Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the SmallVector class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_SMALLVECTOR_H
     15 #define LLVM_ADT_SMALLVECTOR_H
     16 
     17 #include "llvm/ADT/iterator_range.h"
     18 #include "llvm/Support/AlignOf.h"
     19 #include "llvm/Support/Compiler.h"
     20 #include "llvm/Support/MathExtras.h"
     21 #include "llvm/Support/type_traits.h"
     22 #include <algorithm>
     23 #include <cassert>
     24 #include <cstddef>
     25 #include <cstdlib>
     26 #include <cstring>
     27 #include <initializer_list>
     28 #include <iterator>
     29 #include <memory>
     30 #include <new>
     31 #include <type_traits>
     32 #include <utility>
     33 
     34 namespace llvm {
     35 
     36 /// This is all the non-templated stuff common to all SmallVectors.
     37 class SmallVectorBase {
     38 protected:
     39   void *BeginX, *EndX, *CapacityX;
     40 
     41 protected:
     42   SmallVectorBase(void *FirstEl, size_t Size)
     43     : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {}
     44 
     45   /// This is an implementation of the grow() method which only works
     46   /// on POD-like data types and is out of line to reduce code duplication.
     47   void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize);
     48 
     49 public:
     50   /// This returns size()*sizeof(T).
     51   size_t size_in_bytes() const {
     52     return size_t((char*)EndX - (char*)BeginX);
     53   }
     54 
     55   /// capacity_in_bytes - This returns capacity()*sizeof(T).
     56   size_t capacity_in_bytes() const {
     57     return size_t((char*)CapacityX - (char*)BeginX);
     58   }
     59 
     60   LLVM_NODISCARD bool empty() const { return BeginX == EndX; }
     61 };
     62 
     63 /// This is the part of SmallVectorTemplateBase which does not depend on whether
     64 /// the type T is a POD. The extra dummy template argument is used by ArrayRef
     65 /// to avoid unnecessarily requiring T to be complete.
     66 template <typename T, typename = void>
     67 class SmallVectorTemplateCommon : public SmallVectorBase {
     68 private:
     69   template <typename, unsigned> friend struct SmallVectorStorage;
     70 
     71   // Allocate raw space for N elements of type T.  If T has a ctor or dtor, we
     72   // don't want it to be automatically run, so we need to represent the space as
     73   // something else.  Use an array of char of sufficient alignment.
     74   typedef AlignedCharArrayUnion<T> U;
     75   U FirstEl;
     76   // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
     77 
     78 protected:
     79   SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
     80 
     81   void grow_pod(size_t MinSizeInBytes, size_t TSize) {
     82     SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize);
     83   }
     84 
     85   /// Return true if this is a smallvector which has not had dynamic
     86   /// memory allocated for it.
     87   bool isSmall() const {
     88     return BeginX == static_cast<const void*>(&FirstEl);
     89   }
     90 
     91   /// Put this vector in a state of being small.
     92   void resetToSmall() {
     93     BeginX = EndX = CapacityX = &FirstEl;
     94   }
     95 
     96   void setEnd(T *P) { this->EndX = P; }
     97 
     98 public:
     99   typedef size_t size_type;
    100   typedef ptrdiff_t difference_type;
    101   typedef T value_type;
    102   typedef T *iterator;
    103   typedef const T *const_iterator;
    104 
    105   typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
    106   typedef std::reverse_iterator<iterator> reverse_iterator;
    107 
    108   typedef T &reference;
    109   typedef const T &const_reference;
    110   typedef T *pointer;
    111   typedef const T *const_pointer;
    112 
    113   // forward iterator creation methods.
    114   LLVM_ATTRIBUTE_ALWAYS_INLINE
    115   iterator begin() { return (iterator)this->BeginX; }
    116   LLVM_ATTRIBUTE_ALWAYS_INLINE
    117   const_iterator begin() const { return (const_iterator)this->BeginX; }
    118   LLVM_ATTRIBUTE_ALWAYS_INLINE
    119   iterator end() { return (iterator)this->EndX; }
    120   LLVM_ATTRIBUTE_ALWAYS_INLINE
    121   const_iterator end() const { return (const_iterator)this->EndX; }
    122 
    123 protected:
    124   iterator capacity_ptr() { return (iterator)this->CapacityX; }
    125   const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
    126 
    127 public:
    128   // reverse iterator creation methods.
