Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a hash set that can be used to remove duplication of nodes
     11 // in a graph.  This code was originally created by Chris Lattner for use with
     12 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_ADT_FOLDINGSET_H
     17 #define LLVM_ADT_FOLDINGSET_H
     18 
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/iterator.h"
     21 #include "llvm/Support/Allocator.h"
     22 #include <cassert>
     23 #include <cstddef>
     24 #include <cstdint>
     25 #include <utility>
     26 
     27 namespace llvm {
     28 
     29 /// This folding set used for two purposes:
     30 ///   1. Given information about a node we want to create, look up the unique
     31 ///      instance of the node in the set.  If the node already exists, return
     32 ///      it, otherwise return the bucket it should be inserted into.
     33 ///   2. Given a node that has already been created, remove it from the set.
     34 ///
     35 /// This class is implemented as a single-link chained hash table, where the
     36 /// "buckets" are actually the nodes themselves (the next pointer is in the
     37 /// node).  The last node points back to the bucket to simplify node removal.
     38 ///
     39 /// Any node that is to be included in the folding set must be a subclass of
     40 /// FoldingSetNode.  The node class must also define a Profile method used to
     41 /// establish the unique bits of data for the node.  The Profile method is
     42 /// passed a FoldingSetNodeID object which is used to gather the bits.  Just
     43 /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
     44 /// NOTE: That the folding set does not own the nodes and it is the
     45 /// responsibility of the user to dispose of the nodes.
     46 ///
     47 /// Eg.
     48 ///    class MyNode : public FoldingSetNode {
     49 ///    private:
     50 ///      std::string Name;
     51 ///      unsigned Value;
     52 ///    public:
     53 ///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
     54 ///       ...
     55 ///      void Profile(FoldingSetNodeID &ID) const {
     56 ///        ID.AddString(Name);
     57 ///        ID.AddInteger(Value);
     58 ///      }
     59 ///      ...
     60 ///    };
     61 ///
     62 /// To define the folding set itself use the FoldingSet template;
     63 ///
     64 /// Eg.
     65 ///    FoldingSet<MyNode> MyFoldingSet;
     66 ///
     67 /// Four public methods are available to manipulate the folding set;
     68 ///
     69 /// 1) If you have an existing node that you want add to the set but unsure
     70 /// that the node might already exist then call;
     71 ///
     72 ///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
     73 ///
     74 /// If The result is equal to the input then the node has been inserted.
     75 /// Otherwise, the result is the node existing in the folding set, and the
     76 /// input can be discarded (use the result instead.)
     77 ///
     78 /// 2) If you are ready to construct a node but want to check if it already
     79 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
     80 /// check;
     81 ///
     82 ///   FoldingSetNodeID ID;
     83 ///   ID.AddString(Name);
     84 ///   ID.AddInteger(Value);
     85 ///   void *InsertPoint;
     86 ///
     87 ///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
     88 ///
     89 /// If found then M with be non-NULL, else InsertPoint will point to where it
     90 /// should be inserted using InsertNode.
     91 ///
     92 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
     93 /// node with FindNodeOrInsertPos;
     94 ///
     95 ///    InsertNode(N, InsertPoint);
     96 ///
     97 /// 4) Finally, if you want to remove a node from the folding set call;
     98 ///
     99 ///    bool WasRemoved = RemoveNode(N);
    100 ///
    101 /// The result indicates whether the node existed in the folding set.
    102 
    103 class FoldingSetNodeID;
    104 class StringRef;
    105 
    106 //===----------------------------------------------------------------------===//
    107 /// FoldingSetImpl - Implements the folding set functionality.  The main
    108 /// structure is an array of buckets.  Each bucket is indexed by the hash of
    109 /// the nodes it contains.  The bucket itself points to the nodes contained
    110 /// in the bucket via a singly linked list.  The last node in the list points
    111 /// back to the bucket to facilitate node removal.
    112 ///
    113 class FoldingSetImpl {
    114   virtual void anchor(); // Out of line virtual method.
    115 
    116 protected:
    117   /// Buckets - Array of bucket chains.
