stream() Collection.stream()} creates a sequential stream,
    139  * and {@link Collection#parallelStream() Collection.parallelStream()} creates
    140  * a parallel one.)  This choice of execution mode may be modified by the
    141  * {@link #sequential()} or {@link #parallel()} methods, and may be queried with
    142  * the {@link #isParallel()} method.
    143  *
    144  * @param <T> the type of the stream elements
    145  * @since 1.8
    146  * @see IntStream
    147  * @see LongStream
    148  * @see DoubleStream
    149  * @see <a href="package-summary.html">java.util.stream</a>
    150  */
    151 public interface Stream<T> extends BaseStream<T, Stream<T>> {
    152 
    153     /**
    154      * Returns a stream consisting of the elements of this stream that match
    155      * the given predicate.
    156      *
    157      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
    158      * operation</a>.
    159      *
    160      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
    161      *                  <a href="package-summary.html#Statelessness">stateless</a>
    162      *                  predicate to apply to each element to determine if it
    163      *                  should be included
    164      * @return the new stream
    165      */
    166     Stream<T> filter(Predicate<? super T> predicate);
    167 
    168     /**
    169      * Returns a stream consisting of the results of applying the given
    170      * function to the elements of this stream.
    171      *
    172      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
    173      * operation</a>.
    174      *
    175      * @param <R> The element type of the new stream
    176      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
    177      *               <a href="package-summary.html#Statelessness">stateless</a>
    178      *               function to apply to each element
    179      * @return the new stream
    180      */
    181     <R> Stream<R> map(Function<? super T, ? extends R> mapper);
    182 
    183     /**
    184      * Returns an {@code IntStream} consisting of the results of applying the
    185      * given function to the elements of this stream.
    186      *
    187      * <p>This is an <a href="package-summary.html#StreamOps">
    188      *     intermediate operation</a>.
    189      *
    190      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
    191      *               <a href="package-summary.html#Statelessness">stateless</a>
    192      *               function to apply to each element
    193      * @return the new stream
    194      */
    195     IntStream mapToInt(ToIntFunction<? super T> mapper);
    196 
    197     /**
    198      * Returns a {@code LongStream} consisting of the results of applying the
    199      * given function to the elements of this stream.
    200      *
    201      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
    202      * operation</a>.
    203      *
    204      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
    205      *               <a href="package-summary.html#Statelessness">stateless</a>
    206      *               function to apply to each element
    207      * @return the new stream
    208      */
    209     LongStream mapToLong(ToLongFunction<? super T> mapper);
    210 
    211     /**
    212      * Returns a {@code DoubleStream} consisting of the results of applying the
    213      * given function to the elements of this stream.
    214      *
    215      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
    216      * operation</a>.
    217      *
    218      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
    219      *               <a href="package-summary.html#Statelessness">stateless</a>
    220      *               function to apply to each element
    221      * @return the new stream
    222      */
    223     DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper);
    224 
    225     /**
    226      * Returns a stream consisting of the results of replacing each element of
    227      * this stream with the contents of a mapped stream produced by applying
    228      * the provided mapping function to each element.  Each mapped stream is
    229      * {@link java.util.stream.BaseStream#close() closed} after its contents
    230      * have been placed into this stream.  (If a mapped stream is {@code null}
    231      * an empty stream is used, instead.)
    232      *
    233      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
    234      * operation</a>.
    235      *
    236      * @apiNote
    237      * The {@code flatMap()} operation has the effect of applying a one-to-many
    238      * transformation to the elements of the stream, and then flattening the
    239      * resulting elements into a new stream.
    240      *
    241      * <p><b>Examples.</b>
    242      *
    243      * <p>If {@code orders} is a stream of purchase orders, and each purchase
    244      * order contains a collection of line items, then the following produces a
    245      * stream containing all the line items in all the orders:
    246      * <pre>{@code
    247      *     orders.flatMap(order -> order.getLineItems().stream())...
    248      * }</pre>
    249      *
    250      * <p>If {@code path} is the path to a file, then the following produces a
    251      * stream of the {@code words} contained in that file:
    252      * <pre>{@code
    253      *     Stream<String> lines = Files.lines(path, StandardCharsets.UTF_8);
    254      *     Stream<String> words = lines.flatMap(line -> Stream.of(line.split(" +")));
    255      * }</pre>
    256      * The {@code mapper} function passed to {@code flatMap} splits a line,
    257      * using a simple regular expression, into an array of words, and then
    258      * creates a stream of words from that array.
    259      *
    260      * @param <R> The element type of the new stream
    261      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
    262      *               <a href="package-summary.html#Statelessness">stateless</a>
    263      *               function to apply to each element which produces a stream
    264      *               of new values
    265      * @return the new stream
    266      */
    267     <R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);
    268 
    269     /**
    270      * Returns an {@code IntStream} consisting of the results of replacing each
    271      * element of this stream with the contents of a mapped stream produced by
    272      * applying the provided mapping function to each element.  Each mapped
    273      * stream is {@link java.util.stream.BaseStream#close() closed} after its
    274      * contents have been placed into this stream.  (If a mapped stream is
    275      * {@code null} an empty stream is used, instead.)