    129   reverse_iterator rbegin()            { return reverse_iterator(end()); }
    130   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
    131   reverse_iterator rend()              { return reverse_iterator(begin()); }
    132   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
    133 
    134   LLVM_ATTRIBUTE_ALWAYS_INLINE
    135   size_type size() const { return end()-begin(); }
    136   size_type max_size() const { return size_type(-1) / sizeof(T); }
    137 
    138   /// Return the total number of elements in the currently allocated buffer.
    139   size_t capacity() const { return capacity_ptr() - begin(); }
    140 
    141   /// Return a pointer to the vector's buffer, even if empty().
    142   pointer data() { return pointer(begin()); }
    143   /// Return a pointer to the vector's buffer, even if empty().
    144   const_pointer data() const { return const_pointer(begin()); }
    145 
    146   LLVM_ATTRIBUTE_ALWAYS_INLINE
    147   reference operator[](size_type idx) {
    148     assert(idx < size());
    149     return begin()[idx];
    150   }
    151   LLVM_ATTRIBUTE_ALWAYS_INLINE
    152   const_reference operator[](size_type idx) const {
    153     assert(idx < size());
    154     return begin()[idx];
    155   }
    156 
    157   reference front() {
    158     assert(!empty());
    159     return begin()[0];
    160   }
    161   const_reference front() const {
    162     assert(!empty());
    163     return begin()[0];
    164   }
    165 
    166   reference back() {
    167     assert(!empty());
    168     return end()[-1];
    169   }
    170   const_reference back() const {
    171     assert(!empty());
    172     return end()[-1];
    173   }
    174 };
    175 
    176 /// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
    177 /// implementations that are designed to work with non-POD-like T's.
    178 template <typename T, bool isPodLike>
    179 class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
    180 protected:
    181   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
    182 
    183   static void destroy_range(T *S, T *E) {
    184     while (S != E) {
    185       --E;
    186       E->~T();
    187     }
    188   }
    189 
    190   /// Move the range [I, E) into the uninitialized memory starting with "Dest",
    191   /// constructing elements as needed.
    192   template<typename It1, typename It2>
    193   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
    194     std::uninitialized_copy(std::make_move_iterator(I),
    195                             std::make_move_iterator(E), Dest);
    196   }
    197 
    198   /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
    199   /// constructing elements as needed.
    200   template<typename It1, typename It2>
    201   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    202     std::uninitialized_copy(I, E, Dest);
    203   }
    204 
    205   /// Grow the allocated memory (without initializing new elements), doubling
    206   /// the size of the allocated memory. Guarantees space for at least one more
    207   /// element, or MinSize more elements if specified.
    208   void grow(size_t MinSize = 0);
    209 
    210 public:
    211   void push_back(const T &Elt) {
    212     if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
    213       this->grow();
    214     ::new ((void*) this->end()) T(Elt);
    215     this->setEnd(this->end()+1);
    216   }
    217 
    218   void push_back(T &&Elt) {
    219     if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
    220       this->grow();
    221     ::new ((void*) this->end()) T(::std::move(Elt));
    222     this->setEnd(this->end()+1);
    223   }
    224 
    225   void pop_back() {
    226     this->setEnd(this->end()-1);
    227     this->end()->~T();
    228   }
    229 };
    230 
    231 // Define this out-of-line to dissuade the C++ compiler from inlining it.
    232 template <typename T, bool isPodLike>
    233 void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
    234   size_t CurCapacity = this->capacity();
    235   size_t CurSize = this->size();
    236   // Always grow, even from zero.
    237   size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2));
    238   if (NewCapacity < MinSize)
    239     NewCapacity = MinSize;
    240   T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
    241 
    242   // Move the elements over.
