Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief
     12 /// This file declares a class to represent arbitrary precision floating point
     13 /// values and provide a variety of arithmetic operations on them.
     14 ///
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_ADT_APFLOAT_H
     18 #define LLVM_ADT_APFLOAT_H
     19 
     20 #include "llvm/ADT/APInt.h"
     21 #include "llvm/ADT/ArrayRef.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include <memory>
     24 
     25 #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
     26   do {                                                                         \
     27     if (usesLayout<IEEEFloat>(getSemantics()))                                 \
     28       return U.IEEE.METHOD_CALL;                                               \
     29     if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
     30       return U.Double.METHOD_CALL;                                             \
     31     llvm_unreachable("Unexpected semantics");                                  \
     32   } while (false)
     33 
     34 namespace llvm {
     35 
     36 struct fltSemantics;
     37 class APSInt;
     38 class StringRef;
     39 class APFloat;
     40 class raw_ostream;
     41 
     42 template <typename T> class SmallVectorImpl;
     43 
     44 /// Enum that represents what fraction of the LSB truncated bits of an fp number
     45 /// represent.
     46 ///
     47 /// This essentially combines the roles of guard and sticky bits.
     48 enum lostFraction { // Example of truncated bits:
     49   lfExactlyZero,    // 000000
     50   lfLessThanHalf,   // 0xxxxx  x's not all zero
     51   lfExactlyHalf,    // 100000
     52   lfMoreThanHalf    // 1xxxxx  x's not all zero
     53 };
     54 
     55 /// A self-contained host- and target-independent arbitrary-precision
     56 /// floating-point software implementation.
     57 ///
     58 /// APFloat uses bignum integer arithmetic as provided by static functions in
     59 /// the APInt class.  The library will work with bignum integers whose parts are
     60 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
     61 ///
     62 /// Written for clarity rather than speed, in particular with a view to use in
     63 /// the front-end of a cross compiler so that target arithmetic can be correctly
     64 /// performed on the host.  Performance should nonetheless be reasonable,
     65 /// particularly for its intended use.  It may be useful as a base
     66 /// implementation for a run-time library during development of a faster
     67 /// target-specific one.
     68 ///
     69 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
     70 /// implemented operations.  Currently implemented operations are add, subtract,
     71 /// multiply, divide, fused-multiply-add, conversion-to-float,
     72 /// conversion-to-integer and conversion-from-integer.  New rounding modes
     73 /// (e.g. away from zero) can be added with three or four lines of code.
     74 ///
     75 /// Four formats are built-in: IEEE single precision, double precision,
     76 /// quadruple precision, and x87 80-bit extended double (when operating with
     77 /// full extended precision).  Adding a new format that obeys IEEE semantics
     78 /// only requires adding two lines of code: a declaration and definition of the
     79 /// format.
     80 ///
     81 /// All operations return the status of that operation as an exception bit-mask,
     82 /// so multiple operations can be done consecutively with their results or-ed
     83 /// together.  The returned status can be useful for compiler diagnostics; e.g.,
     84 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
     85 /// and compiler optimizers can determine what exceptions would be raised by
     86 /// folding operations and optimize, or perhaps not optimize, accordingly.
     87 ///
     88 /// At present, underflow tininess is detected after rounding; it should be
     89 /// straight forward to add support for the before-rounding case too.
     90 ///
     91 /// The library reads hexadecimal floating point numbers as per C99, and
     92 /// correctly rounds if necessary according to the specified rounding mode.
     93 /// Syntax is required to have been validated by the caller.  It also converts
     94 /// floating point numbers to hexadecimal text as per the C99 %a and %A
     95 /// conversions.  The output precision (or alternatively the natural minimal
     96 /// precision) can be specified; if the requested precision is less than the
     97 /// natural precision the output is correctly rounded for the specified rounding
     98 /// mode.
     99 ///
    100 /// It also reads decimal floating point numbers and correctly rounds according
    101 /// to the specified rounding mode.
    102 ///
    103 /// Conversion to decimal text is not currently implemented.
    104 ///
    105 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
    106 /// signed exponent, and the significand as an array of integer parts.  After
    107 /// normalization of a number of precision P the exponent is within the range of
    108 /// the format, and if the number is not denormal the P-th bit of the
    109 /// significand is set as an explicit integer bit.  For denormals the most
    110 /// significant bit is shifted right so that the exponent is maintained at the
    111 /// format's minimum, so that the smallest denormal has just the least
    112 /// significant bit of the significand set.  The sign of zeroes and infinities
    113 /// is significant; the exponent and significand of such numbers is not stored,
    114 /// but has a known implicit (deterministic) value: 0 for the significands, 0
    115 /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
    116 /// significand are deterministic, although not really meaningful, and preserved
    117 /// in non-conversion operations.  The exponent is implicitly all 1 bits.
    118 ///
    119 /// APFloat does not provide any exception handling beyond default exception
    120 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
    121 /// by encoding Signaling NaNs with the first bit of its trailing significand as
    122 /// 0.
    123 ///
    124 /// TODO
    125 /// ====
    126 ///
    127 /// Some features that may or may not be worth adding:
    128 ///
    129 /// Binary to decimal conversion (hard).
    130 ///
    131 /// Optional ability to detect underflow tininess before rounding.
    132 ///
    133 /// New formats: x87 in single and double precision mode (IEEE apart from
    134 /// extended exponent range) (hard).
    135 ///
    136 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
    137 ///
    138 
    139 // This is the common type definitions shared by APFloat and its internal
    140 // implementation classes. This struct should not define any non-static data
    141 // members.
    142 struct APFloatBase {
    143   // TODO remove this and use APInt typedef directly.
    144   typedef APInt::WordType integerPart;
    145 
    146   /// A signed type to represent a floating point numbers unbiased exponent.
    147   typedef signed short ExponentType;
    148 
    149   /// \name Floating Point Semantics.
