Home | History | Annotate | Download | only in AST
      1 //===------ CXXInheritance.h - C++ Inheritance ------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides routines that help analyzing C++ inheritance hierarchies.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CLANG_AST_CXXINHERITANCE_H
     15 #define LLVM_CLANG_AST_CXXINHERITANCE_H
     16 
     17 #include "clang/AST/DeclBase.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/Type.h"
     20 #include "clang/AST/TypeOrdering.h"
     21 #include "llvm/ADT/MapVector.h"
     22 #include "llvm/ADT/SmallSet.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include <cassert>
     25 #include <list>
     26 
     27 namespace clang {
     28 
     29 class CXXBaseSpecifier;
     30 class CXXMethodDecl;
     31 class CXXRecordDecl;
     32 class NamedDecl;
     33 
     34 /// \brief Represents an element in a path from a derived class to a
     35 /// base class.
     36 ///
     37 /// Each step in the path references the link from a
     38 /// derived class to one of its direct base classes, along with a
     39 /// base "number" that identifies which base subobject of the
     40 /// original derived class we are referencing.
     41 struct CXXBasePathElement {
     42   /// \brief The base specifier that states the link from a derived
     43   /// class to a base class, which will be followed by this base
     44   /// path element.
     45   const CXXBaseSpecifier *Base;
     46 
     47   /// \brief The record decl of the class that the base is a base of.
     48   const CXXRecordDecl *Class;
     49 
     50   /// \brief Identifies which base class subobject (of type
     51   /// \c Base->getType()) this base path element refers to.
     52   ///
     53   /// This value is only valid if \c !Base->isVirtual(), because there
     54   /// is no base numbering for the zero or one virtual bases of a
     55   /// given type.
     56   int SubobjectNumber;
     57 };
     58 
     59 /// \brief Represents a path from a specific derived class
     60 /// (which is not represented as part of the path) to a particular
     61 /// (direct or indirect) base class subobject.
     62 ///
     63 /// Individual elements in the path are described by the \c CXXBasePathElement
     64 /// structure, which captures both the link from a derived class to one of its
     65 /// direct bases and identification describing which base class
     66 /// subobject is being used.
     67 class CXXBasePath : public SmallVector<CXXBasePathElement, 4> {
     68 public:
     69   CXXBasePath() : Access(AS_public) {}
     70 
     71   /// \brief The access along this inheritance path.  This is only
     72   /// calculated when recording paths.  AS_none is a special value
     73   /// used to indicate a path which permits no legal access.
     74   AccessSpecifier Access;
     75 
     76   /// \brief The set of declarations found inside this base class
     77   /// subobject.
     78   DeclContext::lookup_result Decls;
     79 
     80   void clear() {
     81     SmallVectorImpl<CXXBasePathElement>::clear();
     82     Access = AS_public;
     83   }
     84 };
     85 
     86 /// BasePaths - Represents the set of paths from a derived class to
     87 /// one of its (direct or indirect) bases. For example, given the
     88 /// following class hierarchy:
     89 ///
     90 /// @code
     91 /// class A { };
     92 /// class B : public A { };
     93 /// class C : public A { };
     94 /// class D : public B, public C{ };
     95 /// @endcode
     96 ///
     97 /// There are two potential BasePaths to represent paths from D to a
     98 /// base subobject of type A. One path is (D,0) -> (B,0) -> (A,0)
     99 /// and another is (D,0)->(C,0)->(A,1). These two paths actually
    100 /// refer to two different base class subobjects of the same type,
    101 /// so the BasePaths object refers to an ambiguous path. On the
    102 /// other hand, consider the following class hierarchy:
    103 ///
    104 /// @code
    105 /// class A { };
    106 /// class B : public virtual A { };
    107 /// class C : public virtual A { };
    108 /// class D : public B, public C{ };
    109 /// @endcode
    110 ///
    111 /// Here, there are two potential BasePaths again, (D, 0) -> (B, 0)
    112 /// -> (A,v) and (D, 0) -> (C, 0) -> (A, v), but since both of them
    113 /// refer to the same base class subobject of type A (the virtual
    114 /// one), there is no ambiguity.