    243   this->uninitialized_move(this->begin(), this->end(), NewElts);
    244 
    245   // Destroy the original elements.
    246   destroy_range(this->begin(), this->end());
    247 
    248   // If this wasn't grown from the inline copy, deallocate the old space.
    249   if (!this->isSmall())
    250     free(this->begin());
    251 
    252   this->setEnd(NewElts+CurSize);
    253   this->BeginX = NewElts;
    254   this->CapacityX = this->begin()+NewCapacity;
    255 }
    256 
    257 
    258 /// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
    259 /// implementations that are designed to work with POD-like T's.
    260 template <typename T>
    261 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
    262 protected:
    263   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
    264 
    265   // No need to do a destroy loop for POD's.
    266   static void destroy_range(T *, T *) {}
    267 
    268   /// Move the range [I, E) onto the uninitialized memory
    269   /// starting with "Dest", constructing elements into it as needed.
    270   template<typename It1, typename It2>
    271   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
    272     // Just do a copy.
    273     uninitialized_copy(I, E, Dest);
    274   }
    275 
    276   /// Copy the range [I, E) onto the uninitialized memory
    277   /// starting with "Dest", constructing elements into it as needed.
    278   template<typename It1, typename It2>
    279   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    280     // Arbitrary iterator types; just use the basic implementation.
    281     std::uninitialized_copy(I, E, Dest);
    282   }
    283 
    284   /// Copy the range [I, E) onto the uninitialized memory
    285   /// starting with "Dest", constructing elements into it as needed.
    286   template <typename T1, typename T2>
    287   static void uninitialized_copy(
    288       T1 *I, T1 *E, T2 *Dest,
    289       typename std::enable_if<std::is_same<typename std::remove_const<T1>::type,
    290                                            T2>::value>::type * = nullptr) {
    291     // Use memcpy for PODs iterated by pointers (which includes SmallVector
    292     // iterators): std::uninitialized_copy optimizes to memmove, but we can
    293     // use memcpy here. Note that I and E are iterators and thus might be
    294     // invalid for memcpy if they are equal.
    295     if (I != E)
    296       memcpy(Dest, I, (E - I) * sizeof(T));
    297   }
    298 
    299   /// Double the size of the allocated memory, guaranteeing space for at
    300   /// least one more element or MinSize if specified.
    301   void grow(size_t MinSize = 0) {
    302     this->grow_pod(MinSize*sizeof(T), sizeof(T));
    303   }
    304 
    305 public:
    306   void push_back(const T &Elt) {
    307     if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
    308       this->grow();
    309     memcpy(this->end(), &Elt, sizeof(T));
    310     this->setEnd(this->end()+1);
    311   }
    312 
    313   void pop_back() {
    314     this->setEnd(this->end()-1);
    315   }
    316 };
    317 
    318 /// This class consists of common code factored out of the SmallVector class to
    319 /// reduce code duplication based on the SmallVector 'N' template parameter.
    320 template <typename T>
    321 class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
    322   typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
    323 
    324 public:
    325   typedef typename SuperClass::iterator iterator;
    326   typedef typename SuperClass::const_iterator const_iterator;
    327   typedef typename SuperClass::size_type size_type;
    328 
    329 protected:
    330   // Default ctor - Initialize to empty.
    331   explicit SmallVectorImpl(unsigned N)
    332     : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
    333   }
    334 
    335 public:
    336   SmallVectorImpl(const SmallVectorImpl &) = delete;
    337 
    338   ~SmallVectorImpl() {
    339     // Destroy the constructed elements in the vector.
    340     this->destroy_range(this->begin(), this->end());
    341 
    342     // If this wasn't grown from the inline copy, deallocate the old space.
