1 # DOM 2 3 Document Object Model(DOM) is an in-memory representation of JSON for query and manipulation. The basic usage of DOM is described in [Tutorial](doc/tutorial.md). This section will describe some details and more advanced usages. 4 5 [TOC] 6 7 # Template {#Template} 8 9 In the tutorial, `Value` and `Document` was used. Similarly to `std::string`, these are actually `typedef` of template classes: 10 11 ~~~~~~~~~~cpp 12 namespace rapidjson { 13 14 template <typename Encoding, typename Allocator = MemoryPoolAllocator<> > 15 class GenericValue { 16 // ... 17 }; 18 19 template <typename Encoding, typename Allocator = MemoryPoolAllocator<> > 20 class GenericDocument : public GenericValue<Encoding, Allocator> { 21 // ... 22 }; 23 24 typedef GenericValue<UTF8<> > Value; 25 typedef GenericDocument<UTF8<> > Document; 26 27 } // namespace rapidjson 28 ~~~~~~~~~~ 29 30 User can customize these template parameters. 31 32 ## Encoding {#Encoding} 33 34 The `Encoding` parameter specifies the encoding of JSON String value in memory. Possible options are `UTF8`, `UTF16`, `UTF32`. Note that, these 3 types are also template class. `UTF8<>` is `UTF8<char>`, which means using char to store the characters. You may refer to [Encoding](doc/encoding.md) for details. 35 36 Suppose a Windows application would query localization strings stored in JSON files. Unicode-enabled functions in Windows use UTF-16 (wide character) encoding. No matter what encoding was used in JSON files, we can store the strings in UTF-16 in memory. 37 38 ~~~~~~~~~~cpp 39 using namespace rapidjson; 40 41 typedef GenericDocument<UTF16<> > WDocument; 42 typedef GenericValue<UTF16<> > WValue; 43 44 FILE* fp = fopen("localization.json", "rb"); // non-Windows use "r" 45 46 char readBuffer[256]; 47 FileReadStream bis(fp, readBuffer, sizeof(readBuffer)); 48 49 AutoUTFInputStream<unsigned, FileReadStream> eis(bis); // wraps bis into eis 50 51 WDocument d; 52 d.ParseStream<0, AutoUTF<unsigned> >(eis); 53 54 const WValue locale(L"ja"); // Japanese 55 56 MessageBoxW(hWnd, d[locale].GetString(), L"Test", MB_OK); 57 ~~~~~~~~~~ 58 59 ## Allocator {#Allocator} 60 61 The `Allocator` defines which allocator class is used when allocating/deallocating memory for `Document`/`Value`. `Document` owns, or references to an `Allocator` instance. On the other hand, `Value` does not do so, in order to reduce memory consumption. 62 63 The default allocator used in `GenericDocument` is `MemoryPoolAllocator`. This allocator actually allocate memory sequentially, and cannot deallocate one by one. This is very suitable when parsing a JSON into a DOM tree. 64 65 Another allocator is `CrtAllocator`, of which CRT is short for C RunTime library. This allocator simply calls the standard `malloc()`/`realloc()`/`free()`. When there is a lot of add and remove operations, this allocator may be preferred. But this allocator is far less efficient than `MemoryPoolAllocator`. 66 67 # Parsing {#Parsing} 68 69 `Document` provides several functions for parsing. In below, (1) is the fundamental function, while the others are helpers which call (1). 70 71 ~~~~~~~~~~cpp 72 using namespace rapidjson; 73 74 // (1) Fundamental 75 template <unsigned parseFlags, typename SourceEncoding, typename InputStream> 76 GenericDocument& GenericDocument::ParseStream(InputStream& is); 77 78 // (2) Using the same Encoding for stream 79 template <unsigned parseFlags, typename InputStream> 80 GenericDocument& GenericDocument::ParseStream(InputStream& is); 81 82 // (3) Using default parse flags 83 template <typename InputStream> 84 GenericDocument& GenericDocument::ParseStream(InputStream& is); 85 86 // (4) In situ parsing 87 template <unsigned parseFlags> 88 GenericDocument& GenericDocument::ParseInsitu(Ch* str); 89 90 // (5) In situ parsing, using default parse flags 91 GenericDocument& GenericDocument::ParseInsitu(Ch* str); 