    150   /// @{
    151 
    152   static const fltSemantics &IEEEhalf() LLVM_READNONE;
    153   static const fltSemantics &IEEEsingle() LLVM_READNONE;
    154   static const fltSemantics &IEEEdouble() LLVM_READNONE;
    155   static const fltSemantics &IEEEquad() LLVM_READNONE;
    156   static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
    157   static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
    158 
    159   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
    160   /// anything real.
    161   static const fltSemantics &Bogus() LLVM_READNONE;
    162 
    163   /// @}
    164 
    165   /// IEEE-754R 5.11: Floating Point Comparison Relations.
    166   enum cmpResult {
    167     cmpLessThan,
    168     cmpEqual,
    169     cmpGreaterThan,
    170     cmpUnordered
    171   };
    172 
    173   /// IEEE-754R 4.3: Rounding-direction attributes.
    174   enum roundingMode {
    175     rmNearestTiesToEven,
    176     rmTowardPositive,
    177     rmTowardNegative,
    178     rmTowardZero,
    179     rmNearestTiesToAway
    180   };
    181 
    182   /// IEEE-754R 7: Default exception handling.
    183   ///
    184   /// opUnderflow or opOverflow are always returned or-ed with opInexact.
    185   enum opStatus {
    186     opOK = 0x00,
    187     opInvalidOp = 0x01,
    188     opDivByZero = 0x02,
    189     opOverflow = 0x04,
    190     opUnderflow = 0x08,
    191     opInexact = 0x10
    192   };
    193 
    194   /// Category of internally-represented number.
    195   enum fltCategory {
    196     fcInfinity,
    197     fcNaN,
    198     fcNormal,
    199     fcZero
    200   };
    201 
    202   /// Convenience enum used to construct an uninitialized APFloat.
    203   enum uninitializedTag {
    204     uninitialized
    205   };
    206 
    207   /// Enumeration of \c ilogb error results.
    208   enum IlogbErrorKinds {
    209     IEK_Zero = INT_MIN + 1,
    210     IEK_NaN = INT_MIN,
    211     IEK_Inf = INT_MAX
    212   };
    213 
    214   static unsigned int semanticsPrecision(const fltSemantics &);
    215   static ExponentType semanticsMinExponent(const fltSemantics &);
    216   static ExponentType semanticsMaxExponent(const fltSemantics &);
    217   static unsigned int semanticsSizeInBits(const fltSemantics &);
    218 
    219   /// Returns the size of the floating point number (in bits) in the given
    220   /// semantics.
    221   static unsigned getSizeInBits(const fltSemantics &Sem);
    222 };
    223 
    224 namespace detail {
    225 
    226 class IEEEFloat final : public APFloatBase {
    227 public:
    228   /// \name Constructors
    229   /// @{
    230 
    231   IEEEFloat(const fltSemantics &); // Default construct to 0.0
    232   IEEEFloat(const fltSemantics &, integerPart);
    233   IEEEFloat(const fltSemantics &, uninitializedTag);
    234   IEEEFloat(const fltSemantics &, const APInt &);
    235   explicit IEEEFloat(double d);
    236   explicit IEEEFloat(float f);
    237   IEEEFloat(const IEEEFloat &);
    238   IEEEFloat(IEEEFloat &&);
    239   ~IEEEFloat();
    240 
    241   /// @}
    242 
    243   /// Returns whether this instance allocated memory.
    244   bool needsCleanup() const { return partCount() > 1; }
    245 
    246   /// \name Convenience "constructors"
    247   /// @{
    248 
    249   /// @}
    250 
    251   /// \name Arithmetic
    252   /// @{
    253 
    254   opStatus add(const IEEEFloat &, roundingMode);
    255   opStatus subtract(const IEEEFloat &, roundingMode);
    256   opStatus multiply(const IEEEFloat &, roundingMode);
    257   opStatus divide(const IEEEFloat &, roundingMode);
    258   /// IEEE remainder.
    259   opStatus remainder(const IEEEFloat &);
    260   /// C fmod, or llvm frem.
    261   opStatus mod(const IEEEFloat &);
    262   opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
    263   opStatus roundToIntegral(roundingMode);
    264   /// IEEE-754R 5.3.1: nextUp/nextDown.
    265   opStatus next(bool nextDown);
    266 
    267   /// @}
    268 
    269   /// \name Sign operations.
    270   /// @{
    271 
    272   void changeSign();
    273 
    274   /// @}
    275 
    276   /// \name Conversions
    277   /// @{
    278 
    279   opStatus convert(const fltSemantics &, roundingMode, bool *);
    280   opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
    281                             roundingMode, bool *) const;
    282   opStatus convertFromAPInt(const APInt &, bool, roundingMode);
    283   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
    284                                           bool, roundingMode);
    285   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
    286                                           bool, roundingMode);
    287   opStatus convertFromString(StringRef, roundingMode);
    288   APInt bitcastToAPInt() const;
    289   double convertToDouble() const;
    290   float convertToFloat() const;
    291 
    292   /// @}
    293 
    294   /// The definition of equality is not straightforward for floating point, so
    295   /// we won't use operator==.  Use one of the following, or write whatever it
    296   /// is you really mean.
    297   bool operator==(const IEEEFloat &) const = delete;
    298 
    299   /// IEEE comparison with another floating point number (NaNs compare
    300   /// unordered, 0==-0).
    301   cmpResult compare(const IEEEFloat &) const;
    302 
    303   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
    304   bool bitwiseIsEqual(const IEEEFloat &) const;
    305 
    306   /// Write out a hexadecimal representation of the floating point value to DST,
    307   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
    308   /// Return the number of characters written, excluding the terminating NUL.
    309   unsigned int convertToHexString(char *dst, unsigned int hexDigits,
    310                                   bool upperCase, roundingMode) const;
    311 
    312   /// \name IEEE-754R 5.7.2 General operations.