    343     if (!this->isSmall())
    344       free(this->begin());
    345   }
    346 
    347   void clear() {
    348     this->destroy_range(this->begin(), this->end());
    349     this->EndX = this->BeginX;
    350   }
    351 
    352   void resize(size_type N) {
    353     if (N < this->size()) {
    354       this->destroy_range(this->begin()+N, this->end());
    355       this->setEnd(this->begin()+N);
    356     } else if (N > this->size()) {
    357       if (this->capacity() < N)
    358         this->grow(N);
    359       for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
    360         new (&*I) T();
    361       this->setEnd(this->begin()+N);
    362     }
    363   }
    364 
    365   void resize(size_type N, const T &NV) {
    366     if (N < this->size()) {
    367       this->destroy_range(this->begin()+N, this->end());
    368       this->setEnd(this->begin()+N);
    369     } else if (N > this->size()) {
    370       if (this->capacity() < N)
    371         this->grow(N);
    372       std::uninitialized_fill(this->end(), this->begin()+N, NV);
    373       this->setEnd(this->begin()+N);
    374     }
    375   }
    376 
    377   void reserve(size_type N) {
    378     if (this->capacity() < N)
    379       this->grow(N);
    380   }
    381 
    382   LLVM_NODISCARD T pop_back_val() {
    383     T Result = ::std::move(this->back());
    384     this->pop_back();
    385     return Result;
    386   }
    387 
    388   void swap(SmallVectorImpl &RHS);
    389 
    390   /// Add the specified range to the end of the SmallVector.
    391   template<typename in_iter>
    392   void append(in_iter in_start, in_iter in_end) {
    393     size_type NumInputs = std::distance(in_start, in_end);
    394     // Grow allocated space if needed.
    395     if (NumInputs > size_type(this->capacity_ptr()-this->end()))
    396       this->grow(this->size()+NumInputs);
    397 
    398     // Copy the new elements over.
    399     this->uninitialized_copy(in_start, in_end, this->end());
    400     this->setEnd(this->end() + NumInputs);
    401   }
    402 
    403   /// Add the specified range to the end of the SmallVector.
    404   void append(size_type NumInputs, const T &Elt) {
    405     // Grow allocated space if needed.
    406     if (NumInputs > size_type(this->capacity_ptr()-this->end()))
    407       this->grow(this->size()+NumInputs);
    408 
    409     // Copy the new elements over.
    410     std::uninitialized_fill_n(this->end(), NumInputs, Elt);
    411     this->setEnd(this->end() + NumInputs);
    412   }
    413 
    414   void append(std::initializer_list<T> IL) {
    415     append(IL.begin(), IL.end());
    416   }
    417 
    418   void assign(size_type NumElts, const T &Elt) {
    419     clear();
    420     if (this->capacity() < NumElts)
    421       this->grow(NumElts);
    422     this->setEnd(this->begin()+NumElts);
    423     std::uninitialized_fill(this->begin(), this->end(), Elt);
    424   }
    425 
    426   void assign(std::initializer_list<T> IL) {
    427     clear();
    428     append(IL);
    429   }
    430 
    431   iterator erase(const_iterator CI) {
    432     // Just cast away constness because this is a non-const member function.
    433     iterator I = const_cast<iterator>(CI);
    434 
    435     assert(I >= this->begin() && "Iterator to erase is out of bounds.");
    436     assert(I < this->end() && "Erasing at past-the-end iterator.");
    437 
    438     iterator N = I;
    439     // Shift all elts down one.
    440     std::move(I+1, this->end(), I);
    441     // Drop the last elt.
    442     this->pop_back();
    443     return(N);
    444   }
    445 
    446   iterator erase(const_iterator CS, const_iterator CE) {
    447     // Just cast away constness because this is a non-const member function.
    448     iterator S = const_cast<iterator>(CS);
    449     iterator E = const_cast<iterator>(CE);
    450 
    451     assert(S >= this->begin() && "Range to erase is out of bounds.");
    452     assert(S <= E && "Trying to erase invalid range.");
    453     assert(E <= this->end() && "Trying to erase past the end.");
    454 
    455     iterator N = S;
    456     // Shift all elts down.
    457     iterator I = std::move(E, this->end(), S);
    458     // Drop the last elts.
    459     this->destroy_range(I, this->end());
    460     this->setEnd(I);
    461     return(N);
    462   }
    463 
    464   iterator insert(iterator I, T &&Elt) {
    465     if (I == this->end()) {  // Important special case for empty vector.