    276      *
    277      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
    278      * operation</a>.
    279      *
    280      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
    281      *               <a href="package-summary.html#Statelessness">stateless</a>
    282      *               function to apply to each element which produces a stream
    283      *               of new values
    284      * @return the new stream
    285      * @see #flatMap(Function)
    286      */
    287     IntStream flatMapToInt(Function<? super T, ? extends IntStream> mapper);
    288 
    289     /**
    290      * Returns an {@code LongStream} consisting of the results of replacing each
    291      * element of this stream with the contents of a mapped stream produced by
    292      * applying the provided mapping function to each element.  Each mapped
    293      * stream is {@link java.util.stream.BaseStream#close() closed} after its
    294      * contents have been placed into this stream.  (If a mapped stream is
    295      * {@code null} an empty stream is used, instead.)
    296      *
    297      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
    298      * operation</a>.
    299      *
    300      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
    301      *               <a href="package-summary.html#Statelessness">stateless</a>
    302      *               function to apply to each element which produces a stream
    303      *               of new values
    304      * @return the new stream
    305      * @see #flatMap(Function)
    306      */
    307     LongStream flatMapToLong(Function<? super T, ? extends LongStream> mapper);
    308 
    309     /**
    310      * Returns an {@code DoubleStream} consisting of the results of replacing
    311      * each element of this stream with the contents of a mapped stream produced
    312      * by applying the provided mapping function to each element.  Each mapped
    313      * stream is {@link java.util.stream.BaseStream#close() closed} after its
    314      * contents have placed been into this stream.  (If a mapped stream is
    315      * {@code null} an empty stream is used, instead.)
    316      *
    317      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
    318      * operation</a>.
    319      *
    320      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
    321      *               <a href="package-summary.html#Statelessness">stateless</a>
    322      *               function to apply to each element which produces a stream
    323      *               of new values
    324      * @return the new stream
    325      * @see #flatMap(Function)
    326      */
    327     DoubleStream flatMapToDouble(Function<? super T, ? extends DoubleStream> mapper);
    328 
    329     /**
    330      * Returns a stream consisting of the distinct elements (according to
    331      * {@link Object#equals(Object)}) of this stream.
    332      *
    333      * <p>For ordered streams, the selection of distinct elements is stable
    334      * (for duplicated elements, the element appearing first in the encounter
    335      * order is preserved.)  For unordered streams, no stability guarantees
    336      * are made.
    337      *
    338      * <p>This is a <a href="package-summary.html#StreamOps">stateful
    339      * intermediate operation</a>.
    340      *
    341      * @apiNote
    342      * Preserving stability for {@code distinct()} in parallel pipelines is
    343      * relatively expensive (requires that the operation act as a full barrier,
    344      * with substantial buffering overhead), and stability is often not needed.
    345      * Using an unordered stream source (such as {@link #generate(Supplier)})
    346      * or removing the ordering constraint with {@link #unordered()} may result
    347      * in significantly more efficient execution for {@code distinct()} in parallel
    348      * pipelines, if the semantics of your situation permit.  If consistency
    349      * with encounter order is required, and you are experiencing poor performance
    350      * or memory utilization with {@code distinct()} in parallel pipelines,
    351      * switching to sequential execution with {@link #sequential()} may improve
    352      * performance.
    353      *
    354      * @return the new stream
    355      */
    356     Stream<T> distinct();
    357 
    358     /**
    359      * Returns a stream consisting of the elements of this stream, sorted
    360      * according to natural order.  If the elements of this stream are not
    361      * {@code Comparable}, a {@code java.lang.ClassCastException} may be thrown
    362      * when the terminal operation is executed.
    363      *
    364      * <p>For ordered streams, the sort is stable.  For unordered streams, no
    365      * stability guarantees are made.
    366      *
    367      * <p>This is a <a href="package-summary.html#StreamOps">stateful
    368      * intermediate operation</a>.
    369      *
    370      * @return the new stream
    371      */
    372     Stream<T> sorted();
    373 
    374     /**
    375      * Returns a stream consisting of the elements of this stream, sorted
    376      * according to the provided {@code Comparator}.
    377      *
    378      * <p>For ordered streams, the sort is stable.  For unordered streams, no
    379      * stability guarantees are made.
    380      *
    381      * <p>This is a <a href="package-summary.html#StreamOps">stateful
    382      * intermediate operation</a>.
    383      *
    384      * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
    385      *                   <a href="package-summary.html#Statelessness">stateless</a>
    386      *                   {@code Comparator} to be used to compare stream elements
    387      * @return the new stream
    388      */
    389     Stream<T> sorted(Comparator<? super T> comparator);
    390 
    391     /**
    392      * Returns a stream consisting of the elements of this stream, additionally
    393      * performing the provided action on each element as elements are consumed
    394      * from the resulting stream.
    395      *
    396      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
    397      * operation</a>.
    398      *
    399      * <p>For parallel stream pipelines, the action may be called at
    400      * whatever time and in whatever thread the element is made available by the
    401      * upstream operation.  If the action modifies shared state,
    402      * it is responsible for providing the required synchronization.
