Home | History | Annotate | Download | only in Analysis
      1 //===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief This file exposes an interface to building/using memory SSA to
     12 /// walk memory instructions using a use/def graph.
     13 ///
     14 /// Memory SSA class builds an SSA form that links together memory access
     15 /// instructions such as loads, stores, atomics, and calls. Additionally, it
     16 /// does a trivial form of "heap versioning" Every time the memory state changes
     17 /// in the program, we generate a new heap version. It generates
     18 /// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions.
     19 ///
     20 /// As a trivial example,
     21 /// define i32 @main() #0 {
     22 /// entry:
     23 ///   %call = call noalias i8* @_Znwm(i64 4) #2
     24 ///   %0 = bitcast i8* %call to i32*
     25 ///   %call1 = call noalias i8* @_Znwm(i64 4) #2
     26 ///   %1 = bitcast i8* %call1 to i32*
     27 ///   store i32 5, i32* %0, align 4
     28 ///   store i32 7, i32* %1, align 4
     29 ///   %2 = load i32* %0, align 4
     30 ///   %3 = load i32* %1, align 4
     31 ///   %add = add nsw i32 %2, %3
     32 ///   ret i32 %add
     33 /// }
     34 ///
     35 /// Will become
     36 /// define i32 @main() #0 {
     37 /// entry:
     38 ///   ; 1 = MemoryDef(0)
     39 ///   %call = call noalias i8* @_Znwm(i64 4) #3
     40 ///   %2 = bitcast i8* %call to i32*
     41 ///   ; 2 = MemoryDef(1)
     42 ///   %call1 = call noalias i8* @_Znwm(i64 4) #3
     43 ///   %4 = bitcast i8* %call1 to i32*
     44 ///   ; 3 = MemoryDef(2)
     45 ///   store i32 5, i32* %2, align 4
     46 ///   ; 4 = MemoryDef(3)
     47 ///   store i32 7, i32* %4, align 4
     48 ///   ; MemoryUse(3)
     49 ///   %7 = load i32* %2, align 4
     50 ///   ; MemoryUse(4)
     51 ///   %8 = load i32* %4, align 4
     52 ///   %add = add nsw i32 %7, %8
     53 ///   ret i32 %add
     54 /// }
     55 ///
     56 /// Given this form, all the stores that could ever effect the load at %8 can be
     57 /// gotten by using the MemoryUse associated with it, and walking from use to
     58 /// def until you hit the top of the function.
     59 ///
     60 /// Each def also has a list of users associated with it, so you can walk from
     61 /// both def to users, and users to defs. Note that we disambiguate MemoryUses,
     62 /// but not the RHS of MemoryDefs. You can see this above at %7, which would
     63 /// otherwise be a MemoryUse(4). Being disambiguated means that for a given
     64 /// store, all the MemoryUses on its use lists are may-aliases of that store
     65 /// (but the MemoryDefs on its use list may not be).
     66 ///
     67 /// MemoryDefs are not disambiguated because it would require multiple reaching
     68 /// definitions, which would require multiple phis, and multiple memoryaccesses
     69 /// per instruction.
     70 //===----------------------------------------------------------------------===//
     71 
     72 #ifndef LLVM_ANALYSIS_MEMORYSSA_H
     73 #define LLVM_ANALYSIS_MEMORYSSA_H
     74 
     75 #include "llvm/ADT/DenseMap.h"
     76 #include "llvm/ADT/GraphTraits.h"
     77 #include "llvm/ADT/SmallPtrSet.h"
     78 #include "llvm/ADT/SmallVector.h"
     79 #include "llvm/ADT/ilist.h"
     80 #include "llvm/ADT/ilist_node.h"
     81 #include "llvm/ADT/iterator.h"
     82 #include "llvm/ADT/iterator_range.h"
     83 #include "llvm/Analysis/AliasAnalysis.h"
     84 #include "llvm/Analysis/MemoryLocation.h"
     85 #include "llvm/Analysis/PHITransAddr.h"
     86 #include "llvm/IR/BasicBlock.h"
     87 #include "llvm/IR/Dominators.h"
     88 #include "llvm/IR/Module.h"
     89 #include "llvm/IR/OperandTraits.h"
     90 #include "llvm/IR/Type.h"
     91 #include "llvm/IR/Use.h"
     92 #include "llvm/IR/User.h"
     93 #include "llvm/IR/Value.h"
     94 #include "llvm/Pass.h"
     95 #include "llvm/Support/Casting.h"
     96 #include "llvm/Support/ErrorHandling.h"
     97 #include <algorithm>
     98 #include <cassert>
     99 #include <cstddef>
    100 #include <iterator>
    101 #include <memory>
    102 #include <utility>
    103 
    104 namespace llvm {
    105 
    106 class Function;
    107 class Instruction;
    108 class MemoryAccess;
    109 class LLVMContext;
    110 class raw_ostream;
    111 namespace MSSAHelpers {
    112 struct AllAccessTag {};
    113 struct DefsOnlyTag {};
    114 }
    115 
    116 enum {
    117   // Used to signify what the default invalid ID is for MemoryAccess's
    118   // getID()
    119   INVALID_MEMORYACCESS_ID = 0
    120 };
    121 
    122 template <class T> class memoryaccess_def_iterator_base;
    123 using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
    124 using const_memoryaccess_def_iterator =
    125     memoryaccess_def_iterator_base<const MemoryAccess>;
    126 
    127 // \brief The base for all memory accesses. All memory accesses in a block are
    128 // linked together using an intrusive list.