    466       this->push_back(::std::move(Elt));
    467       return this->end()-1;
    468     }
    469 
    470     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    471     assert(I <= this->end() && "Inserting past the end of the vector.");
    472 
    473     if (this->EndX >= this->CapacityX) {
    474       size_t EltNo = I-this->begin();
    475       this->grow();
    476       I = this->begin()+EltNo;
    477     }
    478 
    479     ::new ((void*) this->end()) T(::std::move(this->back()));
    480     // Push everything else over.
    481     std::move_backward(I, this->end()-1, this->end());
    482     this->setEnd(this->end()+1);
    483 
    484     // If we just moved the element we're inserting, be sure to update
    485     // the reference.
    486     T *EltPtr = &Elt;
    487     if (I <= EltPtr && EltPtr < this->EndX)
    488       ++EltPtr;
    489 
    490     *I = ::std::move(*EltPtr);
    491     return I;
    492   }
    493 
    494   iterator insert(iterator I, const T &Elt) {
    495     if (I == this->end()) {  // Important special case for empty vector.
    496       this->push_back(Elt);
    497       return this->end()-1;
    498     }
    499 
    500     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    501     assert(I <= this->end() && "Inserting past the end of the vector.");
    502 
    503     if (this->EndX >= this->CapacityX) {
    504       size_t EltNo = I-this->begin();
    505       this->grow();
    506       I = this->begin()+EltNo;
    507     }
    508     ::new ((void*) this->end()) T(std::move(this->back()));
    509     // Push everything else over.
    510     std::move_backward(I, this->end()-1, this->end());
    511     this->setEnd(this->end()+1);
    512 
    513     // If we just moved the element we're inserting, be sure to update
    514     // the reference.
    515     const T *EltPtr = &Elt;
    516     if (I <= EltPtr && EltPtr < this->EndX)
    517       ++EltPtr;
    518 
    519     *I = *EltPtr;
    520     return I;
    521   }
    522 
    523   iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
    524     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    525     size_t InsertElt = I - this->begin();
    526 
    527     if (I == this->end()) {  // Important special case for empty vector.
    528       append(NumToInsert, Elt);
    529       return this->begin()+InsertElt;
    530     }
    531 
    532     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    533     assert(I <= this->end() && "Inserting past the end of the vector.");
    534 
    535     // Ensure there is enough space.
    536     reserve(this->size() + NumToInsert);
    537 
    538     // Uninvalidate the iterator.
    539     I = this->begin()+InsertElt;
    540 
    541     // If there are more elements between the insertion point and the end of the
    542     // range than there are being inserted, we can use a simple approach to
    543     // insertion.  Since we already reserved space, we know that this won't
    544     // reallocate the vector.
    545     if (size_t(this->end()-I) >= NumToInsert) {
    546       T *OldEnd = this->end();
    547       append(std::move_iterator<iterator>(this->end() - NumToInsert),
    548              std::move_iterator<iterator>(this->end()));
    549 
    550       // Copy the existing elements that get replaced.
    551       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
    552 
    553       std::fill_n(I, NumToInsert, Elt);
    554       return I;
    555     }
    556 
    557     // Otherwise, we're inserting more elements than exist already, and we're
    558     // not inserting at the end.
    559 
    560     // Move over the elements that we're about to overwrite.
    561     T *OldEnd = this->end();
    562     this->setEnd(this->end() + NumToInsert);
    563     size_t NumOverwritten = OldEnd-I;
    564     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
    565 
    566     // Replace the overwritten part.
    567     std::fill_n(I, NumOverwritten, Elt);
    568 
    569     // Insert the non-overwritten middle part.
    570     std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
    571     return I;
    572   }
    573 
    574   template<typename ItTy>
    575   iterator insert(iterator I, ItTy From, ItTy To) {
    576     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    577     size_t InsertElt = I - this->begin();
    578 
    579     if (I == this->end()) {  // Important special case for empty vector.
