Home | History | Annotate | Download | only in CodeGen
      1 //===- RegAllocPBQP.h -------------------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the PBQPBuilder interface, for classes which build PBQP
     11 // instances to represent register allocation problems, and the RegAllocPBQP
     12 // interface.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_REGALLOCPBQP_H
     17 #define LLVM_CODEGEN_REGALLOCPBQP_H
     18 
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/ADT/Hashing.h"
     21 #include "llvm/CodeGen/PBQP/CostAllocator.h"
     22 #include "llvm/CodeGen/PBQP/Graph.h"
     23 #include "llvm/CodeGen/PBQP/Math.h"
     24 #include "llvm/CodeGen/PBQP/ReductionRules.h"
     25 #include "llvm/CodeGen/PBQP/Solution.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include <algorithm>
     28 #include <cassert>
     29 #include <cstddef>
     30 #include <limits>
     31 #include <memory>
     32 #include <set>
     33 #include <vector>
     34 
     35 namespace llvm {
     36 
     37 class FunctionPass;
     38 class LiveIntervals;
     39 class MachineBlockFrequencyInfo;
     40 class MachineFunction;
     41 class raw_ostream;
     42 
     43 namespace PBQP {
     44 namespace RegAlloc {
     45 
     46 /// @brief Spill option index.
     47 inline unsigned getSpillOptionIdx() { return 0; }
     48 
     49 /// \brief Metadata to speed allocatability test.
     50 ///
     51 /// Keeps track of the number of infinities in each row and column.
     52 class MatrixMetadata {
     53 public:
     54   MatrixMetadata(const Matrix& M)
     55     : UnsafeRows(new bool[M.getRows() - 1]()),
     56       UnsafeCols(new bool[M.getCols() - 1]()) {
     57     unsigned* ColCounts = new unsigned[M.getCols() - 1]();
     58 
     59     for (unsigned i = 1; i < M.getRows(); ++i) {
     60       unsigned RowCount = 0;
     61       for (unsigned j = 1; j < M.getCols(); ++j) {
     62         if (M[i][j] == std::numeric_limits<PBQPNum>::infinity()) {
     63           ++RowCount;
     64           ++ColCounts[j - 1];
     65           UnsafeRows[i - 1] = true;
     66           UnsafeCols[j - 1] = true;
     67         }
     68       }
     69       WorstRow = std::max(WorstRow, RowCount);
     70     }
     71     unsigned WorstColCountForCurRow =
     72       *std::max_element(ColCounts, ColCounts + M.getCols() - 1);
     73     WorstCol = std::max(WorstCol, WorstColCountForCurRow);
     74     delete[] ColCounts;
     75   }
     76 
     77   MatrixMetadata(const MatrixMetadata &) = delete;
     78   MatrixMetadata &operator=(const MatrixMetadata &) = delete;
     79 
     80   unsigned getWorstRow() const { return WorstRow; }
     81   unsigned getWorstCol() const { return WorstCol; }
     82   const bool* getUnsafeRows() const { return UnsafeRows.get(); }
     83   const bool* getUnsafeCols() const { return UnsafeCols.get(); }
     84 
     85 private:
     86   unsigned WorstRow = 0;
     87   unsigned WorstCol = 0;
     88   std::unique_ptr<bool[]> UnsafeRows;
     89   std::unique_ptr<bool[]> UnsafeCols;
     90 };
     91 
     92 /// \brief Holds a vector of the allowed physical regs for a vreg.
     93 class AllowedRegVector {
     94   friend hash_code hash_value(const AllowedRegVector &);
     95 
     96 public:
     97   AllowedRegVector() = default;
     98   AllowedRegVector(AllowedRegVector &&) = default;
     99 
    100   AllowedRegVector(const std::vector<unsigned> &OptVec)
    101     : NumOpts(OptVec.size()), Opts(new unsigned[NumOpts]) {
    102     std::copy(OptVec.begin(), OptVec.end(), Opts.get());
    103   }
    104 
    105   unsigned size() const { return NumOpts; }
    106   unsigned operator[](size_t I) const { return Opts[I]; }
    107 
    108   bool operator==(const AllowedRegVector &Other) const {
    109     if (NumOpts != Other.NumOpts)
    110       return false;
    111     return std::equal(Opts.get(), Opts.get() + NumOpts, Other.Opts.get());
    112   }
    113 
    114   bool operator!=(const AllowedRegVector &Other) const {
    115     return !(*this == Other);
    116   }
    117 
    118 private:
    119   unsigned NumOpts = 0;
    120   std::unique_ptr<unsigned[]> Opts;
    121 };
    122 
    123 inline hash_code hash_value(const AllowedRegVector &OptRegs) {
    124   unsigned *OStart = OptRegs.Opts.get();
    125   unsigned *OEnd = OptRegs.Opts.get() + OptRegs.NumOpts;
    126   return hash_combine(OptRegs.NumOpts,
    127                       hash_combine_range(OStart, OEnd));
    128 }
    129 
    130 /// \brief Holds graph-level metadata relevant to PBQP RA problems.