    115 class CXXBasePaths {
    116   /// \brief The type from which this search originated.
    117   CXXRecordDecl *Origin;
    118 
    119   /// Paths - The actual set of paths that can be taken from the
    120   /// derived class to the same base class.
    121   std::list<CXXBasePath> Paths;
    122 
    123   /// ClassSubobjects - Records the class subobjects for each class
    124   /// type that we've seen. The first element in the pair says
    125   /// whether we found a path to a virtual base for that class type,
    126   /// while the element contains the number of non-virtual base
    127   /// class subobjects for that class type. The key of the map is
    128   /// the cv-unqualified canonical type of the base class subobject.
    129   llvm::SmallDenseMap<QualType, std::pair<bool, unsigned>, 8> ClassSubobjects;
    130 
    131   /// FindAmbiguities - Whether Sema::IsDerivedFrom should try find
    132   /// ambiguous paths while it is looking for a path from a derived
    133   /// type to a base type.
    134   bool FindAmbiguities;
    135 
    136   /// RecordPaths - Whether Sema::IsDerivedFrom should record paths
    137   /// while it is determining whether there are paths from a derived
    138   /// type to a base type.
    139   bool RecordPaths;
    140 
    141   /// DetectVirtual - Whether Sema::IsDerivedFrom should abort the search
    142   /// if it finds a path that goes across a virtual base. The virtual class
    143   /// is also recorded.
    144   bool DetectVirtual;
    145 
    146   /// ScratchPath - A BasePath that is used by Sema::lookupInBases
    147   /// to help build the set of paths.
    148   CXXBasePath ScratchPath;
    149 
    150   /// DetectedVirtual - The base class that is virtual.
    151   const RecordType *DetectedVirtual;
    152 
    153   /// \brief Array of the declarations that have been found. This
    154   /// array is constructed only if needed, e.g., to iterate over the
    155   /// results within LookupResult.
    156   std::unique_ptr<NamedDecl *[]> DeclsFound;
    157   unsigned NumDeclsFound;
    158 
    159   friend class CXXRecordDecl;
    160 
    161   void ComputeDeclsFound();
    162 
    163   bool lookupInBases(ASTContext &Context, const CXXRecordDecl *Record,
    164                      CXXRecordDecl::BaseMatchesCallback BaseMatches);
    165 
    166 public:
    167   typedef std::list<CXXBasePath>::iterator paths_iterator;
    168   typedef std::list<CXXBasePath>::const_iterator const_paths_iterator;
    169   typedef NamedDecl **decl_iterator;
    170 
    171   /// BasePaths - Construct a new BasePaths structure to record the
    172   /// paths for a derived-to-base search.
    173   explicit CXXBasePaths(bool FindAmbiguities = true, bool RecordPaths = true,
    174                         bool DetectVirtual = true)
    175       : Origin(), FindAmbiguities(FindAmbiguities), RecordPaths(RecordPaths),
    176         DetectVirtual(DetectVirtual), DetectedVirtual(nullptr),
    177         NumDeclsFound(0) {}
    178 
    179   paths_iterator begin() { return Paths.begin(); }
    180   paths_iterator end()   { return Paths.end(); }
    181   const_paths_iterator begin() const { return Paths.begin(); }
    182   const_paths_iterator end()   const { return Paths.end(); }
    183 
    184   CXXBasePath&       front()       { return Paths.front(); }
    185   const CXXBasePath& front() const { return Paths.front(); }
    186 
    187   typedef llvm::iterator_range<decl_iterator> decl_range;
    188   decl_range found_decls();
    189 
    190   /// \brief Determine whether the path from the most-derived type to the
    191   /// given base type is ambiguous (i.e., it refers to multiple subobjects of
    192   /// the same base type).