    118   ///
    119   void **Buckets;
    120 
    121   /// NumBuckets - Length of the Buckets array.  Always a power of 2.
    122   ///
    123   unsigned NumBuckets;
    124 
    125   /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
    126   /// is greater than twice the number of buckets.
    127   unsigned NumNodes;
    128 
    129   explicit FoldingSetImpl(unsigned Log2InitSize = 6);
    130   FoldingSetImpl(FoldingSetImpl &&Arg);
    131   FoldingSetImpl &operator=(FoldingSetImpl &&RHS);
    132   ~FoldingSetImpl();
    133 
    134 public:
    135   //===--------------------------------------------------------------------===//
    136   /// Node - This class is used to maintain the singly linked bucket list in
    137   /// a folding set.
    138   ///
    139   class Node {
    140   private:
    141     // NextInFoldingSetBucket - next link in the bucket list.
    142     void *NextInFoldingSetBucket;
    143 
    144   public:
    145     Node() : NextInFoldingSetBucket(nullptr) {}
    146 
    147     // Accessors
    148     void *getNextInBucket() const { return NextInFoldingSetBucket; }
    149     void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
    150   };
    151 
    152   /// clear - Remove all nodes from the folding set.
    153   void clear();
    154 
    155   /// RemoveNode - Remove a node from the folding set, returning true if one
    156   /// was removed or false if the node was not in the folding set.
    157   bool RemoveNode(Node *N);
    158 
    159   /// GetOrInsertNode - If there is an existing simple Node exactly
    160   /// equal to the specified node, return it.  Otherwise, insert 'N' and return
    161   /// it instead.
    162   Node *GetOrInsertNode(Node *N);
    163 
    164   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    165   /// return it.  If not, return the insertion token that will make insertion
    166   /// faster.
    167   Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
    168 
    169   /// InsertNode - Insert the specified node into the folding set, knowing that
    170   /// it is not already in the folding set.  InsertPos must be obtained from
    171   /// FindNodeOrInsertPos.
    172   void InsertNode(Node *N, void *InsertPos);
    173 
    174   /// InsertNode - Insert the specified node into the folding set, knowing that
    175   /// it is not already in the folding set.
    176   void InsertNode(Node *N) {
    177     Node *Inserted = GetOrInsertNode(N);
    178     (void)Inserted;
    179     assert(Inserted == N && "Node already inserted!");
    180   }
    181 
    182   /// size - Returns the number of nodes in the folding set.
    183   unsigned size() const { return NumNodes; }
    184 
    185   /// empty - Returns true if there are no nodes in the folding set.
    186   bool empty() const { return NumNodes == 0; }
    187 
    188   /// reserve - Increase the number of buckets such that adding the
    189   /// EltCount-th node won't cause a rebucket operation. reserve is permitted
    190   /// to allocate more space than requested by EltCount.
    191   void reserve(unsigned EltCount);
    192 
    193   /// capacity - Returns the number of nodes permitted in the folding set
    194   /// before a rebucket operation is performed.
    195   unsigned capacity() {
    196     // We allow a load factor of up to 2.0,
    197     // so that means our capacity is NumBuckets * 2
    198     return NumBuckets * 2;
    199   }
    200 
    201 private:
    202   /// GrowHashTable - Double the size of the hash table and rehash everything.
    203   void GrowHashTable();
    204 
    205   /// GrowBucketCount - resize the hash table and rehash everything.
    206   /// NewBucketCount must be a power of two, and must be greater than the old
    207   /// bucket count.
    208   void GrowBucketCount(unsigned NewBucketCount);
    209 
    210 protected:
    211   /// GetNodeProfile - Instantiations of the FoldingSet template implement
    212   /// this function to gather data bits for the given node.
    213   virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
    214 
    215   /// NodeEquals - Instantiations of the FoldingSet template implement
    216   /// this function to compare the given node with the given ID.
    217   virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
    218                           FoldingSetNodeID &TempID) const=0;
    219 
    220   /// ComputeNodeHash - Instantiations of the FoldingSet template implement
    221   /// this function to compute a hash value for the given node.