    313   /// @{
    314 
    315   /// IEEE-754R isSignMinus: Returns true if and only if the current value is
    316   /// negative.
    317   ///
    318   /// This applies to zeros and NaNs as well.
    319   bool isNegative() const { return sign; }
    320 
    321   /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
    322   ///
    323   /// This implies that the current value of the float is not zero, subnormal,
    324   /// infinite, or NaN following the definition of normality from IEEE-754R.
    325   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
    326 
    327   /// Returns true if and only if the current value is zero, subnormal, or
    328   /// normal.
    329   ///
    330   /// This means that the value is not infinite or NaN.
    331   bool isFinite() const { return !isNaN() && !isInfinity(); }
    332 
    333   /// Returns true if and only if the float is plus or minus zero.
    334   bool isZero() const { return category == fcZero; }
    335 
    336   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
    337   /// denormal.
    338   bool isDenormal() const;
    339 
    340   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
    341   bool isInfinity() const { return category == fcInfinity; }
    342 
    343   /// Returns true if and only if the float is a quiet or signaling NaN.
    344   bool isNaN() const { return category == fcNaN; }
    345 
    346   /// Returns true if and only if the float is a signaling NaN.
    347   bool isSignaling() const;
    348 
    349   /// @}
    350 
    351   /// \name Simple Queries
    352   /// @{
    353 
    354   fltCategory getCategory() const { return category; }
    355   const fltSemantics &getSemantics() const { return *semantics; }
    356   bool isNonZero() const { return category != fcZero; }
    357   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
    358   bool isPosZero() const { return isZero() && !isNegative(); }
    359   bool isNegZero() const { return isZero() && isNegative(); }
    360 
    361   /// Returns true if and only if the number has the smallest possible non-zero
    362   /// magnitude in the current semantics.
    363   bool isSmallest() const;
    364 
    365   /// Returns true if and only if the number has the largest possible finite
    366   /// magnitude in the current semantics.
    367   bool isLargest() const;
    368 
    369   /// Returns true if and only if the number is an exact integer.
    370   bool isInteger() const;
    371 
    372   /// @}
    373 
    374   IEEEFloat &operator=(const IEEEFloat &);
    375   IEEEFloat &operator=(IEEEFloat &&);
    376 
    377   /// Overload to compute a hash code for an APFloat value.
    378   ///
    379   /// Note that the use of hash codes for floating point values is in general
    380   /// frought with peril. Equality is hard to define for these values. For
    381   /// example, should negative and positive zero hash to different codes? Are
    382   /// they equal or not? This hash value implementation specifically
    383   /// emphasizes producing different codes for different inputs in order to
    384   /// be used in canonicalization and memoization. As such, equality is
    385   /// bitwiseIsEqual, and 0 != -0.
    386   friend hash_code hash_value(const IEEEFloat &Arg);
    387 
    388   /// Converts this value into a decimal string.
    389   ///
    390   /// \param FormatPrecision The maximum number of digits of
    391   ///   precision to output.  If there are fewer digits available,
    392   ///   zero padding will not be used unless the value is
    393   ///   integral and small enough to be expressed in
    394   ///   FormatPrecision digits.  0 means to use the natural
    395   ///   precision of the number.
    396   /// \param FormatMaxPadding The maximum number of zeros to
    397   ///   consider inserting before falling back to scientific
    398   ///   notation.  0 means to always use scientific notation.
    399   ///
    400   /// Number       Precision    MaxPadding      Result
    401   /// ------       ---------    ----------      ------
    402   /// 1.01E+4              5             2       10100
    403   /// 1.01E+4              4             2       1.01E+4
    404   /// 1.01E+4              5             1       1.01E+4
    405   /// 1.01E-2              5             2       0.0101
    406   /// 1.01E-2              4             2       0.0101
    407   /// 1.01E-2              4             1       1.01E-2
    408   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
    409                 unsigned FormatMaxPadding = 3) const;
    410 
    411   /// If this value has an exact multiplicative inverse, store it in inv and
    412   /// return true.
    413   bool getExactInverse(APFloat *inv) const;
    414 
    415   /// Returns the exponent of the internal representation of the APFloat.
    416   ///
    417   /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
    418   /// For special APFloat values, this returns special error codes:
    419   ///
    420   ///   NaN -> \c IEK_NaN
    421   ///   0   -> \c IEK_Zero
    422   ///   Inf -> \c IEK_Inf
    423   ///
    424   friend int ilogb(const IEEEFloat &Arg);
    425 
    426   /// Returns: X * 2^Exp for integral exponents.
    427   friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
    428 
    429   friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
    430 
    431   /// \name Special value setters.
    432   /// @{
    433 
    434   void makeLargest(bool Neg = false);
    435   void makeSmallest(bool Neg = false);
    436   void makeNaN(bool SNaN = false, bool Neg = false,
    437                const APInt *fill = nullptr);
    438   void makeInf(bool Neg = false);
    439   void makeZero(bool Neg = false);
    440   void makeQuiet();
    441 
    442   /// Returns the smallest (by magnitude) normalized finite number in the given
    443   /// semantics.
    444   ///
    445   /// \param Negative - True iff the number should be negative
    446   void makeSmallestNormalized(bool Negative = false);
    447 
    448   /// @}
    449 
    450   cmpResult compareAbsoluteValue(const IEEEFloat &) const;
    451 
    452 private:
    453   /// \name Simple Queries
    454   /// @{
    455 
    456   integerPart *significandParts();
    457   const integerPart *significandParts() const;
    458   unsigned int partCount() const;
    459 
    460   /// @}
    461 
    462   /// \name Significand operations.