    580       append(From, To);
    581       return this->begin()+InsertElt;
    582     }
    583 
    584     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    585     assert(I <= this->end() && "Inserting past the end of the vector.");
    586 
    587     size_t NumToInsert = std::distance(From, To);
    588 
    589     // Ensure there is enough space.
    590     reserve(this->size() + NumToInsert);
    591 
    592     // Uninvalidate the iterator.
    593     I = this->begin()+InsertElt;
    594 
    595     // If there are more elements between the insertion point and the end of the
    596     // range than there are being inserted, we can use a simple approach to
    597     // insertion.  Since we already reserved space, we know that this won't
    598     // reallocate the vector.
    599     if (size_t(this->end()-I) >= NumToInsert) {
    600       T *OldEnd = this->end();
    601       append(std::move_iterator<iterator>(this->end() - NumToInsert),
    602              std::move_iterator<iterator>(this->end()));
    603 
    604       // Copy the existing elements that get replaced.
    605       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
    606 
    607       std::copy(From, To, I);
    608       return I;
    609     }
    610 
    611     // Otherwise, we're inserting more elements than exist already, and we're
    612     // not inserting at the end.
    613 
    614     // Move over the elements that we're about to overwrite.
    615     T *OldEnd = this->end();
    616     this->setEnd(this->end() + NumToInsert);
    617     size_t NumOverwritten = OldEnd-I;
    618     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
    619 
    620     // Replace the overwritten part.
    621     for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
    622       *J = *From;
    623       ++J; ++From;
    624     }
    625 
    626     // Insert the non-overwritten middle part.
    627     this->uninitialized_copy(From, To, OldEnd);
    628     return I;
    629   }
    630 
    631   void insert(iterator I, std::initializer_list<T> IL) {
    632     insert(I, IL.begin(), IL.end());
    633   }
    634 
    635   template <typename... ArgTypes> void emplace_back(ArgTypes &&... Args) {
    636     if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
    637       this->grow();
    638     ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
    639     this->setEnd(this->end() + 1);
    640   }
    641 
    642   SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
    643 
    644   SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
    645 
    646   bool operator==(const SmallVectorImpl &RHS) const {
    647     if (this->size() != RHS.size()) return false;
    648     return std::equal(this->begin(), this->end(), RHS.begin());
    649   }
    650   bool operator!=(const SmallVectorImpl &RHS) const {
    651     return !(*this == RHS);
    652   }
    653 
    654   bool operator<(const SmallVectorImpl &RHS) const {
    655     return std::lexicographical_compare(this->begin(), this->end(),
    656                                         RHS.begin(), RHS.end());
    657   }
    658 
    659   /// Set the array size to \p N, which the current array must have enough
    660   /// capacity for.
    661   ///
    662   /// This does not construct or destroy any elements in the vector.
    663   ///
    664   /// Clients can use this in conjunction with capacity() to write past the end
    665   /// of the buffer when they know that more elements are available, and only
    666   /// update the size later. This avoids the cost of value initializing elements
    667   /// which will only be overwritten.
    668   void set_size(size_type N) {
    669     assert(N <= this->capacity());
    670     this->setEnd(this->begin() + N);
    671   }
    672 };
    673 
    674 template <typename T>
    675 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
    676   if (this == &RHS) return;
    677 
    678   // We can only avoid copying elements if neither vector is small.
    679   if (!this->isSmall() && !RHS.isSmall()) {
    680     std::swap(this->BeginX, RHS.BeginX);
    681     std::swap(this->EndX, RHS.EndX);
    682     std::swap(this->CapacityX, RHS.CapacityX);
    683     return;
    684   }
    685   if (RHS.size() > this->capacity())
    686     this->grow(RHS.size());
    687   if (this->size() > RHS.capacity())
    688     RHS.grow(this->size());
    689 
    690   // Swap the shared elements.
    691   size_t NumShared = this->size();
    692   if (NumShared > RHS.size()) NumShared = RHS.size();
    693   for (size_type i = 0; i != NumShared; ++i)
    694     std::swap((*this)[i], RHS[i]);
    695 
    696   // Copy over the extra elts.