92 93 // (6) Normal parsing of a string 94 template <unsigned parseFlags, typename SourceEncoding> 95 GenericDocument& GenericDocument::Parse(const Ch* str); 96 97 // (7) Normal parsing of a string, using same Encoding of Document 98 template <unsigned parseFlags> 99 GenericDocument& GenericDocument::Parse(const Ch* str); 100 101 // (8) Normal parsing of a string, using default parse flags 102 GenericDocument& GenericDocument::Parse(const Ch* str); 103 ~~~~~~~~~~ 104 105 The examples of [tutorial](doc/tutorial.md) uses (8) for normal parsing of string. The examples of [stream](doc/stream.md) uses the first three. *In situ* parsing will be described soon. 106 107 The `parseFlags` are combination of the following bit-flags: 108 109 Parse flags | Meaning 110 ------------------------------|----------------------------------- 111 `kParseNoFlags` | No flag is set. 112 `kParseDefaultFlags` | Default parse flags. It is equal to macro `RAPIDJSON_PARSE_DEFAULT_FLAGS`, which is defined as `kParseNoFlags`. 113 `kParseInsituFlag` | In-situ(destructive) parsing. 114 `kParseValidateEncodingFlag` | Validate encoding of JSON strings. 115 `kParseIterativeFlag` | Iterative(constant complexity in terms of function call stack size) parsing. 116 `kParseStopWhenDoneFlag` | After parsing a complete JSON root from stream, stop further processing the rest of stream. When this flag is used, parser will not generate `kParseErrorDocumentRootNotSingular` error. Using this flag for parsing multiple JSONs in the same stream. 117 `kParseFullPrecisionFlag` | Parse number in full precision (slower). If this flag is not set, the normal precision (faster) is used. Normal precision has maximum 3 [ULP](http://en.wikipedia.org/wiki/Unit_in_the_last_place) error. 118 119 By using a non-type template parameter, instead of a function parameter, C++ compiler can generate code which is optimized for specified combinations, improving speed, and reducing code size (if only using a single specialization). The downside is the flags needed to be determined in compile-time. 120 121 The `SourceEncoding` parameter defines what encoding is in the stream. This can be differed to the `Encoding` of the `Document`. See [Transcoding and Validation](#TranscodingAndValidation) section for details. 122 123 And the `InputStream` is type of input stream. 124 125 ## Parse Error {#ParseError} 126 127 When the parse processing succeeded, the `Document` contains the parse results. When there is an error, the original DOM is *unchanged*. And the error state of parsing can be obtained by `bool HasParseError()`, `ParseErrorCode GetParseError()` and `size_t GetParseOffset()`. 128 129 Parse Error Code | Description 130 --------------------------------------------|--------------------------------------------------- 131 `kParseErrorNone` | No error. 132 `kParseErrorDocumentEmpty` | The document is empty. 133 `kParseErrorDocumentRootNotSingular` | The document root must not follow by other values. 134 `kParseErrorValueInvalid` | Invalid value. 135 `kParseErrorObjectMissName` | Missing a name for object member. 136 `kParseErrorObjectMissColon` | Missing a colon after a name of object member. 137 `kParseErrorObjectMissCommaOrCurlyBracket` | Missing a comma or `}` after an object member. 138 `kParseErrorArrayMissCommaOrSquareBracket` | Missing a comma or `]` after an array element. 139 `kParseErrorStringUnicodeEscapeInvalidHex` | Incorrect hex digit after `\\u` escape in string. 140 `kParseErrorStringUnicodeSurrogateInvalid` | The surrogate pair in string is invalid. 141 `kParseErrorStringEscapeInvalid` | Invalid escape character in string. 142 `kParseErrorStringMissQuotationMark` | Missing a closing quotation mark in string. 143 `kParseErrorStringInvalidEncoding` | Invalid encoding in string. 144 `kParseErrorNumberTooBig` | Number too big to be stored in `double`. 