    463   /// @{
    464 
    465   integerPart addSignificand(const IEEEFloat &);
    466   integerPart subtractSignificand(const IEEEFloat &, integerPart);
    467   lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
    468   lostFraction multiplySignificand(const IEEEFloat &, const IEEEFloat *);
    469   lostFraction divideSignificand(const IEEEFloat &);
    470   void incrementSignificand();
    471   void initialize(const fltSemantics *);
    472   void shiftSignificandLeft(unsigned int);
    473   lostFraction shiftSignificandRight(unsigned int);
    474   unsigned int significandLSB() const;
    475   unsigned int significandMSB() const;
    476   void zeroSignificand();
    477   /// Return true if the significand excluding the integral bit is all ones.
    478   bool isSignificandAllOnes() const;
    479   /// Return true if the significand excluding the integral bit is all zeros.
    480   bool isSignificandAllZeros() const;
    481 
    482   /// @}
    483 
    484   /// \name Arithmetic on special values.
    485   /// @{
    486 
    487   opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
    488   opStatus divideSpecials(const IEEEFloat &);
    489   opStatus multiplySpecials(const IEEEFloat &);
    490   opStatus modSpecials(const IEEEFloat &);
    491 
    492   /// @}
    493 
    494   /// \name Miscellany
    495   /// @{
    496 
    497   bool convertFromStringSpecials(StringRef str);
    498   opStatus normalize(roundingMode, lostFraction);
    499   opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
    500   opStatus handleOverflow(roundingMode);
    501   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
    502   opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
    503                                         unsigned int, bool, roundingMode,
    504                                         bool *) const;
    505   opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
    506                                     roundingMode);
    507   opStatus convertFromHexadecimalString(StringRef, roundingMode);
    508   opStatus convertFromDecimalString(StringRef, roundingMode);
    509   char *convertNormalToHexString(char *, unsigned int, bool,
    510                                  roundingMode) const;
    511   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
    512                                         roundingMode);
    513 
    514   /// @}
    515 
    516   APInt convertHalfAPFloatToAPInt() const;
    517   APInt convertFloatAPFloatToAPInt() const;
    518   APInt convertDoubleAPFloatToAPInt() const;
    519   APInt convertQuadrupleAPFloatToAPInt() const;
    520   APInt convertF80LongDoubleAPFloatToAPInt() const;
    521   APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
    522   void initFromAPInt(const fltSemantics *Sem, const APInt &api);
    523   void initFromHalfAPInt(const APInt &api);
    524   void initFromFloatAPInt(const APInt &api);
    525   void initFromDoubleAPInt(const APInt &api);
    526   void initFromQuadrupleAPInt(const APInt &api);
    527   void initFromF80LongDoubleAPInt(const APInt &api);
    528   void initFromPPCDoubleDoubleAPInt(const APInt &api);
    529 
    530   void assign(const IEEEFloat &);
    531   void copySignificand(const IEEEFloat &);
    532   void freeSignificand();
    533 
    534   /// Note: this must be the first data member.
    535   /// The semantics that this value obeys.
    536   const fltSemantics *semantics;
    537 
    538   /// A binary fraction with an explicit integer bit.
    539   ///
    540   /// The significand must be at least one bit wider than the target precision.
    541   union Significand {
    542     integerPart part;
    543     integerPart *parts;
    544   } significand;
    545 
    546   /// The signed unbiased exponent of the value.
    547   ExponentType exponent;
    548 
    549   /// What kind of floating point number this is.
    550   ///
    551   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
    552   /// Using the extra bit keeps it from failing under VisualStudio.
    553   fltCategory category : 3;
    554 
    555   /// Sign bit of the number.
    556   unsigned int sign : 1;
    557 };
    558 
    559 hash_code hash_value(const IEEEFloat &Arg);
    560 int ilogb(const IEEEFloat &Arg);
    561 IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
    562 IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
    563 
    564 // This mode implements more precise float in terms of two APFloats.
    565 // The interface and layout is designed for arbitray underlying semantics,
    566 // though currently only PPCDoubleDouble semantics are supported, whose
    567 // corresponding underlying semantics are IEEEdouble.
    568 class DoubleAPFloat final : public APFloatBase {
    569   // Note: this must be the first data member.
    570   const fltSemantics *Semantics;
    571   std::unique_ptr<APFloat[]> Floats;
    572 
    573   opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
    574                    const APFloat &cc, roundingMode RM);
    575 
    576   opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
    577                           DoubleAPFloat &Out, roundingMode RM);
    578 
    579 public:
    580   DoubleAPFloat(const fltSemantics &S);
    581   DoubleAPFloat(const fltSemantics &S, uninitializedTag);
    582   DoubleAPFloat(const fltSemantics &S, integerPart);
    583   DoubleAPFloat(const fltSemantics &S, const APInt &I);
    584   DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
    585   DoubleAPFloat(const DoubleAPFloat &RHS);
    586   DoubleAPFloat(DoubleAPFloat &&RHS);
    587 
    588   DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
    589 
    590   DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
    591     if (this != &RHS) {
    592       this->~DoubleAPFloat();
    593       new (this) DoubleAPFloat(std::move(RHS));
    594     }
    595     return *this;
    596   }
    597 
    598   bool needsCleanup() const { return Floats != nullptr; }
    599 
    600   APFloat &getFirst() { return Floats[0]; }
    601   const APFloat &getFirst() const { return Floats[0]; }
    602   APFloat &getSecond() { return Floats[1]; }
    603   const APFloat &getSecond() const { return Floats[1]; }
    604 
    605   opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
    606   opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
    607   opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
    608   opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
    609   opStatus remainder(const DoubleAPFloat &RHS);
    610   opStatus mod(const DoubleAPFloat &RHS);
    611   opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
    612                             const DoubleAPFloat &Addend, roundingMode RM);
    613   opStatus roundToIntegral(roundingMode RM);
    614   void changeSign();
    615   cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
    616 
    617   fltCategory getCategory() const;
    618   bool isNegative() const;
    619 
    620   void makeInf(bool Neg);
    621   void makeZero(bool Neg);
    622   void makeLargest(bool Neg);
    623   void makeSmallest(bool Neg);
    624   void makeSmallestNormalized(bool Neg);
    625   void makeNaN(bool SNaN, bool Neg, const APInt *fill);
    626 
    627   cmpResult compare(const DoubleAPFloat &RHS) const;