    222   virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;
    223 };
    224 
    225 //===----------------------------------------------------------------------===//
    226 
    227 /// DefaultFoldingSetTrait - This class provides default implementations
    228 /// for FoldingSetTrait implementations.
    229 ///
    230 template<typename T> struct DefaultFoldingSetTrait {
    231   static void Profile(const T &X, FoldingSetNodeID &ID) {
    232     X.Profile(ID);
    233   }
    234   static void Profile(T &X, FoldingSetNodeID &ID) {
    235     X.Profile(ID);
    236   }
    237 
    238   // Equals - Test if the profile for X would match ID, using TempID
    239   // to compute a temporary ID if necessary. The default implementation
    240   // just calls Profile and does a regular comparison. Implementations
    241   // can override this to provide more efficient implementations.
    242   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
    243                             FoldingSetNodeID &TempID);
    244 
    245   // ComputeHash - Compute a hash value for X, using TempID to
    246   // compute a temporary ID if necessary. The default implementation
    247   // just calls Profile and does a regular hash computation.
    248   // Implementations can override this to provide more efficient
    249   // implementations.
    250   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
    251 };
    252 
    253 /// FoldingSetTrait - This trait class is used to define behavior of how
    254 /// to "profile" (in the FoldingSet parlance) an object of a given type.
    255 /// The default behavior is to invoke a 'Profile' method on an object, but
    256 /// through template specialization the behavior can be tailored for specific
    257 /// types.  Combined with the FoldingSetNodeWrapper class, one can add objects
    258 /// to FoldingSets that were not originally designed to have that behavior.
    259 template<typename T> struct FoldingSetTrait
    260   : public DefaultFoldingSetTrait<T> {};
    261 
    262 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
    263 /// for ContextualFoldingSets.
    264 template<typename T, typename Ctx>
    265 struct DefaultContextualFoldingSetTrait {
    266   static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
    267     X.Profile(ID, Context);
    268   }
    269 
    270   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
    271                             FoldingSetNodeID &TempID, Ctx Context);
    272   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
    273                                      Ctx Context);
    274 };
    275 
    276 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
    277 /// ContextualFoldingSets.
    278 template<typename T, typename Ctx> struct ContextualFoldingSetTrait
    279   : public DefaultContextualFoldingSetTrait<T, Ctx> {};
    280 
    281 //===--------------------------------------------------------------------===//
    282 /// FoldingSetNodeIDRef - This class describes a reference to an interned
    283 /// FoldingSetNodeID, which can be a useful to store node id data rather
    284 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
    285 /// is often much larger than necessary, and the possibility of heap
    286 /// allocation means it requires a non-trivial destructor call.
    287 class FoldingSetNodeIDRef {
    288   const unsigned *Data = nullptr;
    289   size_t Size = 0;
    290 
    291 public:
    292   FoldingSetNodeIDRef() = default;
    293   FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
    294 
    295   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
    296   /// used to lookup the node in the FoldingSetImpl.
    297   unsigned ComputeHash() const;
    298 
    299   bool operator==(FoldingSetNodeIDRef) const;
    300 
    301   bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }
    302 
    303   /// Used to compare the "ordering" of two nodes as defined by the
    304   /// profiled bits and their ordering defined by memcmp().
    305   bool operator<(FoldingSetNodeIDRef) const;
    306 
    307   const unsigned *getData() const { return Data; }
    308   size_t getSize() const { return Size; }
    309 };
    310 
    311 //===--------------------------------------------------------------------===//
    312 /// FoldingSetNodeID - This class is used to gather all the unique data bits of
    313 /// a node.  When all the bits are gathered this class is used to produce a
    314 /// hash value for the node.
    315 ///
    316 class FoldingSetNodeID {
    317   /// Bits - Vector of all the data bits that make the node unique.
    318   /// Use a SmallVector to avoid a heap allocation in the common case.