    403      *
    404      * @apiNote This method exists mainly to support debugging, where you want
    405      * to see the elements as they flow past a certain point in a pipeline:
    406      * <pre>{@code
    407      *     Stream.of("one", "two", "three", "four")
    408      *         .filter(e -> e.length() > 3)
    409      *         .peek(e -> System.out.println("Filtered value: " + e))
    410      *         .map(String::toUpperCase)
    411      *         .peek(e -> System.out.println("Mapped value: " + e))
    412      *         .collect(Collectors.toList());
    413      * }</pre>
    414      *
    415      * @param action a <a href="package-summary.html#NonInterference">
    416      *                 non-interfering</a> action to perform on the elements as
    417      *                 they are consumed from the stream
    418      * @return the new stream
    419      */
    420     Stream<T> peek(Consumer<? super T> action);
    421 
    422     /**
    423      * Returns a stream consisting of the elements of this stream, truncated
    424      * to be no longer than {@code maxSize} in length.
    425      *
    426      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
    427      * stateful intermediate operation</a>.
    428      *
    429      * @apiNote
    430      * While {@code limit()} is generally a cheap operation on sequential
    431      * stream pipelines, it can be quite expensive on ordered parallel pipelines,
    432      * especially for large values of {@code maxSize}, since {@code limit(n)}
    433      * is constrained to return not just any <em>n</em> elements, but the
    434      * <em>first n</em> elements in the encounter order.  Using an unordered
    435      * stream source (such as {@link #generate(Supplier)}) or removing the
    436      * ordering constraint with {@link #unordered()} may result in significant
    437      * speedups of {@code limit()} in parallel pipelines, if the semantics of
    438      * your situation permit.  If consistency with encounter order is required,
    439      * and you are experiencing poor performance or memory utilization with
    440      * {@code limit()} in parallel pipelines, switching to sequential execution
    441      * with {@link #sequential()} may improve performance.
    442      *
    443      * @param maxSize the number of elements the stream should be limited to
    444      * @return the new stream
    445      * @throws IllegalArgumentException if {@code maxSize} is negative
    446      */
    447     Stream<T> limit(long maxSize);
    448 
    449     /**
    450      * Returns a stream consisting of the remaining elements of this stream
    451      * after discarding the first {@code n} elements of the stream.
    452      * If this stream contains fewer than {@code n} elements then an
    453      * empty stream will be returned.
    454      *
    455      * <p>This is a <a href="package-summary.html#StreamOps">stateful
    456      * intermediate operation</a>.
    457      *
    458      * @apiNote
    459      * While {@code skip()} is generally a cheap operation on sequential
    460      * stream pipelines, it can be quite expensive on ordered parallel pipelines,
    461      * especially for large values of {@code n}, since {@code skip(n)}
    462      * is constrained to skip not just any <em>n</em> elements, but the
    463      * <em>first n</em> elements in the encounter order.  Using an unordered
    464      * stream source (such as {@link #generate(Supplier)}) or removing the
    465      * ordering constraint with {@link #unordered()} may result in significant
    466      * speedups of {@code skip()} in parallel pipelines, if the semantics of
    467      * your situation permit.  If consistency with encounter order is required,
    468      * and you are experiencing poor performance or memory utilization with
    469      * {@code skip()} in parallel pipelines, switching to sequential execution
    470      * with {@link #sequential()} may improve performance.
    471      *
    472      * @param n the number of leading elements to skip
    473      * @return the new stream
    474      * @throws IllegalArgumentException if {@code n} is negative
    475      */
    476     Stream<T> skip(long n);
    477 
    478     /**
    479      * Performs an action for each element of this stream.
    480      *
    481      * <p>This is a <a href="package-summary.html#StreamOps">terminal
    482      * operation</a>.
    483      *
    484      * <p>The behavior of this operation is explicitly nondeterministic.
    485      * For parallel stream pipelines, this operation does <em>not</em>
    486      * guarantee to respect the encounter order of the stream, as doing so
    487      * would sacrifice the benefit of parallelism.  For any given element, the
    488      * action may be performed at whatever time and in whatever thread the
    489      * library chooses.  If the action accesses shared state, it is
    490      * responsible for providing the required synchronization.
    491      *
    492      * @param action a <a href="package-summary.html#NonInterference">
    493      *               non-interfering</a> action to perform on the elements
    494      */
    495     void forEach(Consumer<? super T> action);
    496 
    497     /**
    498      * Performs an action for each element of this stream, in the encounter
    499      * order of the stream if the stream has a defined encounter order.
    500      *
    501      * <p>This is a <a href="package-summary.html#StreamOps">terminal
    502      * operation</a>.
    503      *
    504      * <p>This operation processes the elements one at a time, in encounter
    505      * order if one exists.  Performing the action for one element
    506      * <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a>
    507      * performing the action for subsequent elements, but for any given element,
    508      * the action may be performed in whatever thread the library chooses.