    129 class MemoryAccess
    130     : public User,
    131       public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>,
    132       public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> {
    133 public:
    134   using AllAccessType =
    135       ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
    136   using DefsOnlyType =
    137       ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
    138 
    139   // Methods for support type inquiry through isa, cast, and
    140   // dyn_cast
    141   static inline bool classof(const Value *V) {
    142     unsigned ID = V->getValueID();
    143     return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
    144   }
    145 
    146   MemoryAccess(const MemoryAccess &) = delete;
    147   MemoryAccess &operator=(const MemoryAccess &) = delete;
    148   ~MemoryAccess() override;
    149 
    150   void *operator new(size_t, unsigned) = delete;
    151   void *operator new(size_t) = delete;
    152 
    153   BasicBlock *getBlock() const { return Block; }
    154 
    155   virtual void print(raw_ostream &OS) const = 0;
    156   virtual void dump() const;
    157 
    158   /// \brief The user iterators for a memory access
    159   typedef user_iterator iterator;
    160   typedef const_user_iterator const_iterator;
    161 
    162   /// \brief This iterator walks over all of the defs in a given
    163   /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
    164   /// MemoryUse/MemoryDef, this walks the defining access.
    165   memoryaccess_def_iterator defs_begin();
    166   const_memoryaccess_def_iterator defs_begin() const;
    167   memoryaccess_def_iterator defs_end();
    168   const_memoryaccess_def_iterator defs_end() const;
    169 
    170   /// \brief Get the iterators for the all access list and the defs only list
    171   /// We default to the all access list.
    172   AllAccessType::self_iterator getIterator() {
    173     return this->AllAccessType::getIterator();
    174   }
    175   AllAccessType::const_self_iterator getIterator() const {
    176     return this->AllAccessType::getIterator();
    177   }
    178   AllAccessType::reverse_self_iterator getReverseIterator() {
    179     return this->AllAccessType::getReverseIterator();
    180   }
    181   AllAccessType::const_reverse_self_iterator getReverseIterator() const {
    182     return this->AllAccessType::getReverseIterator();
    183   }
    184   DefsOnlyType::self_iterator getDefsIterator() {
    185     return this->DefsOnlyType::getIterator();
    186   }
    187   DefsOnlyType::const_self_iterator getDefsIterator() const {
    188     return this->DefsOnlyType::getIterator();
    189   }
    190   DefsOnlyType::reverse_self_iterator getReverseDefsIterator() {
    191     return this->DefsOnlyType::getReverseIterator();
    192   }
    193   DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const {
    194     return this->DefsOnlyType::getReverseIterator();
    195   }
    196 
    197 protected:
    198   friend class MemorySSA;
    199   friend class MemoryUseOrDef;
    200   friend class MemoryUse;
    201   friend class MemoryDef;
    202   friend class MemoryPhi;
    203 
    204   /// \brief Used by MemorySSA to change the block of a MemoryAccess when it is
    205   /// moved.
    206   void setBlock(BasicBlock *BB) { Block = BB; }
    207 
    208   /// \brief Used for debugging and tracking things about MemoryAccesses.
    209   /// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
    210   virtual unsigned getID() const = 0;
    211 
    212   MemoryAccess(LLVMContext &C, unsigned Vty, BasicBlock *BB,
    213                unsigned NumOperands)
    214       : User(Type::getVoidTy(C), Vty, nullptr, NumOperands), Block(BB) {}
    215 
    216 private:
    217   BasicBlock *Block;
    218 };
    219 
    220 inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
    221   MA.print(OS);
    222   return OS;
    223 }
    224 
    225 /// \brief Class that has the common methods + fields of memory uses/defs. It's
    226 /// a little awkward to have, but there are many cases where we want either a
    227 /// use or def, and there are many cases where uses are needed (defs aren't
    228 /// acceptable), and vice-versa.
    229 ///
    230 /// This class should never be instantiated directly; make a MemoryUse or
    231 /// MemoryDef instead.
    232 class MemoryUseOrDef : public MemoryAccess {
    233 public:
    234   void *operator new(size_t, unsigned) = delete;
    235   void *operator new(size_t) = delete;
    236 
    237   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
    238 
    239   /// \brief Get the instruction that this MemoryUse represents.
    240   Instruction *getMemoryInst() const { return MemoryInst; }
    241 
    242   /// \brief Get the access that produces the memory state used by this Use.
    243   MemoryAccess *getDefiningAccess() const { return getOperand(0); }
    244 
    245   static inline bool classof(const Value *MA) {
    246     return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
    247   }
    248 
    249   // Sadly, these have to be public because they are needed in some of the
    250   // iterators.
    251   virtual bool isOptimized() const = 0;
    252   virtual MemoryAccess *getOptimized() const = 0;
    253   virtual void setOptimized(MemoryAccess *) = 0;
    254 
    255   /// \brief Reset the ID of what this MemoryUse was optimized to, causing it to
    256   /// be rewalked by the walker if necessary.
    257   /// This really should only be called by tests.
    258   virtual void resetOptimized() = 0;
    259 
    260 protected:
    261   friend class MemorySSA;
    262   friend class MemorySSAUpdater;
    263   MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
    264                  Instruction *MI, BasicBlock *BB)
    265       : MemoryAccess(C, Vty, BB, 1), MemoryInst(MI) {
    266     setDefiningAccess(DMA);
    267   }
    268   void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false) {
    269     if (!Optimized) {
    270       setOperand(0, DMA);
    271       return;
    272     }
    273     setOptimized(DMA);
    274   }
    275 
    276 private:
    277   Instruction *MemoryInst;
    278 };
    279 
    280 template <>
    281 struct OperandTraits<MemoryUseOrDef>
    282     : public FixedNumOperandTraits<MemoryUseOrDef, 1> {};
    283 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
    284 
    285 /// \brief Represents read-only accesses to memory
    286 ///
    287 /// In particular, the set of Instructions that will be represented by
    288 /// MemoryUse's is exactly the set of Instructions for which
    289 /// AliasAnalysis::getModRefInfo returns "Ref".