    193   bool isAmbiguous(CanQualType BaseType);
    194 
    195   /// \brief Whether we are finding multiple paths to detect ambiguities.
    196   bool isFindingAmbiguities() const { return FindAmbiguities; }
    197 
    198   /// \brief Whether we are recording paths.
    199   bool isRecordingPaths() const { return RecordPaths; }
    200 
    201   /// \brief Specify whether we should be recording paths or not.
    202   void setRecordingPaths(bool RP) { RecordPaths = RP; }
    203 
    204   /// \brief Whether we are detecting virtual bases.
    205   bool isDetectingVirtual() const { return DetectVirtual; }
    206 
    207   /// \brief The virtual base discovered on the path (if we are merely
    208   /// detecting virtuals).
    209   const RecordType* getDetectedVirtual() const {
    210     return DetectedVirtual;
    211   }
    212 
    213   /// \brief Retrieve the type from which this base-paths search
    214   /// began
    215   CXXRecordDecl *getOrigin() const { return Origin; }
    216   void setOrigin(CXXRecordDecl *Rec) { Origin = Rec; }
    217 
    218   /// \brief Clear the base-paths results.
    219   void clear();
    220 
    221   /// \brief Swap this data structure's contents with another CXXBasePaths
    222   /// object.
    223   void swap(CXXBasePaths &Other);
    224 };
    225 
    226 /// \brief Uniquely identifies a virtual method within a class
    227 /// hierarchy by the method itself and a class subobject number.
    228 struct UniqueVirtualMethod {
    229   UniqueVirtualMethod()
    230     : Method(nullptr), Subobject(0), InVirtualSubobject(nullptr) { }
    231 
    232   UniqueVirtualMethod(CXXMethodDecl *Method, unsigned Subobject,
    233                       const CXXRecordDecl *InVirtualSubobject)
    234     : Method(Method), Subobject(Subobject),
    235       InVirtualSubobject(InVirtualSubobject) { }
    236 
    237   /// \brief The overriding virtual method.
    238   CXXMethodDecl *Method;
    239 
    240   /// \brief The subobject in which the overriding virtual method
    241   /// resides.
    242   unsigned Subobject;
    243 
    244   /// \brief The virtual base class subobject of which this overridden
    245   /// virtual method is a part. Note that this records the closest
    246   /// derived virtual base class subobject.
    247   const CXXRecordDecl *InVirtualSubobject;
    248 
    249   friend bool operator==(const UniqueVirtualMethod &X,
    250                          const UniqueVirtualMethod &Y) {
    251     return X.Method == Y.Method && X.Subobject == Y.Subobject &&
    252       X.InVirtualSubobject == Y.InVirtualSubobject;
    253   }
    254 
    255   friend bool operator!=(const UniqueVirtualMethod &X,
    256                          const UniqueVirtualMethod &Y) {
    257     return !(X == Y);
    258   }
    259 };
    260 
    261 /// \brief The set of methods that override a given virtual method in
    262 /// each subobject where it occurs.
    263 ///
    264 /// The first part of the pair is the subobject in which the
    265 /// overridden virtual function occurs, while the second part of the
    266 /// pair is the virtual method that overrides it (including the
    267 /// subobject in which that virtual function occurs).
    268 class OverridingMethods {
    269   typedef SmallVector<UniqueVirtualMethod, 4> ValuesT;
    270   typedef llvm::MapVector<unsigned, ValuesT> MapType;
    271   MapType Overrides;
    272 
    273 public:
    274   // Iterate over the set of subobjects that have overriding methods.
    275   typedef MapType::iterator iterator;
    276   typedef MapType::const_iterator const_iterator;
    277   iterator begin() { return Overrides.begin(); }
    278   const_iterator begin() const { return Overrides.begin(); }
    279   iterator end() { return Overrides.end(); }
    280   const_iterator end() const { return Overrides.end(); }
    281   unsigned size() const { return Overrides.size(); }
    282 
    283   // Iterate over the set of overriding virtual methods in a given
    284   // subobject.