    509      *
    510      * @param action a <a href="package-summary.html#NonInterference">
    511      *               non-interfering</a> action to perform on the elements
    512      * @see #forEach(Consumer)
    513      */
    514     void forEachOrdered(Consumer<? super T> action);
    515 
    516     /**
    517      * Returns an array containing the elements of this stream.
    518      *
    519      * <p>This is a <a href="package-summary.html#StreamOps">terminal
    520      * operation</a>.
    521      *
    522      * @return an array containing the elements of this stream
    523      */
    524     Object[] toArray();
    525 
    526     /**
    527      * Returns an array containing the elements of this stream, using the
    528      * provided {@code generator} function to allocate the returned array, as
    529      * well as any additional arrays that might be required for a partitioned
    530      * execution or for resizing.
    531      *
    532      * <p>This is a <a href="package-summary.html#StreamOps">terminal
    533      * operation</a>.
    534      *
    535      * @apiNote
    536      * The generator function takes an integer, which is the size of the
    537      * desired array, and produces an array of the desired size.  This can be
    538      * concisely expressed with an array constructor reference:
    539      * <pre>{@code
    540      *     Person[] men = people.stream()
    541      *                          .filter(p -> p.getGender() == MALE)
    542      *                          .toArray(Person[]::new);
    543      * }</pre>
    544      *
    545      * @param <A> the element type of the resulting array
    546      * @param generator a function which produces a new array of the desired
    547      *                  type and the provided length
    548      * @return an array containing the elements in this stream
    549      * @throws ArrayStoreException if the runtime type of the array returned
    550      * from the array generator is not a supertype of the runtime type of every
    551      * element in this stream
    552      */
    553     <A> A[] toArray(IntFunction<A[]> generator);
    554 
    555     /**
    556      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
    557      * elements of this stream, using the provided identity value and an
    558      * <a href="package-summary.html#Associativity">associative</a>
    559      * accumulation function, and returns the reduced value.  This is equivalent
    560      * to:
    561      * <pre>{@code
    562      *     T result = identity;
    563      *     for (T element : this stream)
    564      *         result = accumulator.apply(result, element)
    565      *     return result;
    566      * }</pre>
    567      *
    568      * but is not constrained to execute sequentially.
    569      *
    570      * <p>The {@code identity} value must be an identity for the accumulator
    571      * function. This means that for all {@code t},
    572      * {@code accumulator.apply(identity, t)} is equal to {@code t}.
    573      * The {@code accumulator} function must be an
    574      * <a href="package-summary.html#Associativity">associative</a> function.
    575      *
    576      * <p>This is a <a href="package-summary.html#StreamOps">terminal
    577      * operation</a>.
    578      *
    579      * @apiNote Sum, min, max, average, and string concatenation are all special
    580      * cases of reduction. Summing a stream of numbers can be expressed as:
    581      *
    582      * <pre>{@code
    583      *     Integer sum = integers.reduce(0, (a, b) -> a+b);
    584      * }</pre>
    585      *
    586      * or:
    587      *
    588      * <pre>{@code
    589      *     Integer sum = integers.reduce(0, Integer::sum);
    590      * }</pre>
    591      *
    592      * <p>While this may seem a more roundabout way to perform an aggregation
    593      * compared to simply mutating a running total in a loop, reduction
    594      * operations parallelize more gracefully, without needing additional
    595      * synchronization and with greatly reduced risk of data races.
    596      *
    597      * @param identity the identity value for the accumulating function
    598      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
    599      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
    600      *                    <a href="package-summary.html#Statelessness">stateless</a>
    601      *                    function for combining two values
    602      * @return the result of the reduction
    603      */
    604     T reduce(T identity, BinaryOperator<T> accumulator);
    605 
    606     /**
    607      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
    608      * elements of this stream, using an
    609      * <a href="package-summary.html#Associativity">associative</a> accumulation
    610      * function, and returns an {@code Optional} describing the reduced value,
    611      * if any. This is equivalent to:
    612      * <pre>{@code
    613      *     boolean foundAny = false;
    614      *     T result = null;
    615      *     for (T element : this stream) {
    616      *         if (!foundAny) {
    617      *             foundAny = true;
    618      *             result = element;
    619      *         }
    620      *         else
    621      *             result = accumulator.apply(result, element);
    622      *     }
    623      *     return foundAny ? Optional.of(result) : Optional.empty();
    624      * }</pre>
    625      *
    626      * but is not constrained to execute sequentially.
    627      *
    628      * <p>The {@code accumulator} function must be an
    629      * <a href="package-summary.html#Associativity">associative</a> function.
    630      *
    631      * <p>This is a <a href="package-summary.html#StreamOps">terminal
    632      * operation</a>.
    633      *
    634      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
    635      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
    636      *                    <a href="package-summary.html#Statelessness">stateless</a>
    637      *                    function for combining two values
    638      * @return an {@link Optional} describing the result of the reduction
    639      * @throws NullPointerException if the result of the reduction is null
    640      * @see #reduce(Object, BinaryOperator)
    641      * @see #min(Comparator)
    642      * @see #max(Comparator)
    643      */
    644     Optional<T> reduce(BinaryOperator<T> accumulator);
    645 
    646     /**
    647      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
    648      * elements of this stream, using the provided identity, accumulation and
    649      * combining functions.  This is equivalent to:
    650      * <pre>{@code
    651      *     U result = identity;
    652      *     for (T element : this stream)
    653      *         result = accumulator.apply(result, element)
    654      *     return result;
    655      * }</pre>
    656      *
    657      * but is not constrained to execute sequentially.