    290 class MemoryUse final : public MemoryUseOrDef {
    291 public:
    292   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
    293 
    294   MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
    295       : MemoryUseOrDef(C, DMA, MemoryUseVal, MI, BB), OptimizedID(0) {}
    296 
    297   // allocate space for exactly one operand
    298   void *operator new(size_t s) { return User::operator new(s, 1); }
    299   void *operator new(size_t, unsigned) = delete;
    300 
    301   static inline bool classof(const Value *MA) {
    302     return MA->getValueID() == MemoryUseVal;
    303   }
    304 
    305   void print(raw_ostream &OS) const override;
    306 
    307   virtual void setOptimized(MemoryAccess *DMA) override {
    308     OptimizedID = DMA->getID();
    309     setOperand(0, DMA);
    310   }
    311 
    312   virtual bool isOptimized() const override {
    313     return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID();
    314   }
    315 
    316   virtual MemoryAccess *getOptimized() const override {
    317     return getDefiningAccess();
    318   }
    319   virtual void resetOptimized() override {
    320     OptimizedID = INVALID_MEMORYACCESS_ID;
    321   }
    322 
    323 protected:
    324   friend class MemorySSA;
    325 
    326   unsigned getID() const override {
    327     llvm_unreachable("MemoryUses do not have IDs");
    328   }
    329 
    330 private:
    331   unsigned int OptimizedID;
    332 };
    333 
    334 template <>
    335 struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
    336 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
    337 
    338 /// \brief Represents a read-write access to memory, whether it is a must-alias,
    339 /// or a may-alias.
    340 ///
    341 /// In particular, the set of Instructions that will be represented by
    342 /// MemoryDef's is exactly the set of Instructions for which
    343 /// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
    344 /// Note that, in order to provide def-def chains, all defs also have a use
    345 /// associated with them. This use points to the nearest reaching
    346 /// MemoryDef/MemoryPhi.
    347 class MemoryDef final : public MemoryUseOrDef {
    348 public:
    349   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
    350 
    351   MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
    352             unsigned Ver)
    353       : MemoryUseOrDef(C, DMA, MemoryDefVal, MI, BB), ID(Ver),
    354         Optimized(nullptr), OptimizedID(INVALID_MEMORYACCESS_ID) {}
    355 
    356   // allocate space for exactly one operand
    357   void *operator new(size_t s) { return User::operator new(s, 1); }
    358   void *operator new(size_t, unsigned) = delete;
    359 
    360   static inline bool classof(const Value *MA) {
    361     return MA->getValueID() == MemoryDefVal;
    362   }
    363 
    364   virtual void setOptimized(MemoryAccess *MA) override {
    365     Optimized = MA;
    366     OptimizedID = getDefiningAccess()->getID();
    367   }
    368   virtual MemoryAccess *getOptimized() const override { return Optimized; }
    369   virtual bool isOptimized() const override {
    370     return getOptimized() && getDefiningAccess() &&
    371            OptimizedID == getDefiningAccess()->getID();
    372   }
    373   virtual void resetOptimized() override {
    374     OptimizedID = INVALID_MEMORYACCESS_ID;
    375   }
    376 
    377   void print(raw_ostream &OS) const override;
    378 
    379 protected:
    380   friend class MemorySSA;
    381 
    382   unsigned getID() const override { return ID; }
    383 
    384 private:
    385   const unsigned ID;
    386   MemoryAccess *Optimized;
    387   unsigned int OptimizedID;
    388 };
    389 
    390 template <>
    391 struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 1> {};
    392 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
    393 
    394 /// \brief Represents phi nodes for memory accesses.
    395 ///
    396 /// These have the same semantic as regular phi nodes, with the exception that
    397 /// only one phi will ever exist in a given basic block.
    398 /// Guaranteeing one phi per block means guaranteeing there is only ever one
    399 /// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
    400 /// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
    401 /// a MemoryPhi's operands.
    402 /// That is, given
    403 /// if (a) {
    404 ///   store %a
    405 ///   store %b
    406 /// }
    407 /// it *must* be transformed into
    408 /// if (a) {
    409 ///    1 = MemoryDef(liveOnEntry)
    410 ///    store %a
    411 ///    2 = MemoryDef(1)
    412 ///    store %b
    413 /// }
    414 /// and *not*
    415 /// if (a) {
    416 ///    1 = MemoryDef(liveOnEntry)
    417 ///    store %a
    418 ///    2 = MemoryDef(liveOnEntry)
    419 ///    store %b
    420 /// }
    421 /// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
    422 /// end of the branch, and if there are not two phi nodes, one will be
    423 /// disconnected completely from the SSA graph below that point.
    424 /// Because MemoryUse's do not generate new definitions, they do not have this
    425 /// issue.
    426 class MemoryPhi final : public MemoryAccess {
    427   // allocate space for exactly zero operands
    428   void *operator new(size_t s) { return User::operator new(s); }
    429 
    430 public:
    431   /// Provide fast operand accessors
    432   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
    433 
    434   MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
    435       : MemoryAccess(C, MemoryPhiVal, BB, 0), ID(Ver), ReservedSpace(NumPreds) {
    436     allocHungoffUses(ReservedSpace);
    437   }
    438 
    439   void *operator new(size_t, unsigned) = delete;
    440 
    441   // Block iterator interface. This provides access to the list of incoming
    442   // basic blocks, which parallels the list of incoming values.