145 `kParseErrorNumberMissFraction` | Miss fraction part in number. 146 `kParseErrorNumberMissExponent` | Miss exponent in number. 147 148 The offset of error is defined as the character number from beginning of stream. Currently RapidJSON does not keep track of line number. 149 150 To get an error message, RapidJSON provided a English messages in `rapidjson/error/en.h`. User can customize it for other locales, or use a custom localization system. 151 152 Here shows an example of parse error handling. 153 154 ~~~~~~~~~~cpp 155 #include "rapidjson/document.h" 156 #include "rapidjson/error/en.h" 157 158 // ... 159 Document d; 160 if (d.Parse(json).HasParseError()) { 161 fprintf(stderr, "\nError(offset %u): %s\n", 162 (unsigned)d.GetErrorOffset(), 163 GetParseError_En(d.GetParseErrorCode())); 164 // ... 165 } 166 ~~~~~~~~~~ 167 168 ## In Situ Parsing {#InSituParsing} 169 170 From [Wikipedia](http://en.wikipedia.org/wiki/In_situ): 171 172 > *In situ* ... is a Latin phrase that translates literally to "on site" or "in position". It means "locally", "on site", "on the premises" or "in place" to describe an event where it takes place, and is used in many different contexts. 173 > ... 174 > (In computer science) An algorithm is said to be an in situ algorithm, or in-place algorithm, if the extra amount of memory required to execute the algorithm is O(1), that is, does not exceed a constant no matter how large the input. For example, heapsort is an in situ sorting algorithm. 175 176 In normal parsing process, a large overhead is to decode JSON strings and copy them to other buffers. *In situ* parsing decodes those JSON string at the place where it is stored. It is possible in JSON because the length of decoded string is always shorter than or equal to the one in JSON. In this context, decoding a JSON string means to process the escapes, such as `"\n"`, `"\u1234"`, etc., and add a null terminator (`'\0'`)at the end of string. 177 178 The following diagrams compare normal and *in situ* parsing. The JSON string values contain pointers to the decoded string. 179 180  181 182 In normal parsing, the decoded string are copied to freshly allocated buffers. `"\\n"` (2 characters) is decoded as `"\n"` (1 character). `"\\u0073"` (6 characters) is decoded as `"s"` (1 character). 183 184  185 186 *In situ* parsing just modified the original JSON. Updated characters are highlighted in the diagram. If the JSON string does not contain escape character, such as `"msg"`, the parsing process merely replace the closing double quotation mark with a null character. 187 188 Since *in situ* parsing modify the input, the parsing API needs `char*` instead of `const char*`. 189 190 ~~~~~~~~~~cpp 191 // Read whole file into a buffer 192 FILE* fp = fopen("test.json", "r"); 193 fseek(fp, 0, SEEK_END); 194 size_t filesize = (size_t)ftell(fp); 195 fseek(fp, 0, SEEK_SET); 196 char* buffer = (char*)malloc(filesize + 1); 197 size_t readLength = fread(buffer, 1, filesize, fp); 198 buffer[readLength] = '\0'; 199 fclose(fp); 200 201 // In situ parsing the buffer into d, buffer will also be modified 202 Document d; 203 d.ParseInsitu(buffer); 204 205 // Query/manipulate the DOM here... 206 207 free(buffer); 208 // Note: At this point, d may have dangling pointers pointed to the deallocated buffer. 209 ~~~~~~~~~~ 210 211 The JSON strings are marked as const-string. But they may not be really "constant". The life cycle of it depends on the JSON buffer. 212 213 In situ parsing minimizes allocation overheads and memory copying. Generally this improves cache coherence, which is an important factor of performance in modern computer. 214 215 There are some limitations of *in situ* parsing: 216 217 1. The whole JSON is in memory. 