    658      *
    659      * <p>The {@code identity} value must be an identity for the combiner
    660      * function.  This means that for all {@code u}, {@code combiner(identity, u)}
    661      * is equal to {@code u}.  Additionally, the {@code combiner} function
    662      * must be compatible with the {@code accumulator} function; for all
    663      * {@code u} and {@code t}, the following must hold:
    664      * <pre>{@code
    665      *     combiner.apply(u, accumulator.apply(identity, t)) == accumulator.apply(u, t)
    666      * }</pre>
    667      *
    668      * <p>This is a <a href="package-summary.html#StreamOps">terminal
    669      * operation</a>.
    670      *
    671      * @apiNote Many reductions using this form can be represented more simply
    672      * by an explicit combination of {@code map} and {@code reduce} operations.
    673      * The {@code accumulator} function acts as a fused mapper and accumulator,
    674      * which can sometimes be more efficient than separate mapping and reduction,
    675      * such as when knowing the previously reduced value allows you to avoid
    676      * some computation.
    677      *
    678      * @param <U> The type of the result
    679      * @param identity the identity value for the combiner function
    680      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
    681      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
    682      *                    <a href="package-summary.html#Statelessness">stateless</a>
    683      *                    function for incorporating an additional element into a result
    684      * @param combiner an <a href="package-summary.html#Associativity">associative</a>,
    685      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
    686      *                    <a href="package-summary.html#Statelessness">stateless</a>
    687      *                    function for combining two values, which must be
    688      *                    compatible with the accumulator function
    689      * @return the result of the reduction
    690      * @see #reduce(BinaryOperator)
    691      * @see #reduce(Object, BinaryOperator)
    692      */
    693     <U> U reduce(U identity,
    694                  BiFunction<U, ? super T, U> accumulator,
    695                  BinaryOperator<U> combiner);
    696 
    697     /**
    698      * Performs a <a href="package-summary.html#MutableReduction">mutable
    699      * reduction</a> operation on the elements of this stream.  A mutable
    700      * reduction is one in which the reduced value is a mutable result container,
    701      * such as an {@code ArrayList}, and elements are incorporated by updating
    702      * the state of the result rather than by replacing the result.  This
    703      * produces a result equivalent to:
    704      * <pre>{@code
    705      *     R result = supplier.get();
    706      *     for (T element : this stream)
    707      *         accumulator.accept(result, element);
    708      *     return result;
    709      * }</pre>
    710      *
    711      * <p>Like {@link #reduce(Object, BinaryOperator)}, {@code collect} operations
    712      * can be parallelized without requiring additional synchronization.
    713      *
    714      * <p>This is a <a href="package-summary.html#StreamOps">terminal
    715      * operation</a>.
    716      *
    717      * @apiNote There are many existing classes in the JDK whose signatures are
    718      * well-suited for use with method references as arguments to {@code collect()}.
    719      * For example, the following will accumulate strings into an {@code ArrayList}:
    720      * <pre>{@code
    721      *     List<String> asList = stringStream.collect(ArrayList::new, ArrayList::add,
    722      *                                                ArrayList::addAll);
    723      * }</pre>
    724      *
    725      * <p>The following will take a stream of strings and concatenates them into a
    726      * single string:
    727      * <pre>{@code
    728      *     String concat = stringStream.collect(StringBuilder::new, StringBuilder::append,
    729      *                                          StringBuilder::append)
    730      *                                 .toString();
    731      * }</pre>
    732      *
    733      * @param <R> type of the result
    734      * @param supplier a function that creates a new result container. For a
    735      *                 parallel execution, this function may be called
    736      *                 multiple times and must return a fresh value each time.
    737      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
    738      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
    739      *                    <a href="package-summary.html#Statelessness">stateless</a>
    740      *                    function for incorporating an additional element into a result
    741      * @param combiner an <a href="package-summary.html#Associativity">associative</a>,
    742      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
    743      *                    <a href="package-summary.html#Statelessness">stateless</a>
    744      *                    function for combining two values, which must be
    745      *                    compatible with the accumulator function
    746      * @return the result of the reduction
    747      */
    748     <R> R collect(Supplier<R> supplier,
    749                   BiConsumer<R, ? super T> accumulator,
    750                   BiConsumer<R, R> combiner);
    751 
    752     /**
    753      * Performs a <a href="package-summary.html#MutableReduction">mutable
    754      * reduction</a> operation on the elements of this stream using a
    755      * {@code Collector}.  A {@code Collector}
    756      * encapsulates the functions used as arguments to
    757      * {@link #collect(Supplier, BiConsumer, BiConsumer)}, allowing for reuse of
    758      * collection strategies and composition of collect operations such as
    759      * multiple-level grouping or partitioning.