    443   typedef BasicBlock **block_iterator;
    444   typedef BasicBlock *const *const_block_iterator;
    445 
    446   block_iterator block_begin() {
    447     auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace);
    448     return reinterpret_cast<block_iterator>(Ref + 1);
    449   }
    450 
    451   const_block_iterator block_begin() const {
    452     const auto *Ref =
    453         reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace);
    454     return reinterpret_cast<const_block_iterator>(Ref + 1);
    455   }
    456 
    457   block_iterator block_end() { return block_begin() + getNumOperands(); }
    458 
    459   const_block_iterator block_end() const {
    460     return block_begin() + getNumOperands();
    461   }
    462 
    463   iterator_range<block_iterator> blocks() {
    464     return make_range(block_begin(), block_end());
    465   }
    466 
    467   iterator_range<const_block_iterator> blocks() const {
    468     return make_range(block_begin(), block_end());
    469   }
    470 
    471   op_range incoming_values() { return operands(); }
    472 
    473   const_op_range incoming_values() const { return operands(); }
    474 
    475   /// \brief Return the number of incoming edges
    476   unsigned getNumIncomingValues() const { return getNumOperands(); }
    477 
    478   /// \brief Return incoming value number x
    479   MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
    480   void setIncomingValue(unsigned I, MemoryAccess *V) {
    481     assert(V && "PHI node got a null value!");
    482     setOperand(I, V);
    483   }
    484   static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
    485   static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
    486 
    487   /// \brief Return incoming basic block number @p i.
    488   BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
    489 
    490   /// \brief Return incoming basic block corresponding
    491   /// to an operand of the PHI.
    492   BasicBlock *getIncomingBlock(const Use &U) const {
    493     assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
    494     return getIncomingBlock(unsigned(&U - op_begin()));
    495   }
    496 
    497   /// \brief Return incoming basic block corresponding
    498   /// to value use iterator.
    499   BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
    500     return getIncomingBlock(I.getUse());
    501   }
    502 
    503   void setIncomingBlock(unsigned I, BasicBlock *BB) {
    504     assert(BB && "PHI node got a null basic block!");
    505     block_begin()[I] = BB;
    506   }
    507 
    508   /// \brief Add an incoming value to the end of the PHI list
    509   void addIncoming(MemoryAccess *V, BasicBlock *BB) {
    510     if (getNumOperands() == ReservedSpace)
    511       growOperands(); // Get more space!
    512     // Initialize some new operands.
    513     setNumHungOffUseOperands(getNumOperands() + 1);
    514     setIncomingValue(getNumOperands() - 1, V);
    515     setIncomingBlock(getNumOperands() - 1, BB);
    516   }
    517 
    518   /// \brief Return the first index of the specified basic
    519   /// block in the value list for this PHI.  Returns -1 if no instance.
    520   int getBasicBlockIndex(const BasicBlock *BB) const {
    521     for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
    522       if (block_begin()[I] == BB)
    523         return I;
    524     return -1;
    525   }
    526 
    527   Value *getIncomingValueForBlock(const BasicBlock *BB) const {
    528     int Idx = getBasicBlockIndex(BB);
    529     assert(Idx >= 0 && "Invalid basic block argument!");
    530     return getIncomingValue(Idx);
    531   }
    532 
    533   static inline bool classof(const Value *V) {
    534     return V->getValueID() == MemoryPhiVal;
    535   }
    536 
    537   void print(raw_ostream &OS) const override;
    538 
    539 protected:
    540   friend class MemorySSA;
    541 
    542   /// \brief this is more complicated than the generic
    543   /// User::allocHungoffUses, because we have to allocate Uses for the incoming
    544   /// values and pointers to the incoming blocks, all in one allocation.
    545   void allocHungoffUses(unsigned N) {
    546     User::allocHungoffUses(N, /* IsPhi */ true);
    547   }
    548 
    549   unsigned getID() const final { return ID; }
    550 
    551 private:
    552   // For debugging only
    553   const unsigned ID;
    554   unsigned ReservedSpace;
    555 
    556   /// \brief This grows the operand list in response to a push_back style of
    557   /// operation.  This grows the number of ops by 1.5 times.
    558   void growOperands() {
    559     unsigned E = getNumOperands();
    560     // 2 op PHI nodes are VERY common, so reserve at least enough for that.
    561     ReservedSpace = std::max(E + E / 2, 2u);
    562     growHungoffUses(ReservedSpace, /* IsPhi */ true);
    563   }
    564 };
    565 
    566 template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
    567 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
    568 
    569 class MemorySSAWalker;
    570 
    571 /// \brief Encapsulates MemorySSA, including all data associated with memory
    572 /// accesses.
    573 class MemorySSA {
    574 public:
    575   MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
    576   ~MemorySSA();
    577 
    578   MemorySSAWalker *getWalker();
    579 
    580   /// \brief Given a memory Mod/Ref'ing instruction, get the MemorySSA
    581   /// access associated with it. If passed a basic block gets the memory phi
    582   /// node that exists for that block, if there is one. Otherwise, this will get
    583   /// a MemoryUseOrDef.