    628   bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
    629   APInt bitcastToAPInt() const;
    630   opStatus convertFromString(StringRef, roundingMode);
    631   opStatus next(bool nextDown);
    632 
    633   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
    634                             unsigned int Width, bool IsSigned, roundingMode RM,
    635                             bool *IsExact) const;
    636   opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
    637   opStatus convertFromSignExtendedInteger(const integerPart *Input,
    638                                           unsigned int InputSize, bool IsSigned,
    639                                           roundingMode RM);
    640   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
    641                                           unsigned int InputSize, bool IsSigned,
    642                                           roundingMode RM);
    643   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
    644                                   bool UpperCase, roundingMode RM) const;
    645 
    646   bool isDenormal() const;
    647   bool isSmallest() const;
    648   bool isLargest() const;
    649   bool isInteger() const;
    650 
    651   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
    652                 unsigned FormatMaxPadding) const;
    653 
    654   bool getExactInverse(APFloat *inv) const;
    655 
    656   friend int ilogb(const DoubleAPFloat &Arg);
    657   friend DoubleAPFloat scalbn(DoubleAPFloat X, int Exp, roundingMode);
    658   friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
    659   friend hash_code hash_value(const DoubleAPFloat &Arg);
    660 };
    661 
    662 hash_code hash_value(const DoubleAPFloat &Arg);
    663 
    664 } // End detail namespace
    665 
    666 // This is a interface class that is currently forwarding functionalities from
    667 // detail::IEEEFloat.
    668 class APFloat : public APFloatBase {
    669   typedef detail::IEEEFloat IEEEFloat;
    670   typedef detail::DoubleAPFloat DoubleAPFloat;
    671 
    672   static_assert(std::is_standard_layout<IEEEFloat>::value, "");
    673 
    674   union Storage {
    675     const fltSemantics *semantics;
    676     IEEEFloat IEEE;
    677     DoubleAPFloat Double;
    678 
    679     explicit Storage(IEEEFloat F, const fltSemantics &S);
    680     explicit Storage(DoubleAPFloat F, const fltSemantics &S)
    681         : Double(std::move(F)) {
    682       assert(&S == &PPCDoubleDouble());
    683     }
    684 
    685     template <typename... ArgTypes>
    686     Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
    687       if (usesLayout<IEEEFloat>(Semantics)) {
    688         new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
    689         return;
    690       }
    691       if (usesLayout<DoubleAPFloat>(Semantics)) {
    692         new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
    693         return;
    694       }
    695       llvm_unreachable("Unexpected semantics");
    696     }
    697 
    698     ~Storage() {
    699       if (usesLayout<IEEEFloat>(*semantics)) {
    700         IEEE.~IEEEFloat();
    701         return;
    702       }
    703       if (usesLayout<DoubleAPFloat>(*semantics)) {
    704         Double.~DoubleAPFloat();
    705         return;
    706       }
    707       llvm_unreachable("Unexpected semantics");
    708     }
    709 
    710     Storage(const Storage &RHS) {
    711       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
    712         new (this) IEEEFloat(RHS.IEEE);
    713         return;
    714       }
    715       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
    716         new (this) DoubleAPFloat(RHS.Double);
    717         return;
    718       }
    719       llvm_unreachable("Unexpected semantics");
    720     }
    721 
    722     Storage(Storage &&RHS) {
    723       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
    724         new (this) IEEEFloat(std::move(RHS.IEEE));
    725         return;
    726       }
    727       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
    728         new (this) DoubleAPFloat(std::move(RHS.Double));
    729         return;
    730       }
    731       llvm_unreachable("Unexpected semantics");
    732     }
    733 
    734     Storage &operator=(const Storage &RHS) {
    735       if (usesLayout<IEEEFloat>(*semantics) &&
    736           usesLayout<IEEEFloat>(*RHS.semantics)) {
    737         IEEE = RHS.IEEE;
    738       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
    739                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
    740         Double = RHS.Double;
    741       } else if (this != &RHS) {
    742         this->~Storage();
    743         new (this) Storage(RHS);
    744       }
    745       return *this;
    746     }
    747 
    748     Storage &operator=(Storage &&RHS) {
    749       if (usesLayout<IEEEFloat>(*semantics) &&
    750           usesLayout<IEEEFloat>(*RHS.semantics)) {
    751         IEEE = std::move(RHS.IEEE);
    752       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
    753                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
    754         Double = std::move(RHS.Double);
    755       } else if (this != &RHS) {
    756         this->~Storage();
    757         new (this) Storage(std::move(RHS));
    758       }
    759       return *this;
    760     }
    761   } U;
    762 
    763   template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
    764     static_assert(std::is_same<T, IEEEFloat>::value ||
    765                   std::is_same<T, DoubleAPFloat>::value, "");
    766     if (std::is_same<T, DoubleAPFloat>::value) {
    767       return &Semantics == &PPCDoubleDouble();
    768     }
    769     return &Semantics != &PPCDoubleDouble();
    770   }
    771 
    772   IEEEFloat &getIEEE() {
    773     if (usesLayout<IEEEFloat>(*U.semantics))
    774       return U.IEEE;
    775     if (usesLayout<DoubleAPFloat>(*U.semantics))
    776       return U.Double.getFirst().U.IEEE;
    777     llvm_unreachable("Unexpected semantics");
    778   }
    779 
    780   const IEEEFloat &getIEEE() const {
    781     if (usesLayout<IEEEFloat>(*U.semantics))
    782       return U.IEEE;
    783     if (usesLayout<DoubleAPFloat>(*U.semantics))
    784       return U.Double.getFirst().U.IEEE;
    785     llvm_unreachable("Unexpected semantics");
    786   }
    787 
    788   void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
    789 
    790   void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
    791 
    792   void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
    793     APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
    794   }
    795 
    796   void makeLargest(bool Neg) {
    797     APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
    798   }
    799 
    800   void makeSmallest(bool Neg) {
    801     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
    802   }
    803 
    804   void makeSmallestNormalized(bool Neg) {
    805     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
    806   }
    807 
    808   // FIXME: This is due to clang 3.3 (or older version) always checks for the
    809   // default constructor in an array aggregate initialization, even if no
    810   // elements in the array is default initialized.