    760      *
    761      * <p>If the stream is parallel, and the {@code Collector}
    762      * is {@link Collector.Characteristics#CONCURRENT concurrent}, and
    763      * either the stream is unordered or the collector is
    764      * {@link Collector.Characteristics#UNORDERED unordered},
    765      * then a concurrent reduction will be performed (see {@link Collector} for
    766      * details on concurrent reduction.)
    767      *
    768      * <p>This is a <a href="package-summary.html#StreamOps">terminal
    769      * operation</a>.
    770      *
    771      * <p>When executed in parallel, multiple intermediate results may be
    772      * instantiated, populated, and merged so as to maintain isolation of
    773      * mutable data structures.  Therefore, even when executed in parallel
    774      * with non-thread-safe data structures (such as {@code ArrayList}), no
    775      * additional synchronization is needed for a parallel reduction.
    776      *
    777      * @apiNote
    778      * The following will accumulate strings into an ArrayList:
    779      * <pre>{@code
    780      *     List<String> asList = stringStream.collect(Collectors.toList());
    781      * }</pre>
    782      *
    783      * <p>The following will classify {@code Person} objects by city:
    784      * <pre>{@code
    785      *     Map<String, List<Person>> peopleByCity
    786      *         = personStream.collect(Collectors.groupingBy(Person::getCity));
    787      * }</pre>
    788      *
    789      * <p>The following will classify {@code Person} objects by state and city,
    790      * cascading two {@code Collector}s together:
    791      * <pre>{@code
    792      *     Map<String, Map<String, List<Person>>> peopleByStateAndCity
    793      *         = personStream.collect(Collectors.groupingBy(Person::getState,
    794      *                                                      Collectors.groupingBy(Person::getCity)));
    795      * }</pre>
    796      *
    797      * @param <R> the type of the result
    798      * @param <A> the intermediate accumulation type of the {@code Collector}
    799      * @param collector the {@code Collector} describing the reduction
    800      * @return the result of the reduction
    801      * @see #collect(Supplier, BiConsumer, BiConsumer)
    802      * @see Collectors
    803      */
    804     <R, A> R collect(Collector<? super T, A, R> collector);
    805 
    806     /**
    807      * Returns the minimum element of this stream according to the provided
    808      * {@code Comparator}.  This is a special case of a
    809      * <a href="package-summary.html#Reduction">reduction</a>.
    810      *
    811      * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
    812      *
    813      * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
    814      *                   <a href="package-summary.html#Statelessness">stateless</a>
    815      *                   {@code Comparator} to compare elements of this stream
    816      * @return an {@code Optional} describing the minimum element of this stream,
    817      * or an empty {@code Optional} if the stream is empty
    818      * @throws NullPointerException if the minimum element is null
    819      */
    820     Optional<T> min(Comparator<? super T> comparator);
    821 
    822     /**
    823      * Returns the maximum element of this stream according to the provided
    824      * {@code Comparator}.  This is a special case of a
    825      * <a href="package-summary.html#Reduction">reduction</a>.
    826      *
    827      * <p>This is a <a href="package-summary.html#StreamOps">terminal
    828      * operation</a>.
    829      *
    830      * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
    831      *                   <a href="package-summary.html#Statelessness">stateless</a>
    832      *                   {@code Comparator} to compare elements of this stream
    833      * @return an {@code Optional} describing the maximum element of this stream,
    834      * or an empty {@code Optional} if the stream is empty
    835      * @throws NullPointerException if the maximum element is null
    836      */
    837     Optional<T> max(Comparator<? super T> comparator);
    838 
    839     /**
    840      * Returns the count of elements in this stream.  This is a special case of
    841      * a <a href="package-summary.html#Reduction">reduction</a> and is
    842      * equivalent to:
    843      * <pre>{@code
    844      *     return mapToLong(e -> 1L).sum();
    845      * }</pre>
    846      *
    847      * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
    848      *
    849      * @return the count of elements in this stream
    850      */
    851     long count();
    852 
    853     /**
    854      * Returns whether any elements of this stream match the provided
    855      * predicate.  May not evaluate the predicate on all elements if not
    856      * necessary for determining the result.  If the stream is empty then
    857      * {@code false} is returned and the predicate is not evaluated.
    858      *
    859      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
    860      * terminal operation</a>.
    861      *
    862      * @apiNote
    863      * This method evaluates the <em>existential quantification</em> of the
    864      * predicate over the elements of the stream (for some x P(x)).
    865      *
    866      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
    867      *                  <a href="package-summary.html#Statelessness">stateless</a>
    868      *                  predicate to apply to elements of this stream
    869      * @return {@code true} if any elements of the stream match the provided
    870      * predicate, otherwise {@code false}
    871      */
    872     boolean anyMatch(Predicate<? super T> predicate);
    873 
    874     /**
    875      * Returns whether all elements of this stream match the provided predicate.
    876      * May not evaluate the predicate on all elements if not necessary for
    877      * determining the result.  If the stream is empty then {@code true} is
    878      * returned and the predicate is not evaluated.
    879      *
    880      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
    881      * terminal operation</a>.