    697   if (this->size() > RHS.size()) {
    698     size_t EltDiff = this->size() - RHS.size();
    699     this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
    700     RHS.setEnd(RHS.end()+EltDiff);
    701     this->destroy_range(this->begin()+NumShared, this->end());
    702     this->setEnd(this->begin()+NumShared);
    703   } else if (RHS.size() > this->size()) {
    704     size_t EltDiff = RHS.size() - this->size();
    705     this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
    706     this->setEnd(this->end() + EltDiff);
    707     this->destroy_range(RHS.begin()+NumShared, RHS.end());
    708     RHS.setEnd(RHS.begin()+NumShared);
    709   }
    710 }
    711 
    712 template <typename T>
    713 SmallVectorImpl<T> &SmallVectorImpl<T>::
    714   operator=(const SmallVectorImpl<T> &RHS) {
    715   // Avoid self-assignment.
    716   if (this == &RHS) return *this;
    717 
    718   // If we already have sufficient space, assign the common elements, then
    719   // destroy any excess.
    720   size_t RHSSize = RHS.size();
    721   size_t CurSize = this->size();
    722   if (CurSize >= RHSSize) {
    723     // Assign common elements.
    724     iterator NewEnd;
    725     if (RHSSize)
    726       NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
    727     else
    728       NewEnd = this->begin();
    729 
    730     // Destroy excess elements.
    731     this->destroy_range(NewEnd, this->end());
    732 
    733     // Trim.
    734     this->setEnd(NewEnd);
    735     return *this;
    736   }
    737 
    738   // If we have to grow to have enough elements, destroy the current elements.
    739   // This allows us to avoid copying them during the grow.
    740   // FIXME: don't do this if they're efficiently moveable.
    741   if (this->capacity() < RHSSize) {
    742     // Destroy current elements.
    743     this->destroy_range(this->begin(), this->end());
    744     this->setEnd(this->begin());
    745     CurSize = 0;
    746     this->grow(RHSSize);
    747   } else if (CurSize) {
    748     // Otherwise, use assignment for the already-constructed elements.
    749     std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
    750   }
    751 
    752   // Copy construct the new elements in place.
    753   this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
    754                            this->begin()+CurSize);
    755 
    756   // Set end.
    757   this->setEnd(this->begin()+RHSSize);
    758   return *this;
    759 }
    760 
    761 template <typename T>
    762 SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
    763   // Avoid self-assignment.
    764   if (this == &RHS) return *this;
    765 
    766   // If the RHS isn't small, clear this vector and then steal its buffer.
    767   if (!RHS.isSmall()) {
    768     this->destroy_range(this->begin(), this->end());
    769     if (!this->isSmall()) free(this->begin());
    770     this->BeginX = RHS.BeginX;
    771     this->EndX = RHS.EndX;
    772     this->CapacityX = RHS.CapacityX;
    773     RHS.resetToSmall();
    774     return *this;
    775   }
    776 
    777   // If we already have sufficient space, assign the common elements, then
    778   // destroy any excess.
    779   size_t RHSSize = RHS.size();
    780   size_t CurSize = this->size();
    781   if (CurSize >= RHSSize) {
    782     // Assign common elements.
    783     iterator NewEnd = this->begin();
    784     if (RHSSize)
    785       NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
    786 
    787     // Destroy excess elements and trim the bounds.
    788     this->destroy_range(NewEnd, this->end());
    789     this->setEnd(NewEnd);
    790 
    791     // Clear the RHS.
    792     RHS.clear();
    793 
    794     return *this;
    795   }
    796 
    797   // If we have to grow to have enough elements, destroy the current elements.
    798   // This allows us to avoid copying them during the grow.
    799   // FIXME: this may not actually make any sense if we can efficiently move
    800   // elements.
    801   if (this->capacity() < RHSSize) {
    802     // Destroy current elements.
    803     this->destroy_range(this->begin(), this->end());
    804     this->setEnd(this->begin());
    805     CurSize = 0;
    806     this->grow(RHSSize);
    807   } else if (CurSize) {
    808     // Otherwise, use assignment for the already-constructed elements.