    811   APFloat() : U(IEEEdouble()) {
    812     llvm_unreachable("This is a workaround for old clang.");
    813   }
    814 
    815   explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
    816   explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
    817       : U(std::move(F), S) {}
    818 
    819   cmpResult compareAbsoluteValue(const APFloat &RHS) const {
    820     assert(&getSemantics() == &RHS.getSemantics() &&
    821            "Should only compare APFloats with the same semantics");
    822     if (usesLayout<IEEEFloat>(getSemantics()))
    823       return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
    824     if (usesLayout<DoubleAPFloat>(getSemantics()))
    825       return U.Double.compareAbsoluteValue(RHS.U.Double);
    826     llvm_unreachable("Unexpected semantics");
    827   }
    828 
    829 public:
    830   APFloat(const fltSemantics &Semantics) : U(Semantics) {}
    831   APFloat(const fltSemantics &Semantics, StringRef S);
    832   APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
    833   // TODO: Remove this constructor. This isn't faster than the first one.
    834   APFloat(const fltSemantics &Semantics, uninitializedTag)
    835       : U(Semantics, uninitialized) {}
    836   APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
    837   explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
    838   explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
    839   APFloat(const APFloat &RHS) = default;
    840   APFloat(APFloat &&RHS) = default;
    841 
    842   ~APFloat() = default;
    843 
    844   bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
    845 
    846   /// Factory for Positive and Negative Zero.
    847   ///
    848   /// \param Negative True iff the number should be negative.
    849   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
    850     APFloat Val(Sem, uninitialized);
    851     Val.makeZero(Negative);
    852     return Val;
    853   }
    854 
    855   /// Factory for Positive and Negative Infinity.
    856   ///
    857   /// \param Negative True iff the number should be negative.
    858   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
    859     APFloat Val(Sem, uninitialized);
    860     Val.makeInf(Negative);
    861     return Val;
    862   }
    863 
    864   /// Factory for NaN values.
    865   ///
    866   /// \param Negative - True iff the NaN generated should be negative.
    867   /// \param type - The unspecified fill bits for creating the NaN, 0 by
    868   /// default.  The value is truncated as necessary.
    869   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
    870                         unsigned type = 0) {
    871     if (type) {
    872       APInt fill(64, type);
    873       return getQNaN(Sem, Negative, &fill);
    874     } else {
    875       return getQNaN(Sem, Negative, nullptr);
    876     }
    877   }
    878 
    879   /// Factory for QNaN values.
    880   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
    881                          const APInt *payload = nullptr) {
    882     APFloat Val(Sem, uninitialized);
    883     Val.makeNaN(false, Negative, payload);
    884     return Val;
    885   }
    886 
    887   /// Factory for SNaN values.
    888   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
    889                          const APInt *payload = nullptr) {
    890     APFloat Val(Sem, uninitialized);
    891     Val.makeNaN(true, Negative, payload);
    892     return Val;
    893   }
    894 
    895   /// Returns the largest finite number in the given semantics.
    896   ///
    897   /// \param Negative - True iff the number should be negative
    898   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
    899     APFloat Val(Sem, uninitialized);
    900     Val.makeLargest(Negative);
    901     return Val;
    902   }
    903 
    904   /// Returns the smallest (by magnitude) finite number in the given semantics.
    905   /// Might be denormalized, which implies a relative loss of precision.
    906   ///
    907   /// \param Negative - True iff the number should be negative
    908   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
    909     APFloat Val(Sem, uninitialized);
    910     Val.makeSmallest(Negative);
    911     return Val;
    912   }
    913 
    914   /// Returns the smallest (by magnitude) normalized finite number in the given
    915   /// semantics.
    916   ///
    917   /// \param Negative - True iff the number should be negative
    918   static APFloat getSmallestNormalized(const fltSemantics &Sem,
    919                                        bool Negative = false) {
    920     APFloat Val(Sem, uninitialized);
    921     Val.makeSmallestNormalized(Negative);
    922     return Val;
    923   }
    924 
    925   /// Returns a float which is bitcasted from an all one value int.
    926   ///
    927   /// \param BitWidth - Select float type
    928   /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
    929   static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
    930 
    931   /// Used to insert APFloat objects, or objects that contain APFloat objects,
    932   /// into FoldingSets.