    882      *
    883      * @apiNote
    884      * This method evaluates the <em>universal quantification</em> of the
    885      * predicate over the elements of the stream (for all x P(x)).  If the
    886      * stream is empty, the quantification is said to be <em>vacuously
    887      * satisfied</em> and is always {@code true} (regardless of P(x)).
    888      *
    889      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
    890      *                  <a href="package-summary.html#Statelessness">stateless</a>
    891      *                  predicate to apply to elements of this stream
    892      * @return {@code true} if either all elements of the stream match the
    893      * provided predicate or the stream is empty, otherwise {@code false}
    894      */
    895     boolean allMatch(Predicate<? super T> predicate);
    896 
    897     /**
    898      * Returns whether no elements of this stream match the provided predicate.
    899      * May not evaluate the predicate on all elements if not necessary for
    900      * determining the result.  If the stream is empty then {@code true} is
    901      * returned and the predicate is not evaluated.
    902      *
    903      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
    904      * terminal operation</a>.
    905      *
    906      * @apiNote
    907      * This method evaluates the <em>universal quantification</em> of the
    908      * negated predicate over the elements of the stream (for all x ~P(x)).  If
    909      * the stream is empty, the quantification is said to be vacuously satisfied
    910      * and is always {@code true}, regardless of P(x).
    911      *
    912      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
    913      *                  <a href="package-summary.html#Statelessness">stateless</a>
    914      *                  predicate to apply to elements of this stream
    915      * @return {@code true} if either no elements of the stream match the
    916      * provided predicate or the stream is empty, otherwise {@code false}
    917      */
    918     boolean noneMatch(Predicate<? super T> predicate);
    919 
    920     /**
    921      * Returns an {@link Optional} describing the first element of this stream,
    922      * or an empty {@code Optional} if the stream is empty.  If the stream has
    923      * no encounter order, then any element may be returned.
    924      *
    925      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
    926      * terminal operation</a>.
    927      *
    928      * @return an {@code Optional} describing the first element of this stream,
    929      * or an empty {@code Optional} if the stream is empty
    930      * @throws NullPointerException if the element selected is null
    931      */
    932     Optional<T> findFirst();
    933 
    934     /**
    935      * Returns an {@link Optional} describing some element of the stream, or an
    936      * empty {@code Optional} if the stream is empty.
    937      *
    938      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
    939      * terminal operation</a>.
    940      *
    941      * <p>The behavior of this operation is explicitly nondeterministic; it is
    942      * free to select any element in the stream.  This is to allow for maximal
    943      * performance in parallel operations; the cost is that multiple invocations
    944      * on the same source may not return the same result.  (If a stable result
    945      * is desired, use {@link #findFirst()} instead.)
    946      *
    947      * @return an {@code Optional} describing some element of this stream, or an
    948      * empty {@code Optional} if the stream is empty
    949      * @throws NullPointerException if the element selected is null
    950      * @see #findFirst()
    951      */
    952     Optional<T> findAny();
    953 
    954     // Static factories
    955 
    956     /**
    957      * Returns a builder for a {@code Stream}.
    958      *
    959      * @param <T> type of elements
    960      * @return a stream builder
    961      */
    962     public static<T> Builder<T> builder() {
    963         return new Streams.StreamBuilderImpl<>();
    964     }
    965 
    966     /**
    967      * Returns an empty sequential {@code Stream}.
    968      *
    969      * @param <T> the type of stream elements
    970      * @return an empty sequential stream
    971      */
    972     public static<T> Stream<T> empty() {
    973         return StreamSupport.stream(Spliterators.<T>emptySpliterator(), false);
    974     }
    975 
    976     /**
    977      * Returns a sequential {@code Stream} containing a single element.
    978      *
    979      * @param t the single element
    980      * @param <T> the type of stream elements
    981      * @return a singleton sequential stream
    982      */
    983     public static<T> Stream<T> of(T t) {
    984         return StreamSupport.stream(new Streams.StreamBuilderImpl<>(t), false);
    985     }
    986 
    987     /**
    988      * Returns a sequential ordered stream whose elements are the specified values.
    989      *
    990      * @param <T> the type of stream elements
    991      * @param values the elements of the new stream
    992      * @return the new stream
    993      */
    994     @SafeVarargs
    995     @SuppressWarnings("varargs") // Creating a stream from an array is safe
    996     public static<T> Stream<T> of(T... values) {
    997         return Arrays.stream(values);
    998     }
    999 
   1000     /**
   1001      * Returns an infinite sequential ordered {@code Stream} produced by iterative
   1002      * application of a function {@code f} to an initial element {@code seed},
   1003      * producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},
   1004      * {@code f(f(seed))}, etc.
   1005      *
   1006      * <p>The first element (position {@code 0}) in the {@code Stream} will be
   1007      * the provided {@code seed}.  For {@code n > 0}, the element at position
   1008      * {@code n}, will be the result of applying the function {@code f} to the
   1009      * element at position {@code n - 1}.