    584   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
    585   MemoryPhi *getMemoryAccess(const BasicBlock *BB) const;
    586 
    587   void dump() const;
    588   void print(raw_ostream &) const;
    589 
    590   /// \brief Return true if \p MA represents the live on entry value
    591   ///
    592   /// Loads and stores from pointer arguments and other global values may be
    593   /// defined by memory operations that do not occur in the current function, so
    594   /// they may be live on entry to the function. MemorySSA represents such
    595   /// memory state by the live on entry definition, which is guaranteed to occur
    596   /// before any other memory access in the function.
    597   inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
    598     return MA == LiveOnEntryDef.get();
    599   }
    600 
    601   inline MemoryAccess *getLiveOnEntryDef() const {
    602     return LiveOnEntryDef.get();
    603   }
    604 
    605   // Sadly, iplists, by default, owns and deletes pointers added to the
    606   // list. It's not currently possible to have two iplists for the same type,
    607   // where one owns the pointers, and one does not. This is because the traits
    608   // are per-type, not per-tag.  If this ever changes, we should make the
    609   // DefList an iplist.
    610   using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
    611   using DefsList =
    612       simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
    613 
    614   /// \brief Return the list of MemoryAccess's for a given basic block.
    615   ///
    616   /// This list is not modifiable by the user.
    617   const AccessList *getBlockAccesses(const BasicBlock *BB) const {
    618     return getWritableBlockAccesses(BB);
    619   }
    620 
    621   /// \brief Return the list of MemoryDef's and MemoryPhi's for a given basic
    622   /// block.
    623   ///
    624   /// This list is not modifiable by the user.
    625   const DefsList *getBlockDefs(const BasicBlock *BB) const {
    626     return getWritableBlockDefs(BB);
    627   }
    628 
    629   /// \brief Given two memory accesses in the same basic block, determine
    630   /// whether MemoryAccess \p A dominates MemoryAccess \p B.
    631   bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
    632 
    633   /// \brief Given two memory accesses in potentially different blocks,
    634   /// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
    635   bool dominates(const MemoryAccess *A, const MemoryAccess *B) const;
    636 
    637   /// \brief Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
    638   /// dominates Use \p B.
    639   bool dominates(const MemoryAccess *A, const Use &B) const;
    640 
    641   /// \brief Verify that MemorySSA is self consistent (IE definitions dominate
    642   /// all uses, uses appear in the right places).  This is used by unit tests.
    643   void verifyMemorySSA() const;
    644 
    645   /// Used in various insertion functions to specify whether we are talking
    646   /// about the beginning or end of a block.
    647   enum InsertionPlace { Beginning, End };
    648 
    649 protected:
    650   // Used by Memory SSA annotater, dumpers, and wrapper pass
    651   friend class MemorySSAAnnotatedWriter;
    652   friend class MemorySSAPrinterLegacyPass;
    653   friend class MemorySSAUpdater;
    654 
    655   void verifyDefUses(Function &F) const;
    656   void verifyDomination(Function &F) const;
    657   void verifyOrdering(Function &F) const;
    658 
    659   // This is used by the use optimizer and updater.
    660   AccessList *getWritableBlockAccesses(const BasicBlock *BB) const {
    661     auto It = PerBlockAccesses.find(BB);
    662     return It == PerBlockAccesses.end() ? nullptr : It->second.get();
    663   }
    664 
    665   // This is used by the use optimizer and updater.
    666   DefsList *getWritableBlockDefs(const BasicBlock *BB) const {
    667     auto It = PerBlockDefs.find(BB);
    668     return It == PerBlockDefs.end() ? nullptr : It->second.get();
    669   }
    670 
    671   // These is used by the updater to perform various internal MemorySSA
    672   // machinsations.  They do not always leave the IR in a correct state, and
    673   // relies on the updater to fixup what it breaks, so it is not public.
    674 
    675   void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where);
    676   void moveTo(MemoryUseOrDef *What, BasicBlock *BB, InsertionPlace Point);
    677   // Rename the dominator tree branch rooted at BB.
    678   void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal,
    679                   SmallPtrSetImpl<BasicBlock *> &Visited) {
    680     renamePass(DT->getNode(BB), IncomingVal, Visited, true, true);
    681   }
    682   void removeFromLookups(MemoryAccess *);
    683   void removeFromLists(MemoryAccess *, bool ShouldDelete = true);
    684   void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *,
    685                                InsertionPlace);
    686   void insertIntoListsBefore(MemoryAccess *, const BasicBlock *,
    687                              AccessList::iterator);
    688   MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *);
    689 
    690 private:
    691   class CachingWalker;
    692   class OptimizeUses;
    693 
    694   CachingWalker *getWalkerImpl();
    695   void buildMemorySSA();
    696   void optimizeUses();
    697 
    698   void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
    699   using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
    700   using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>;
    701 
    702   void
    703   determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks);
    704   void markUnreachableAsLiveOnEntry(BasicBlock *BB);
    705   bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const;
    706   MemoryPhi *createMemoryPhi(BasicBlock *BB);
    707   MemoryUseOrDef *createNewAccess(Instruction *);
    708   MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace);
    709   void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &,
    710                      const DenseMap<const BasicBlock *, unsigned int> &);
    711   MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool);
    712   void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool);
    713   void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
    714                   SmallPtrSetImpl<BasicBlock *> &Visited,
    715                   bool SkipVisited = false, bool RenameAllUses = false);
    716   AccessList *getOrCreateAccessList(const BasicBlock *);
    717   DefsList *getOrCreateDefsList(const BasicBlock *);
    718   void renumberBlock(const BasicBlock *) const;
    719   AliasAnalysis *AA;
    720   DominatorTree *DT;
    721   Function &F;
    722 
    723   // Memory SSA mappings
    724   DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
    725   // These two mappings contain the main block to access/def mappings for
    726   // MemorySSA. The list contained in PerBlockAccesses really owns all the
    727   // MemoryAccesses.