    933   void Profile(FoldingSetNodeID &NID) const;
    934 
    935   opStatus add(const APFloat &RHS, roundingMode RM) {
    936     assert(&getSemantics() == &RHS.getSemantics() &&
    937            "Should only call on two APFloats with the same semantics");
    938     if (usesLayout<IEEEFloat>(getSemantics()))
    939       return U.IEEE.add(RHS.U.IEEE, RM);
    940     if (usesLayout<DoubleAPFloat>(getSemantics()))
    941       return U.Double.add(RHS.U.Double, RM);
    942     llvm_unreachable("Unexpected semantics");
    943   }
    944   opStatus subtract(const APFloat &RHS, roundingMode RM) {
    945     assert(&getSemantics() == &RHS.getSemantics() &&
    946            "Should only call on two APFloats with the same semantics");
    947     if (usesLayout<IEEEFloat>(getSemantics()))
    948       return U.IEEE.subtract(RHS.U.IEEE, RM);
    949     if (usesLayout<DoubleAPFloat>(getSemantics()))
    950       return U.Double.subtract(RHS.U.Double, RM);
    951     llvm_unreachable("Unexpected semantics");
    952   }
    953   opStatus multiply(const APFloat &RHS, roundingMode RM) {
    954     assert(&getSemantics() == &RHS.getSemantics() &&
    955            "Should only call on two APFloats with the same semantics");
    956     if (usesLayout<IEEEFloat>(getSemantics()))
    957       return U.IEEE.multiply(RHS.U.IEEE, RM);
    958     if (usesLayout<DoubleAPFloat>(getSemantics()))
    959       return U.Double.multiply(RHS.U.Double, RM);
    960     llvm_unreachable("Unexpected semantics");
    961   }
    962   opStatus divide(const APFloat &RHS, roundingMode RM) {
    963     assert(&getSemantics() == &RHS.getSemantics() &&
    964            "Should only call on two APFloats with the same semantics");
    965     if (usesLayout<IEEEFloat>(getSemantics()))
    966       return U.IEEE.divide(RHS.U.IEEE, RM);
    967     if (usesLayout<DoubleAPFloat>(getSemantics()))
    968       return U.Double.divide(RHS.U.Double, RM);
    969     llvm_unreachable("Unexpected semantics");
    970   }
    971   opStatus remainder(const APFloat &RHS) {
    972     assert(&getSemantics() == &RHS.getSemantics() &&
    973            "Should only call on two APFloats with the same semantics");
    974     if (usesLayout<IEEEFloat>(getSemantics()))
    975       return U.IEEE.remainder(RHS.U.IEEE);
    976     if (usesLayout<DoubleAPFloat>(getSemantics()))
    977       return U.Double.remainder(RHS.U.Double);
    978     llvm_unreachable("Unexpected semantics");
    979   }
    980   opStatus mod(const APFloat &RHS) {
    981     assert(&getSemantics() == &RHS.getSemantics() &&
    982            "Should only call on two APFloats with the same semantics");
    983     if (usesLayout<IEEEFloat>(getSemantics()))
    984       return U.IEEE.mod(RHS.U.IEEE);
    985     if (usesLayout<DoubleAPFloat>(getSemantics()))
    986       return U.Double.mod(RHS.U.Double);
    987     llvm_unreachable("Unexpected semantics");
    988   }
    989   opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
    990                             roundingMode RM) {
    991     assert(&getSemantics() == &Multiplicand.getSemantics() &&
    992            "Should only call on APFloats with the same semantics");
    993     assert(&getSemantics() == &Addend.getSemantics() &&
    994            "Should only call on APFloats with the same semantics");
    995     if (usesLayout<IEEEFloat>(getSemantics()))
    996       return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
    997     if (usesLayout<DoubleAPFloat>(getSemantics()))
    998       return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
    999                                        RM);
   1000     llvm_unreachable("Unexpected semantics");
   1001   }
   1002   opStatus roundToIntegral(roundingMode RM) {
   1003     APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
   1004   }
   1005 
   1006   // TODO: bool parameters are not readable and a source of bugs.
   1007   // Do something.
   1008   opStatus next(bool nextDown) {
   1009     APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
   1010   }
   1011 
   1012   /// Add two APFloats, rounding ties to the nearest even.
   1013   /// No error checking.
   1014   APFloat operator+(const APFloat &RHS) const {
   1015     APFloat Result(*this);
   1016     (void)Result.add(RHS, rmNearestTiesToEven);
   1017     return Result;
   1018   }
   1019 
   1020   /// Subtract two APFloats, rounding ties to the nearest even.
   1021   /// No error checking.
   1022   APFloat operator-(const APFloat &RHS) const {
   1023     APFloat Result(*this);
   1024     (void)Result.subtract(RHS, rmNearestTiesToEven);
   1025     return Result;
   1026   }
   1027 
   1028   /// Multiply two APFloats, rounding ties to the nearest even.
   1029   /// No error checking.
   1030   APFloat operator*(const APFloat &RHS) const {
   1031     APFloat Result(*this);
   1032     (void)Result.multiply(RHS, rmNearestTiesToEven);
   1033     return Result;
   1034   }
   1035 
   1036   /// Divide the first APFloat by the second, rounding ties to the nearest even.
   1037   /// No error checking.
   1038   APFloat operator/(const APFloat &RHS) const {
   1039     APFloat Result(*this);
   1040     (void)Result.divide(RHS, rmNearestTiesToEven);
   1041     return Result;
   1042   }
   1043 
   1044   void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
   1045   void clearSign() {
   1046     if (isNegative())
   1047       changeSign();
   1048   }
   1049   void copySign(const APFloat &RHS) {
   1050     if (isNegative() != RHS.isNegative())
   1051       changeSign();
   1052   }
   1053 
   1054   /// A static helper to produce a copy of an APFloat value with its sign
   1055   /// copied from some other APFloat.