   1010      *
   1011      * @param <T> the type of stream elements
   1012      * @param seed the initial element
   1013      * @param f a function to be applied to to the previous element to produce
   1014      *          a new element
   1015      * @return a new sequential {@code Stream}
   1016      */
   1017     public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f) {
   1018         Objects.requireNonNull(f);
   1019         final Iterator<T> iterator = new Iterator<T>() {
   1020             @SuppressWarnings("unchecked")
   1021             T t = (T) Streams.NONE;
   1022 
   1023             @Override
   1024             public boolean hasNext() {
   1025                 return true;
   1026             }
   1027 
   1028             @Override
   1029             public T next() {
   1030                 return t = (t == Streams.NONE) ? seed : f.apply(t);
   1031             }
   1032         };
   1033         return StreamSupport.stream(Spliterators.spliteratorUnknownSize(
   1034                 iterator,
   1035                 Spliterator.ORDERED | Spliterator.IMMUTABLE), false);
   1036     }
   1037 
   1038     /**
   1039      * Returns an infinite sequential unordered stream where each element is
   1040      * generated by the provided {@code Supplier}.  This is suitable for
   1041      * generating constant streams, streams of random elements, etc.
   1042      *
   1043      * @param <T> the type of stream elements
   1044      * @param s the {@code Supplier} of generated elements
   1045      * @return a new infinite sequential unordered {@code Stream}
   1046      */
   1047     public static<T> Stream<T> generate(Supplier<T> s) {
   1048         Objects.requireNonNull(s);
   1049         return StreamSupport.stream(
   1050                 new StreamSpliterators.InfiniteSupplyingSpliterator.OfRef<>(Long.MAX_VALUE, s), false);
   1051     }
   1052 
   1053     /**
   1054      * Creates a lazily concatenated stream whose elements are all the
   1055      * elements of the first stream followed by all the elements of the
   1056      * second stream.  The resulting stream is ordered if both
   1057      * of the input streams are ordered, and parallel if either of the input
   1058      * streams is parallel.  When the resulting stream is closed, the close
   1059      * handlers for both input streams are invoked.
   1060      *
   1061      * @implNote
   1062      * Use caution when constructing streams from repeated concatenation.
   1063      * Accessing an element of a deeply concatenated stream can result in deep
   1064      * call chains, or even {@code StackOverflowException}.
   1065      *
   1066      * @param <T> The type of stream elements
   1067      * @param a the first stream
   1068      * @param b the second stream
   1069      * @return the concatenation of the two input streams
   1070      */
   1071     public static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b) {
   1072         Objects.requireNonNull(a);
   1073         Objects.requireNonNull(b);
   1074 
   1075         @SuppressWarnings("unchecked")
   1076         Spliterator<T> split = new Streams.ConcatSpliterator.OfRef<>(
   1077                 (Spliterator<T>) a.spliterator(), (Spliterator<T>) b.spliterator());
   1078         Stream<T> stream = StreamSupport.stream(split, a.isParallel() || b.isParallel());
   1079         return stream.onClose(Streams.composedClose(a, b));
   1080     }
   1081 
   1082     /**
   1083      * A mutable builder for a {@code Stream}.  This allows the creation of a
   1084      * {@code Stream} by generating elements individually and adding them to the
   1085      * {@code Builder} (without the copying overhead that comes from using
   1086      * an {@code ArrayList} as a temporary buffer.)
   1087      *
   1088      * <p>A stream builder has a lifecycle, which starts in a building
   1089      * phase, during which elements can be added, and then transitions to a built
   1090      * phase, after which elements may not be added.  The built phase begins
   1091      * when the {@link #build()} method is called, which creates an ordered
   1092      * {@code Stream} whose elements are the elements that were added to the stream
   1093      * builder, in the order they were added.
   1094      *
   1095      * @param <T> the type of stream elements
   1096      * @see Stream#builder()
   1097      * @since 1.8
   1098      */
   1099     public interface Builder<T> extends Consumer<T> {
   1100 
   1101         /**
   1102          * Adds an element to the stream being built.
   1103          *
   1104          * @throws IllegalStateException if the builder has already transitioned to
   1105          * the built state
   1106          */
   1107         @Override
   1108         void accept(T t);
   1109 
   1110         /**
   1111          * Adds an element to the stream being built.
   1112          *
   1113          * @implSpec
   1114          * The default implementation behaves as if:
   1115          * <pre>{@code
   1116          *     accept(t)
   1117          *     return this;
   1118          * }</pre>
   1119          *
   1120          * @param t the element to add
   1121          * @return {@code this} builder
   1122          * @throws IllegalStateException if the builder has already transitioned to
   1123          * the built state
   1124          */
   1125         default Builder<T> add(T t) {
   1126             accept(t);
   1127             return this;
   1128         }
   1129 
   1130         /**
   1131          * Builds the stream, transitioning this builder to the built state.
   1132          * An {@code IllegalStateException} is thrown if there are further attempts
   1133          * to operate on the builder after it has entered the built state.
   1134          *
   1135          * @return the built stream
   1136          * @throws IllegalStateException if the builder has already transitioned to
   1137          * the built state
   1138          */
   1139         Stream<T> build();
   1140 
   1141     }
   1142 }
   1143