    319   SmallVector<unsigned, 32> Bits;
    320 
    321 public:
    322   FoldingSetNodeID() = default;
    323 
    324   FoldingSetNodeID(FoldingSetNodeIDRef Ref)
    325     : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
    326 
    327   /// Add* - Add various data types to Bit data.
    328   ///
    329   void AddPointer(const void *Ptr);
    330   void AddInteger(signed I);
    331   void AddInteger(unsigned I);
    332   void AddInteger(long I);
    333   void AddInteger(unsigned long I);
    334   void AddInteger(long long I);
    335   void AddInteger(unsigned long long I);
    336   void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
    337   void AddString(StringRef String);
    338   void AddNodeID(const FoldingSetNodeID &ID);
    339 
    340   template <typename T>
    341   inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
    342 
    343   /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
    344   /// object to be used to compute a new profile.
    345   inline void clear() { Bits.clear(); }
    346 
    347   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
    348   /// to lookup the node in the FoldingSetImpl.
    349   unsigned ComputeHash() const;
    350 
    351   /// operator== - Used to compare two nodes to each other.
    352   ///
    353   bool operator==(const FoldingSetNodeID &RHS) const;
    354   bool operator==(const FoldingSetNodeIDRef RHS) const;
    355 
    356   bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
    357   bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}
    358 
    359   /// Used to compare the "ordering" of two nodes as defined by the
    360   /// profiled bits and their ordering defined by memcmp().
    361   bool operator<(const FoldingSetNodeID &RHS) const;
    362   bool operator<(const FoldingSetNodeIDRef RHS) const;
    363 
    364   /// Intern - Copy this node's data to a memory region allocated from the
    365   /// given allocator and return a FoldingSetNodeIDRef describing the
    366   /// interned data.
    367   FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
    368 };
    369 
    370 // Convenience type to hide the implementation of the folding set.
    371 typedef FoldingSetImpl::Node FoldingSetNode;
    372 template<class T> class FoldingSetIterator;
    373 template<class T> class FoldingSetBucketIterator;
    374 
    375 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
    376 // require the definition of FoldingSetNodeID.
    377 template<typename T>
    378 inline bool
    379 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
    380                                   unsigned /*IDHash*/,
    381                                   FoldingSetNodeID &TempID) {
    382   FoldingSetTrait<T>::Profile(X, TempID);
    383   return TempID == ID;
    384 }
    385 template<typename T>
    386 inline unsigned
    387 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
    388   FoldingSetTrait<T>::Profile(X, TempID);
    389   return TempID.ComputeHash();
    390 }
    391 template<typename T, typename Ctx>
    392 inline bool
    393 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
    394                                                  const FoldingSetNodeID &ID,
    395                                                  unsigned /*IDHash*/,
    396                                                  FoldingSetNodeID &TempID,
    397                                                  Ctx Context) {
    398   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
    399   return TempID == ID;
    400 }
    401 template<typename T, typename Ctx>
    402 inline unsigned
    403 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
    404                                                       FoldingSetNodeID &TempID,
    405                                                       Ctx Context) {
    406   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
    407   return TempID.ComputeHash();
    408 }
    409 
    410 //===----------------------------------------------------------------------===//
    411 /// FoldingSet - This template class is used to instantiate a specialized
    412 /// implementation of the folding set to the node class T.  T must be a
    413 /// subclass of FoldingSetNode and implement a Profile function.
    414 ///
    415 /// Note that this set type is movable and move-assignable. However, its
    416 /// moved-from state is not a valid state for anything other than
    417 /// move-assigning and destroying. This is primarily to enable movable APIs
    418 /// that incorporate these objects.
    419 template <class T> class FoldingSet final : public FoldingSetImpl {
    420 private:
    421   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
    422   /// way to convert nodes into a unique specifier.
    423   void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
    424     T *TN = static_cast<T *>(N);
    425     FoldingSetTrait<T>::Profile(*TN, ID);
    426   }
    427 
    428   /// NodeEquals - Instantiations may optionally provide a way to compare a
    429   /// node with a specified ID.
    430   bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
    431                   FoldingSetNodeID &TempID) const override {
    432     T *TN = static_cast<T *>(N);
    433     return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
    434   }
    435 
    436   /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
    437   /// hash value directly from a node.