218 2. The source encoding in stream and target encoding in document must be the same. 219 3. The buffer need to be retained until the document is no longer used. 220 4. If the DOM need to be used for long period after parsing, and there are few JSON strings in the DOM, retaining the buffer may be a memory waste. 221 222 *In situ* parsing is mostly suitable for short-term JSON that only need to be processed once, and then be released from memory. In practice, these situation is very common, for example, deserializing JSON to C++ objects, processing web requests represented in JSON, etc. 223 224 ## Transcoding and Validation {#TranscodingAndValidation} 225 226 RapidJSON supports conversion between Unicode formats (officially termed UCS Transformation Format) internally. During DOM parsing, the source encoding of the stream can be different from the encoding of the DOM. For example, the source stream contains a UTF-8 JSON, while the DOM is using UTF-16 encoding. There is an example code in [EncodedInputStream](doc/stream.md). 227 228 When writing a JSON from DOM to output stream, transcoding can also be used. An example is in [EncodedOutputStream](doc/stream.md). 229 230 During transcoding, the source string is decoded to into Unicode code points, and then the code points are encoded in the target format. During decoding, it will validate the byte sequence in the source string. If it is not a valid sequence, the parser will be stopped with `kParseErrorStringInvalidEncoding` error. 231 232 When the source encoding of stream is the same as encoding of DOM, by default, the parser will *not* validate the sequence. User may use `kParseValidateEncodingFlag` to force validation. 233 234 # Techniques {#Techniques} 235 236 Some techniques about using DOM API is discussed here. 237 238 ## DOM as SAX Event Publisher 239 240 In RapidJSON, stringifying a DOM with `Writer` may be look a little bit weired. 241 242 ~~~~~~~~~~cpp 243 // ... 244 Writer<StringBuffer> writer(buffer); 245 d.Accept(writer); 246 ~~~~~~~~~~ 247 248 Actually, `Value::Accept()` is responsible for publishing SAX events about the value to the handler. With this design, `Value` and `Writer` are decoupled. `Value` can generate SAX events, and `Writer` can handle those events. 249 250 User may create custom handlers for transforming the DOM into other formats. For example, a handler which converts the DOM into XML. 251 252 For more about SAX events and handler, please refer to [SAX](doc/sax.md). 253 254 ## User Buffer {#UserBuffer} 255 256 Some applications may try to avoid memory allocations whenever possible. 257 258 `MemoryPoolAllocator` can support this by letting user to provide a buffer. The buffer can be on the program stack, or a "scratch buffer" which is statically allocated (a static/global array) for storing temporary data. 259 260 `MemoryPoolAllocator` will use the user buffer to satisfy allocations. When the user buffer is used up, it will allocate a chunk of memory from the base allocator (by default the `CrtAllocator`). 261 262 Here is an example of using stack memory. The first allocator is for storing values, while the second allocator is for storing temporary data during parsing. 263 264 ~~~~~~~~~~cpp 265 typedef GenericDocument<UTF8<>, MemoryPoolAllocator<>, MemoryPoolAllocator<>> DocumentType; 266 char valueBuffer[4096]; 267 char parseBuffer[1024]; 268 MemoryPoolAllocator<> valueAllocator(valueBuffer, sizeof(valueBuffer)); 269 MemoryPoolAllocator<> parseAllocator(parseBuffer, sizeof(parseBuffer)); 270 DocumentType d(&valueAllocator, sizeof(parseBuffer), &parseAllocator); 271 d.Parse(json); 272 ~~~~~~~~~~ 273 274 If the total size of allocation is less than 4096+1024 bytes during parsing, this code does not invoke any heap allocation (via `new` or `malloc()`) at all. 275 276 User can query the current memory consumption in bytes via `MemoryPoolAllocator::Size()`. And then user can determine a suitable size of user buffer. 277