    728   // Both maps maintain the invariant that if a block is found in them, the
    729   // corresponding list is not empty, and if a block is not found in them, the
    730   // corresponding list is empty.
    731   AccessMap PerBlockAccesses;
    732   DefsMap PerBlockDefs;
    733   std::unique_ptr<MemoryAccess> LiveOnEntryDef;
    734 
    735   // Domination mappings
    736   // Note that the numbering is local to a block, even though the map is
    737   // global.
    738   mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid;
    739   mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering;
    740 
    741   // Memory SSA building info
    742   std::unique_ptr<CachingWalker> Walker;
    743   unsigned NextID;
    744 };
    745 
    746 // Internal MemorySSA utils, for use by MemorySSA classes and walkers
    747 class MemorySSAUtil {
    748 protected:
    749   friend class MemorySSAWalker;
    750   friend class GVNHoist;
    751   // This function should not be used by new passes.
    752   static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
    753                                   AliasAnalysis &AA);
    754 };
    755 
    756 // This pass does eager building and then printing of MemorySSA. It is used by
    757 // the tests to be able to build, dump, and verify Memory SSA.
    758 class MemorySSAPrinterLegacyPass : public FunctionPass {
    759 public:
    760   MemorySSAPrinterLegacyPass();
    761 
    762   bool runOnFunction(Function &) override;
    763   void getAnalysisUsage(AnalysisUsage &AU) const override;
    764 
    765   static char ID;
    766 };
    767 
    768 /// An analysis that produces \c MemorySSA for a function.
    769 ///
    770 class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
    771   friend AnalysisInfoMixin<MemorySSAAnalysis>;
    772 
    773   static AnalysisKey Key;
    774 
    775 public:
    776   // Wrap MemorySSA result to ensure address stability of internal MemorySSA
    777   // pointers after construction.  Use a wrapper class instead of plain
    778   // unique_ptr<MemorySSA> to avoid build breakage on MSVC.
    779   struct Result {
    780     Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {}
    781     MemorySSA &getMSSA() { return *MSSA.get(); }
    782 
    783     std::unique_ptr<MemorySSA> MSSA;
    784   };
    785 
    786   Result run(Function &F, FunctionAnalysisManager &AM);
    787 };
    788 
    789 /// \brief Printer pass for \c MemorySSA.
    790 class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
    791   raw_ostream &OS;
    792 
    793 public:
    794   explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
    795 
    796   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
    797 };
    798 
    799 /// \brief Verifier pass for \c MemorySSA.
    800 struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
    801   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
    802 };
    803 
    804 /// \brief Legacy analysis pass which computes \c MemorySSA.
    805 class MemorySSAWrapperPass : public FunctionPass {
    806 public:
    807   MemorySSAWrapperPass();
    808 
    809   static char ID;
    810 
    811   bool runOnFunction(Function &) override;
    812   void releaseMemory() override;
    813   MemorySSA &getMSSA() { return *MSSA; }
    814   const MemorySSA &getMSSA() const { return *MSSA; }
    815 
    816   void getAnalysisUsage(AnalysisUsage &AU) const override;
    817 
    818   void verifyAnalysis() const override;
    819   void print(raw_ostream &OS, const Module *M = nullptr) const override;
    820 
    821 private:
    822   std::unique_ptr<MemorySSA> MSSA;
    823 };
    824 
    825 /// \brief This is the generic walker interface for walkers of MemorySSA.
    826 /// Walkers are used to be able to further disambiguate the def-use chains
    827 /// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
    828 /// you.
    829 /// In particular, while the def-use chains provide basic information, and are
    830 /// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
    831 /// MemoryUse as AliasAnalysis considers it, a user mant want better or other
    832 /// information. In particular, they may want to use SCEV info to further
    833 /// disambiguate memory accesses, or they may want the nearest dominating
    834 /// may-aliasing MemoryDef for a call or a store. This API enables a
    835 /// standardized interface to getting and using that info.
    836 class MemorySSAWalker {
    837 public:
    838   MemorySSAWalker(MemorySSA *);
    839   virtual ~MemorySSAWalker() = default;
    840 
    841   using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
    842 
    843   /// \brief Given a memory Mod/Ref/ModRef'ing instruction, calling this
    844   /// will give you the nearest dominating MemoryAccess that Mod's the location
    845   /// the instruction accesses (by skipping any def which AA can prove does not
    846   /// alias the location(s) accessed by the instruction given).
    847   ///
    848   /// Note that this will return a single access, and it must dominate the
    849   /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
    850   /// this will return the MemoryPhi, not the operand. This means that
    851   /// given:
    852   /// if (a) {
    853   ///   1 = MemoryDef(liveOnEntry)
    854   ///   store %a
    855   /// } else {
    856   ///   2 = MemoryDef(liveOnEntry)
    857   ///   store %b
    858   /// }
    859   /// 3 = MemoryPhi(2, 1)
    860   /// MemoryUse(3)
    861   /// load %a
    862   ///
    863   /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
    864   /// in the if (a) branch.
    865   MemoryAccess *getClobberingMemoryAccess(const Instruction *I) {
    866     MemoryAccess *MA = MSSA->getMemoryAccess(I);
    867     assert(MA && "Handed an instruction that MemorySSA doesn't recognize?");
    868     return getClobberingMemoryAccess(MA);
    869   }
    870 
    871   /// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
    872   /// but takes a MemoryAccess instead of an Instruction.