    438   unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
    439     T *TN = static_cast<T *>(N);
    440     return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
    441   }
    442 
    443 public:
    444   explicit FoldingSet(unsigned Log2InitSize = 6)
    445       : FoldingSetImpl(Log2InitSize) {}
    446 
    447   FoldingSet(FoldingSet &&Arg) : FoldingSetImpl(std::move(Arg)) {}
    448   FoldingSet &operator=(FoldingSet &&RHS) {
    449     (void)FoldingSetImpl::operator=(std::move(RHS));
    450     return *this;
    451   }
    452 
    453   typedef FoldingSetIterator<T> iterator;
    454   iterator begin() { return iterator(Buckets); }
    455   iterator end() { return iterator(Buckets+NumBuckets); }
    456 
    457   typedef FoldingSetIterator<const T> const_iterator;
    458   const_iterator begin() const { return const_iterator(Buckets); }
    459   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
    460 
    461   typedef FoldingSetBucketIterator<T> bucket_iterator;
    462 
    463   bucket_iterator bucket_begin(unsigned hash) {
    464     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
    465   }
    466 
    467   bucket_iterator bucket_end(unsigned hash) {
    468     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
    469   }
    470 
    471   /// GetOrInsertNode - If there is an existing simple Node exactly
    472   /// equal to the specified node, return it.  Otherwise, insert 'N' and
    473   /// return it instead.
    474   T *GetOrInsertNode(Node *N) {
    475     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
    476   }
    477 
    478   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    479   /// return it.  If not, return the insertion token that will make insertion
    480   /// faster.
    481   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    482     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
    483   }
    484 };
    485 
    486 //===----------------------------------------------------------------------===//
    487 /// ContextualFoldingSet - This template class is a further refinement
    488 /// of FoldingSet which provides a context argument when calling
    489 /// Profile on its nodes.  Currently, that argument is fixed at
    490 /// initialization time.
    491 ///
    492 /// T must be a subclass of FoldingSetNode and implement a Profile
    493 /// function with signature
    494 ///   void Profile(FoldingSetNodeID &, Ctx);
    495 template <class T, class Ctx>
    496 class ContextualFoldingSet final : public FoldingSetImpl {
    497   // Unfortunately, this can't derive from FoldingSet<T> because the
    498   // construction vtable for FoldingSet<T> requires
    499   // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
    500   // requires a single-argument T::Profile().
    501 
    502 private:
    503   Ctx Context;
    504 
    505   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
    506   /// way to convert nodes into a unique specifier.
    507   void GetNodeProfile(FoldingSetImpl::Node *N,
    508                       FoldingSetNodeID &ID) const override {
    509     T *TN = static_cast<T *>(N);
    510     ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
    511   }
    512 
    513   bool NodeEquals(FoldingSetImpl::Node *N, const FoldingSetNodeID &ID,
    514                   unsigned IDHash, FoldingSetNodeID &TempID) const override {
    515     T *TN = static_cast<T *>(N);
    516     return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
    517                                                      Context);
    518   }
    519 
    520   unsigned ComputeNodeHash(FoldingSetImpl::Node *N,
    521                            FoldingSetNodeID &TempID) const override {
    522     T *TN = static_cast<T *>(N);
    523     return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
    524   }
    525 
    526 public:
    527   explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
    528   : FoldingSetImpl(Log2InitSize), Context(Context)
    529   {}
    530 
    531   Ctx getContext() const { return Context; }
    532 
    533   typedef FoldingSetIterator<T> iterator;
    534   iterator begin() { return iterator(Buckets); }
    535   iterator end() { return iterator(Buckets+NumBuckets); }
    536 
    537   typedef FoldingSetIterator<const T> const_iterator;
    538   const_iterator begin() const { return const_iterator(Buckets); }
    539   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
    540 
    541   typedef FoldingSetBucketIterator<T> bucket_iterator;
    542 
    543   bucket_iterator bucket_begin(unsigned hash) {
    544     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
    545   }
    546 
    547   bucket_iterator bucket_end(unsigned hash) {
    548     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
    549   }
    550 
    551   /// GetOrInsertNode - If there is an existing simple Node exactly
    552   /// equal to the specified node, return it.  Otherwise, insert 'N'
    553   /// and return it instead.