   1056   static APFloat copySign(APFloat Value, const APFloat &Sign) {
   1057     Value.copySign(Sign);
   1058     return Value;
   1059   }
   1060 
   1061   opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
   1062                    bool *losesInfo);
   1063   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
   1064                             unsigned int Width, bool IsSigned, roundingMode RM,
   1065                             bool *IsExact) const {
   1066     APFLOAT_DISPATCH_ON_SEMANTICS(
   1067         convertToInteger(Input, Width, IsSigned, RM, IsExact));
   1068   }
   1069   opStatus convertToInteger(APSInt &Result, roundingMode RM,
   1070                             bool *IsExact) const;
   1071   opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
   1072                             roundingMode RM) {
   1073     APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
   1074   }
   1075   opStatus convertFromSignExtendedInteger(const integerPart *Input,
   1076                                           unsigned int InputSize, bool IsSigned,
   1077                                           roundingMode RM) {
   1078     APFLOAT_DISPATCH_ON_SEMANTICS(
   1079         convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
   1080   }
   1081   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
   1082                                           unsigned int InputSize, bool IsSigned,
   1083                                           roundingMode RM) {
   1084     APFLOAT_DISPATCH_ON_SEMANTICS(
   1085         convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
   1086   }
   1087   opStatus convertFromString(StringRef, roundingMode);
   1088   APInt bitcastToAPInt() const {
   1089     APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
   1090   }
   1091   double convertToDouble() const { return getIEEE().convertToDouble(); }
   1092   float convertToFloat() const { return getIEEE().convertToFloat(); }
   1093 
   1094   bool operator==(const APFloat &) const = delete;
   1095 
   1096   cmpResult compare(const APFloat &RHS) const {
   1097     assert(&getSemantics() == &RHS.getSemantics() &&
   1098            "Should only compare APFloats with the same semantics");
   1099     if (usesLayout<IEEEFloat>(getSemantics()))
   1100       return U.IEEE.compare(RHS.U.IEEE);
   1101     if (usesLayout<DoubleAPFloat>(getSemantics()))
   1102       return U.Double.compare(RHS.U.Double);
   1103     llvm_unreachable("Unexpected semantics");
   1104   }
   1105 
   1106   bool bitwiseIsEqual(const APFloat &RHS) const {
   1107     if (&getSemantics() != &RHS.getSemantics())
   1108       return false;
   1109     if (usesLayout<IEEEFloat>(getSemantics()))
   1110       return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
   1111     if (usesLayout<DoubleAPFloat>(getSemantics()))
   1112       return U.Double.bitwiseIsEqual(RHS.U.Double);
   1113     llvm_unreachable("Unexpected semantics");
   1114   }
   1115 
   1116   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
   1117                                   bool UpperCase, roundingMode RM) const {
   1118     APFLOAT_DISPATCH_ON_SEMANTICS(
   1119         convertToHexString(DST, HexDigits, UpperCase, RM));
   1120   }
   1121 
   1122   bool isZero() const { return getCategory() == fcZero; }
   1123   bool isInfinity() const { return getCategory() == fcInfinity; }
   1124   bool isNaN() const { return getCategory() == fcNaN; }
   1125 
   1126   bool isNegative() const { return getIEEE().isNegative(); }
   1127   bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
   1128   bool isSignaling() const { return getIEEE().isSignaling(); }
   1129 
   1130   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
   1131   bool isFinite() const { return !isNaN() && !isInfinity(); }
   1132 
   1133   fltCategory getCategory() const { return getIEEE().getCategory(); }
   1134   const fltSemantics &getSemantics() const { return *U.semantics; }
   1135   bool isNonZero() const { return !isZero(); }
   1136   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
   1137   bool isPosZero() const { return isZero() && !isNegative(); }
   1138   bool isNegZero() const { return isZero() && isNegative(); }
   1139   bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
   1140   bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
   1141   bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
   1142 
   1143   APFloat &operator=(const APFloat &RHS) = default;
   1144   APFloat &operator=(APFloat &&RHS) = default;
   1145 
   1146   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
   1147                 unsigned FormatMaxPadding = 3) const {
   1148     APFLOAT_DISPATCH_ON_SEMANTICS(
   1149         toString(Str, FormatPrecision, FormatMaxPadding));
   1150   }
   1151 
   1152   void print(raw_ostream &) const;
   1153   void dump() const;
   1154 
   1155   bool getExactInverse(APFloat *inv) const {
   1156     APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
   1157   }
   1158 
   1159   friend hash_code hash_value(const APFloat &Arg);
   1160   friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
   1161   friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
   1162   friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
   1163   friend IEEEFloat;
   1164   friend DoubleAPFloat;
   1165 };
   1166 
   1167 /// See friend declarations above.
   1168 ///
   1169 /// These additional declarations are required in order to compile LLVM with IBM
   1170 /// xlC compiler.
   1171 hash_code hash_value(const APFloat &Arg);
   1172 inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
   1173   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
   1174     return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
   1175   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
   1176     return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
   1177   llvm_unreachable("Unexpected semantics");
   1178 }
   1179 
   1180 /// Equivalent of C standard library function.
   1181 ///
   1182 /// While the C standard says Exp is an unspecified value for infinity and nan,
   1183 /// this returns INT_MAX for infinities, and INT_MIN for NaNs.
   1184 inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
   1185   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
   1186     return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
   1187   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
   1188     return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
   1189   llvm_unreachable("Unexpected semantics");
   1190 }
   1191 /// Returns the absolute value of the argument.
   1192 inline APFloat abs(APFloat X) {
   1193   X.clearSign();
   1194   return X;
   1195 }
   1196 
   1197 /// \brief Returns the negated value of the argument.
   1198 inline APFloat neg(APFloat X) {
   1199   X.changeSign();
   1200   return X;
   1201 }
   1202 
   1203 /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
   1204 /// both are not NaN. If either argument is a NaN, returns the other argument.
   1205 LLVM_READONLY
   1206 inline APFloat minnum(const APFloat &A, const APFloat &B) {
   1207   if (A.isNaN())
   1208     return B;
   1209   if (B.isNaN())
   1210     return A;
   1211   return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
   1212 }
   1213 
   1214 /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
   1215 /// both are not NaN. If either argument is a NaN, returns the other argument.
   1216 LLVM_READONLY
   1217 inline APFloat maxnum(const APFloat &A, const APFloat &B) {
   1218   if (A.isNaN())
   1219     return B;
   1220   if (B.isNaN())
   1221     return A;
   1222   return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
   1223 }
   1224 
   1225 } // namespace llvm
   1226 
   1227 #undef APFLOAT_DISPATCH_ON_SEMANTICS
   1228 #endif // LLVM_ADT_APFLOAT_H
   1229