    809     std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
    810   }
    811 
    812   // Move-construct the new elements in place.
    813   this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
    814                            this->begin()+CurSize);
    815 
    816   // Set end.
    817   this->setEnd(this->begin()+RHSSize);
    818 
    819   RHS.clear();
    820   return *this;
    821 }
    822 
    823 /// Storage for the SmallVector elements which aren't contained in
    824 /// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1'
    825 /// element is in the base class. This is specialized for the N=1 and N=0 cases
    826 /// to avoid allocating unnecessary storage.
    827 template <typename T, unsigned N>
    828 struct SmallVectorStorage {
    829   typename SmallVectorTemplateCommon<T>::U InlineElts[N - 1];
    830 };
    831 template <typename T> struct SmallVectorStorage<T, 1> {};
    832 template <typename T> struct SmallVectorStorage<T, 0> {};
    833 
    834 /// This is a 'vector' (really, a variable-sized array), optimized
    835 /// for the case when the array is small.  It contains some number of elements
    836 /// in-place, which allows it to avoid heap allocation when the actual number of
    837 /// elements is below that threshold.  This allows normal "small" cases to be
    838 /// fast without losing generality for large inputs.
    839 ///
    840 /// Note that this does not attempt to be exception safe.
    841 ///
    842 template <typename T, unsigned N>
    843 class SmallVector : public SmallVectorImpl<T> {
    844   /// Inline space for elements which aren't stored in the base class.
    845   SmallVectorStorage<T, N> Storage;
    846 
    847 public:
    848   SmallVector() : SmallVectorImpl<T>(N) {
    849   }
    850 
    851   explicit SmallVector(size_t Size, const T &Value = T())
    852     : SmallVectorImpl<T>(N) {
    853     this->assign(Size, Value);
    854   }
    855 
    856   template<typename ItTy>
    857   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
    858     this->append(S, E);
    859   }
    860 
    861   template <typename RangeTy>
    862   explicit SmallVector(const iterator_range<RangeTy> &R)
    863       : SmallVectorImpl<T>(N) {
    864     this->append(R.begin(), R.end());
    865   }
    866 
    867   SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
    868     this->assign(IL);
    869   }
    870 
    871   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
    872     if (!RHS.empty())
    873       SmallVectorImpl<T>::operator=(RHS);
    874   }
    875 
    876   const SmallVector &operator=(const SmallVector &RHS) {
    877     SmallVectorImpl<T>::operator=(RHS);
    878     return *this;
    879   }
    880 
    881   SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
    882     if (!RHS.empty())
    883       SmallVectorImpl<T>::operator=(::std::move(RHS));
    884   }
    885 
    886   const SmallVector &operator=(SmallVector &&RHS) {
    887     SmallVectorImpl<T>::operator=(::std::move(RHS));
    888     return *this;
    889   }
    890 
    891   SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
    892     if (!RHS.empty())
    893       SmallVectorImpl<T>::operator=(::std::move(RHS));
    894   }
    895 
    896   const SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
    897     SmallVectorImpl<T>::operator=(::std::move(RHS));
    898     return *this;
    899   }
    900 
    901   const SmallVector &operator=(std::initializer_list<T> IL) {
    902     this->assign(IL);
    903     return *this;
    904   }
    905 };
    906 
    907 template<typename T, unsigned N>
    908 static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
    909   return X.capacity_in_bytes();
    910 }
    911 
    912 } // end namespace llvm
    913 
    914 namespace std {
    915 
    916   /// Implement std::swap in terms of SmallVector swap.
    917   template<typename T>
    918   inline void
    919   swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
    920     LHS.swap(RHS);
    921   }
    922 
    923   /// Implement std::swap in terms of SmallVector swap.
    924   template<typename T, unsigned N>
    925   inline void
    926   swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
    927     LHS.swap(RHS);
    928   }
    929 
    930 } // end namespace std
    931 
    932 #endif // LLVM_ADT_SMALLVECTOR_H
    933