    554   T *GetOrInsertNode(Node *N) {
    555     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
    556   }
    557 
    558   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it
    559   /// exists, return it.  If not, return the insertion token that will
    560   /// make insertion faster.
    561   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    562     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
    563   }
    564 };
    565 
    566 //===----------------------------------------------------------------------===//
    567 /// FoldingSetVector - This template class combines a FoldingSet and a vector
    568 /// to provide the interface of FoldingSet but with deterministic iteration
    569 /// order based on the insertion order. T must be a subclass of FoldingSetNode
    570 /// and implement a Profile function.
    571 template <class T, class VectorT = SmallVector<T*, 8>>
    572 class FoldingSetVector {
    573   FoldingSet<T> Set;
    574   VectorT Vector;
    575 
    576 public:
    577   explicit FoldingSetVector(unsigned Log2InitSize = 6)
    578       : Set(Log2InitSize) {
    579   }
    580 
    581   typedef pointee_iterator<typename VectorT::iterator> iterator;
    582   iterator begin() { return Vector.begin(); }
    583   iterator end()   { return Vector.end(); }
    584 
    585   typedef pointee_iterator<typename VectorT::const_iterator> const_iterator;
    586   const_iterator begin() const { return Vector.begin(); }
    587   const_iterator end()   const { return Vector.end(); }
    588 
    589   /// clear - Remove all nodes from the folding set.
    590   void clear() { Set.clear(); Vector.clear(); }
    591 
    592   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    593   /// return it.  If not, return the insertion token that will make insertion
    594   /// faster.
    595   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    596     return Set.FindNodeOrInsertPos(ID, InsertPos);
    597   }
    598 
    599   /// GetOrInsertNode - If there is an existing simple Node exactly
    600   /// equal to the specified node, return it.  Otherwise, insert 'N' and
    601   /// return it instead.
    602   T *GetOrInsertNode(T *N) {
    603     T *Result = Set.GetOrInsertNode(N);
    604     if (Result == N) Vector.push_back(N);
    605     return Result;
    606   }
    607 
    608   /// InsertNode - Insert the specified node into the folding set, knowing that
    609   /// it is not already in the folding set.  InsertPos must be obtained from
    610   /// FindNodeOrInsertPos.
    611   void InsertNode(T *N, void *InsertPos) {
    612     Set.InsertNode(N, InsertPos);
    613     Vector.push_back(N);
    614   }
    615 
    616   /// InsertNode - Insert the specified node into the folding set, knowing that
    617   /// it is not already in the folding set.
    618   void InsertNode(T *N) {
    619     Set.InsertNode(N);
    620     Vector.push_back(N);
    621   }
    622 
    623   /// size - Returns the number of nodes in the folding set.
    624   unsigned size() const { return Set.size(); }
    625 
    626   /// empty - Returns true if there are no nodes in the folding set.
    627   bool empty() const { return Set.empty(); }
    628 };
    629 
    630 //===----------------------------------------------------------------------===//
    631 /// FoldingSetIteratorImpl - This is the common iterator support shared by all
    632 /// folding sets, which knows how to walk the folding set hash table.
    633 class FoldingSetIteratorImpl {
    634 protected:
    635   FoldingSetNode *NodePtr;
    636 
    637   FoldingSetIteratorImpl(void **Bucket);
    638 
    639   void advance();
    640 
    641 public:
    642   bool operator==(const FoldingSetIteratorImpl &RHS) const {
    643     return NodePtr == RHS.NodePtr;
    644   }
    645   bool operator!=(const FoldingSetIteratorImpl &RHS) const {
    646     return NodePtr != RHS.NodePtr;
    647   }
    648 };
    649 
    650 template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl {
    651 public:
    652   explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
    653 
    654   T &operator*() const {
    655     return *static_cast<T*>(NodePtr);
    656   }
    657 
    658   T *operator->() const {
    659     return static_cast<T*>(NodePtr);
    660   }
    661 
    662   inline FoldingSetIterator &operator++() {          // Preincrement
    663     advance();
    664     return *this;
    665   }
    666   FoldingSetIterator operator++(int) {        // Postincrement
    667     FoldingSetIterator tmp = *this; ++*this; return tmp;
    668   }
    669 };
    670 
    671 //===----------------------------------------------------------------------===//
    672 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
    673 /// shared by all folding sets, which knows how to walk a particular bucket
    674 /// of a folding set hash table.