    873   virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0;
    874 
    875   /// \brief Given a potentially clobbering memory access and a new location,
    876   /// calling this will give you the nearest dominating clobbering MemoryAccess
    877   /// (by skipping non-aliasing def links).
    878   ///
    879   /// This version of the function is mainly used to disambiguate phi translated
    880   /// pointers, where the value of a pointer may have changed from the initial
    881   /// memory access. Note that this expects to be handed either a MemoryUse,
    882   /// or an already potentially clobbering access. Unlike the above API, if
    883   /// given a MemoryDef that clobbers the pointer as the starting access, it
    884   /// will return that MemoryDef, whereas the above would return the clobber
    885   /// starting from the use side of  the memory def.
    886   virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
    887                                                   const MemoryLocation &) = 0;
    888 
    889   /// \brief Given a memory access, invalidate anything this walker knows about
    890   /// that access.
    891   /// This API is used by walkers that store information to perform basic cache
    892   /// invalidation.  This will be called by MemorySSA at appropriate times for
    893   /// the walker it uses or returns.
    894   virtual void invalidateInfo(MemoryAccess *) {}
    895 
    896   virtual void verify(const MemorySSA *MSSA) { assert(MSSA == this->MSSA); }
    897 
    898 protected:
    899   friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
    900                           // constructor.
    901   MemorySSA *MSSA;
    902 };
    903 
    904 /// \brief A MemorySSAWalker that does no alias queries, or anything else. It
    905 /// simply returns the links as they were constructed by the builder.
    906 class DoNothingMemorySSAWalker final : public MemorySSAWalker {
    907 public:
    908   // Keep the overrides below from hiding the Instruction overload of
    909   // getClobberingMemoryAccess.
    910   using MemorySSAWalker::getClobberingMemoryAccess;
    911 
    912   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
    913   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
    914                                           const MemoryLocation &) override;
    915 };
    916 
    917 using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
    918 using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
    919 
    920 /// \brief Iterator base class used to implement const and non-const iterators
    921 /// over the defining accesses of a MemoryAccess.
    922 template <class T>
    923 class memoryaccess_def_iterator_base
    924     : public iterator_facade_base<memoryaccess_def_iterator_base<T>,
    925                                   std::forward_iterator_tag, T, ptrdiff_t, T *,
    926                                   T *> {
    927   using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
    928 
    929 public:
    930   memoryaccess_def_iterator_base(T *Start) : Access(Start) {}
    931   memoryaccess_def_iterator_base() = default;
    932 
    933   bool operator==(const memoryaccess_def_iterator_base &Other) const {
    934     return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
    935   }
    936 
    937   // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
    938   // block from the operand in constant time (In a PHINode, the uselist has
    939   // both, so it's just subtraction). We provide it as part of the
    940   // iterator to avoid callers having to linear walk to get the block.
    941   // If the operation becomes constant time on MemoryPHI's, this bit of
    942   // abstraction breaking should be removed.
    943   BasicBlock *getPhiArgBlock() const {
    944     MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
    945     assert(MP && "Tried to get phi arg block when not iterating over a PHI");
    946     return MP->getIncomingBlock(ArgNo);
    947   }
    948   typename BaseT::iterator::pointer operator*() const {
    949     assert(Access && "Tried to access past the end of our iterator");
    950     // Go to the first argument for phis, and the defining access for everything
    951     // else.
    952     if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
    953       return MP->getIncomingValue(ArgNo);
    954     return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
    955   }
    956   using BaseT::operator++;
    957   memoryaccess_def_iterator &operator++() {
    958     assert(Access && "Hit end of iterator");
    959     if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
    960       if (++ArgNo >= MP->getNumIncomingValues()) {
    961         ArgNo = 0;
    962         Access = nullptr;
    963       }
    964     } else {
    965       Access = nullptr;
    966     }
    967     return *this;
    968   }
    969 
    970 private:
    971   T *Access = nullptr;
    972   unsigned ArgNo = 0;
    973 };
    974 
    975 inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
    976   return memoryaccess_def_iterator(this);
    977 }
    978 
    979 inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
    980   return const_memoryaccess_def_iterator(this);
    981 }
    982 
    983 inline memoryaccess_def_iterator MemoryAccess::defs_end() {
    984   return memoryaccess_def_iterator();
    985 }
    986 
    987 inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
    988   return const_memoryaccess_def_iterator();
    989 }
    990 
    991 /// \brief GraphTraits for a MemoryAccess, which walks defs in the normal case,
    992 /// and uses in the inverse case.
    993 template <> struct GraphTraits<MemoryAccess *> {
    994   using NodeRef = MemoryAccess *;
    995   using ChildIteratorType = memoryaccess_def_iterator;
    996 
    997   static NodeRef getEntryNode(NodeRef N) { return N; }
    998   static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); }
    999   static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); }
   1000 };
   1001 
   1002 template <> struct GraphTraits<Inverse<MemoryAccess *>> {
   1003   using NodeRef = MemoryAccess *;
   1004   using ChildIteratorType = MemoryAccess::iterator;
   1005 
   1006   static NodeRef getEntryNode(NodeRef N) { return N; }
   1007   static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); }
   1008   static ChildIteratorType child_end(NodeRef N) { return N->user_end(); }
   1009 };
   1010 
   1011 /// \brief Provide an iterator that walks defs, giving both the memory access,
   1012 /// and the current pointer location, updating the pointer location as it
   1013 /// changes due to phi node translation.