    285   typedef SmallVectorImpl<UniqueVirtualMethod>::iterator
    286     overriding_iterator;
    287   typedef SmallVectorImpl<UniqueVirtualMethod>::const_iterator
    288     overriding_const_iterator;
    289 
    290   // Add a new overriding method for a particular subobject.
    291   void add(unsigned OverriddenSubobject, UniqueVirtualMethod Overriding);
    292 
    293   // Add all of the overriding methods from "other" into overrides for
    294   // this method. Used when merging the overrides from multiple base
    295   // class subobjects.
    296   void add(const OverridingMethods &Other);
    297 
    298   // Replace all overriding virtual methods in all subobjects with the
    299   // given virtual method.
    300   void replaceAll(UniqueVirtualMethod Overriding);
    301 };
    302 
    303 /// \brief A mapping from each virtual member function to its set of
    304 /// final overriders.
    305 ///
    306 /// Within a class hierarchy for a given derived class, each virtual
    307 /// member function in that hierarchy has one or more "final
    308 /// overriders" (C++ [class.virtual]p2). A final overrider for a
    309 /// virtual function "f" is the virtual function that will actually be
    310 /// invoked when dispatching a call to "f" through the
    311 /// vtable. Well-formed classes have a single final overrider for each
    312 /// virtual function; in abstract classes, the final overrider for at
    313 /// least one virtual function is a pure virtual function. Due to
    314 /// multiple, virtual inheritance, it is possible for a class to have
    315 /// more than one final overrider. Athough this is an error (per C++
    316 /// [class.virtual]p2), it is not considered an error here: the final
    317 /// overrider map can represent multiple final overriders for a
    318 /// method, and it is up to the client to determine whether they are
    319 /// problem. For example, the following class \c D has two final
    320 /// overriders for the virtual function \c A::f(), one in \c C and one
    321 /// in \c D:
    322 ///
    323 /// \code
    324 ///   struct A { virtual void f(); };
    325 ///   struct B : virtual A { virtual void f(); };
    326 ///   struct C : virtual A { virtual void f(); };
    327 ///   struct D : B, C { };
    328 /// \endcode
    329 ///
    330 /// This data structure contains a mapping from every virtual
    331 /// function *that does not override an existing virtual function* and
    332 /// in every subobject where that virtual function occurs to the set
    333 /// of virtual functions that override it. Thus, the same virtual
    334 /// function \c A::f can actually occur in multiple subobjects of type
    335 /// \c A due to multiple inheritance, and may be overridden by
    336 /// different virtual functions in each, as in the following example:
    337 ///
    338 /// \code
    339 ///   struct A { virtual void f(); };
    340 ///   struct B : A { virtual void f(); };
    341 ///   struct C : A { virtual void f(); };
    342 ///   struct D : B, C { };
    343 /// \endcode
    344 ///
    345 /// Unlike in the previous example, where the virtual functions \c
    346 /// B::f and \c C::f both overrode \c A::f in the same subobject of
    347 /// type \c A, in this example the two virtual functions both override
    348 /// \c A::f but in *different* subobjects of type A. This is
    349 /// represented by numbering the subobjects in which the overridden
    350 /// and the overriding virtual member functions are located. Subobject
    351 /// 0 represents the virtual base class subobject of that type, while
    352 /// subobject numbers greater than 0 refer to non-virtual base class
    353 /// subobjects of that type.
    354 class CXXFinalOverriderMap
    355   : public llvm::MapVector<const CXXMethodDecl *, OverridingMethods> { };
    356 
    357 /// \brief A set of all the primary bases for a class.
    358 class CXXIndirectPrimaryBaseSet
    359   : public llvm::SmallSet<const CXXRecordDecl*, 32> { };
    360 
    361 } // end namespace clang
    362 
    363 #endif
    364