    675 
    676 class FoldingSetBucketIteratorImpl {
    677 protected:
    678   void *Ptr;
    679 
    680   explicit FoldingSetBucketIteratorImpl(void **Bucket);
    681 
    682   FoldingSetBucketIteratorImpl(void **Bucket, bool)
    683     : Ptr(Bucket) {}
    684 
    685   void advance() {
    686     void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
    687     uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
    688     Ptr = reinterpret_cast<void*>(x);
    689   }
    690 
    691 public:
    692   bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
    693     return Ptr == RHS.Ptr;
    694   }
    695   bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
    696     return Ptr != RHS.Ptr;
    697   }
    698 };
    699 
    700 template <class T>
    701 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
    702 public:
    703   explicit FoldingSetBucketIterator(void **Bucket) :
    704     FoldingSetBucketIteratorImpl(Bucket) {}
    705 
    706   FoldingSetBucketIterator(void **Bucket, bool) :
    707     FoldingSetBucketIteratorImpl(Bucket, true) {}
    708 
    709   T &operator*() const { return *static_cast<T*>(Ptr); }
    710   T *operator->() const { return static_cast<T*>(Ptr); }
    711 
    712   inline FoldingSetBucketIterator &operator++() { // Preincrement
    713     advance();
    714     return *this;
    715   }
    716   FoldingSetBucketIterator operator++(int) {      // Postincrement
    717     FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
    718   }
    719 };
    720 
    721 //===----------------------------------------------------------------------===//
    722 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
    723 /// types in an enclosing object so that they can be inserted into FoldingSets.
    724 template <typename T>
    725 class FoldingSetNodeWrapper : public FoldingSetNode {
    726   T data;
    727 
    728 public:
    729   template <typename... Ts>
    730   explicit FoldingSetNodeWrapper(Ts &&... Args)
    731       : data(std::forward<Ts>(Args)...) {}
    732 
    733   void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
    734 
    735   T &getValue() { return data; }
    736   const T &getValue() const { return data; }
    737 
    738   operator T&() { return data; }
    739   operator const T&() const { return data; }
    740 };
    741 
    742 //===----------------------------------------------------------------------===//
    743 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
    744 /// a FoldingSetNodeID value rather than requiring the node to recompute it
    745 /// each time it is needed. This trades space for speed (which can be
    746 /// significant if the ID is long), and it also permits nodes to drop
    747 /// information that would otherwise only be required for recomputing an ID.
    748 class FastFoldingSetNode : public FoldingSetNode {
    749   FoldingSetNodeID FastID;
    750 
    751 protected:
    752   explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
    753 
    754 public:
    755   void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); }
    756 };
    757 
    758 //===----------------------------------------------------------------------===//
    759 // Partial specializations of FoldingSetTrait.
    760 
    761 template<typename T> struct FoldingSetTrait<T*> {
    762   static inline void Profile(T *X, FoldingSetNodeID &ID) {
    763     ID.AddPointer(X);
    764   }
    765 };
    766 template <typename T1, typename T2>
    767 struct FoldingSetTrait<std::pair<T1, T2>> {
    768   static inline void Profile(const std::pair<T1, T2> &P,
    769                              FoldingSetNodeID &ID) {
    770     ID.Add(P.first);
    771     ID.Add(P.second);
    772   }
    773 };
    774 
    775 } // end namespace llvm
    776 
    777 #endif // LLVM_ADT_FOLDINGSET_H
    778