   1014 ///
   1015 /// This iterator, while somewhat specialized, is what most clients actually
   1016 /// want when walking upwards through MemorySSA def chains. It takes a pair of
   1017 /// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
   1018 /// memory location through phi nodes for the user.
   1019 class upward_defs_iterator
   1020     : public iterator_facade_base<upward_defs_iterator,
   1021                                   std::forward_iterator_tag,
   1022                                   const MemoryAccessPair> {
   1023   using BaseT = upward_defs_iterator::iterator_facade_base;
   1024 
   1025 public:
   1026   upward_defs_iterator(const MemoryAccessPair &Info)
   1027       : DefIterator(Info.first), Location(Info.second),
   1028         OriginalAccess(Info.first) {
   1029     CurrentPair.first = nullptr;
   1030 
   1031     WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
   1032     fillInCurrentPair();
   1033   }
   1034 
   1035   upward_defs_iterator() { CurrentPair.first = nullptr; }
   1036 
   1037   bool operator==(const upward_defs_iterator &Other) const {
   1038     return DefIterator == Other.DefIterator;
   1039   }
   1040 
   1041   BaseT::iterator::reference operator*() const {
   1042     assert(DefIterator != OriginalAccess->defs_end() &&
   1043            "Tried to access past the end of our iterator");
   1044     return CurrentPair;
   1045   }
   1046 
   1047   using BaseT::operator++;
   1048   upward_defs_iterator &operator++() {
   1049     assert(DefIterator != OriginalAccess->defs_end() &&
   1050            "Tried to access past the end of the iterator");
   1051     ++DefIterator;
   1052     if (DefIterator != OriginalAccess->defs_end())
   1053       fillInCurrentPair();
   1054     return *this;
   1055   }
   1056 
   1057   BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
   1058 
   1059 private:
   1060   void fillInCurrentPair() {
   1061     CurrentPair.first = *DefIterator;
   1062     if (WalkingPhi && Location.Ptr) {
   1063       PHITransAddr Translator(
   1064           const_cast<Value *>(Location.Ptr),
   1065           OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
   1066       if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
   1067                                         DefIterator.getPhiArgBlock(), nullptr,
   1068                                         false))
   1069         if (Translator.getAddr() != Location.Ptr) {
   1070           CurrentPair.second = Location.getWithNewPtr(Translator.getAddr());
   1071           return;
   1072         }
   1073     }
   1074     CurrentPair.second = Location;
   1075   }
   1076 
   1077   MemoryAccessPair CurrentPair;
   1078   memoryaccess_def_iterator DefIterator;
   1079   MemoryLocation Location;
   1080   MemoryAccess *OriginalAccess = nullptr;
   1081   bool WalkingPhi = false;
   1082 };
   1083 
   1084 inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) {
   1085   return upward_defs_iterator(Pair);
   1086 }
   1087 
   1088 inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
   1089 
   1090 inline iterator_range<upward_defs_iterator>
   1091 upward_defs(const MemoryAccessPair &Pair) {
   1092   return make_range(upward_defs_begin(Pair), upward_defs_end());
   1093 }
   1094 
   1095 /// Walks the defining accesses of MemoryDefs. Stops after we hit something that
   1096 /// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when
   1097 /// comparing against a null def_chain_iterator, this will compare equal only
   1098 /// after walking said Phi/liveOnEntry.
   1099 ///
   1100 /// The UseOptimizedChain flag specifies whether to walk the clobbering
   1101 /// access chain, or all the accesses.
   1102 ///
   1103 /// Normally, MemoryDef are all just def/use linked together, so a def_chain on
   1104 /// a MemoryDef will walk all MemoryDefs above it in the program until it hits
   1105 /// a phi node.  The optimized chain walks the clobbering access of a store.
   1106 /// So if you are just trying to find, given a store, what the next
   1107 /// thing that would clobber the same memory is, you want the optimized chain.
   1108 template <class T, bool UseOptimizedChain = false>
   1109 struct def_chain_iterator
   1110     : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>,
   1111                                   std::forward_iterator_tag, MemoryAccess *> {
   1112   def_chain_iterator() : MA(nullptr) {}
   1113   def_chain_iterator(T MA) : MA(MA) {}
   1114 
   1115   T operator*() const { return MA; }
   1116 
   1117   def_chain_iterator &operator++() {
   1118     // N.B. liveOnEntry has a null defining access.
   1119     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
   1120       if (UseOptimizedChain && MUD->isOptimized())
   1121         MA = MUD->getOptimized();
   1122       else
   1123         MA = MUD->getDefiningAccess();
   1124     } else {
   1125       MA = nullptr;
   1126     }
   1127 
   1128     return *this;
   1129   }
   1130 
   1131   bool operator==(const def_chain_iterator &O) const { return MA == O.MA; }
   1132 
   1133 private:
   1134   T MA;
   1135 };
   1136 
   1137 template <class T>
   1138 inline iterator_range<def_chain_iterator<T>>
   1139 def_chain(T MA, MemoryAccess *UpTo = nullptr) {
   1140 #ifdef EXPENSIVE_CHECKS
   1141   assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) &&
   1142          "UpTo isn't in the def chain!");
   1143 #endif
   1144   return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo));
   1145 }
   1146 
   1147 template <class T>
   1148 inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) {
   1149   return make_range(def_chain_iterator<T, true>(MA),
   1150                     def_chain_iterator<T, true>(nullptr));
   1151 }
   1152 
   1153 } // end namespace llvm
   1154 
   1155 #endif // LLVM_ANALYSIS_MEMORYSSA_H
   1156