    131 class GraphMetadata {
    132 private:
    133   typedef ValuePool<AllowedRegVector> AllowedRegVecPool;
    134 
    135 public:
    136   typedef AllowedRegVecPool::PoolRef AllowedRegVecRef;
    137 
    138   GraphMetadata(MachineFunction &MF,
    139                 LiveIntervals &LIS,
    140                 MachineBlockFrequencyInfo &MBFI)
    141     : MF(MF), LIS(LIS), MBFI(MBFI) {}
    142 
    143   MachineFunction &MF;
    144   LiveIntervals &LIS;
    145   MachineBlockFrequencyInfo &MBFI;
    146 
    147   void setNodeIdForVReg(unsigned VReg, GraphBase::NodeId NId) {
    148     VRegToNodeId[VReg] = NId;
    149   }
    150 
    151   GraphBase::NodeId getNodeIdForVReg(unsigned VReg) const {
    152     auto VRegItr = VRegToNodeId.find(VReg);
    153     if (VRegItr == VRegToNodeId.end())
    154       return GraphBase::invalidNodeId();
    155     return VRegItr->second;
    156   }
    157 
    158   AllowedRegVecRef getAllowedRegs(AllowedRegVector Allowed) {
    159     return AllowedRegVecs.getValue(std::move(Allowed));
    160   }
    161 
    162 private:
    163   DenseMap<unsigned, GraphBase::NodeId> VRegToNodeId;
    164   AllowedRegVecPool AllowedRegVecs;
    165 };
    166 
    167 /// \brief Holds solver state and other metadata relevant to each PBQP RA node.
    168 class NodeMetadata {
    169 public:
    170   typedef RegAlloc::AllowedRegVector AllowedRegVector;
    171 
    172   // The node's reduction state. The order in this enum is important,
    173   // as it is assumed nodes can only progress up (i.e. towards being
    174   // optimally reducible) when reducing the graph.
    175   typedef enum {
    176     Unprocessed,
    177     NotProvablyAllocatable,
    178     ConservativelyAllocatable,
    179     OptimallyReducible
    180   } ReductionState;
    181 
    182   NodeMetadata() = default;
    183 
    184   NodeMetadata(const NodeMetadata &Other)
    185     : RS(Other.RS), NumOpts(Other.NumOpts), DeniedOpts(Other.DeniedOpts),
    186       OptUnsafeEdges(new unsigned[NumOpts]), VReg(Other.VReg),
    187       AllowedRegs(Other.AllowedRegs)
    188 #ifndef NDEBUG
    189       , everConservativelyAllocatable(Other.everConservativelyAllocatable)
    190 #endif
    191   {
    192     if (NumOpts > 0) {
    193       std::copy(&Other.OptUnsafeEdges[0], &Other.OptUnsafeEdges[NumOpts],
    194                 &OptUnsafeEdges[0]);
    195     }
    196   }
    197 
    198   NodeMetadata(NodeMetadata &&) = default;
    199   NodeMetadata& operator=(NodeMetadata &&) = default;
    200 
    201   void setVReg(unsigned VReg) { this->VReg = VReg; }
    202   unsigned getVReg() const { return VReg; }
    203 
    204   void setAllowedRegs(GraphMetadata::AllowedRegVecRef AllowedRegs) {
    205     this->AllowedRegs = std::move(AllowedRegs);
    206   }
    207   const AllowedRegVector& getAllowedRegs() const { return *AllowedRegs; }
    208 
    209   void setup(const Vector& Costs) {
    210     NumOpts = Costs.getLength() - 1;
    211     OptUnsafeEdges = std::unique_ptr<unsigned[]>(new unsigned[NumOpts]());
    212   }
    213 
    214   ReductionState getReductionState() const { return RS; }
    215   void setReductionState(ReductionState RS) {
    216     assert(RS >= this->RS && "A node's reduction state can not be downgraded");
    217     this->RS = RS;
    218 
    219 #ifndef NDEBUG
    220     // Remember this state to assert later that a non-infinite register
    221     // option was available.
    222     if (RS == ConservativelyAllocatable)
    223       everConservativelyAllocatable = true;
    224 #endif
    225   }
    226 
    227   void handleAddEdge(const MatrixMetadata& MD, bool Transpose) {
    228     DeniedOpts += Transpose ? MD.getWorstRow() : MD.getWorstCol();
    229     const bool* UnsafeOpts =
    230       Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
    231     for (unsigned i = 0; i < NumOpts; ++i)
    232       OptUnsafeEdges[i] += UnsafeOpts[i];
    233   }
    234 
    235   void handleRemoveEdge(const MatrixMetadata& MD, bool Transpose) {
    236     DeniedOpts -= Transpose ? MD.getWorstRow() : MD.getWorstCol();
    237     const bool* UnsafeOpts =
    238       Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
    239     for (unsigned i = 0; i < NumOpts; ++i)
    240       OptUnsafeEdges[i] -= UnsafeOpts[i];
    241   }
    242 
    243   bool isConservativelyAllocatable() const {
    244     return (DeniedOpts < NumOpts) ||
    245       (std::find(&OptUnsafeEdges[0], &OptUnsafeEdges[NumOpts], 0) !=
    246        &OptUnsafeEdges[NumOpts]);
    247   }
    248 
    249 #ifndef NDEBUG
    250   bool wasConservativelyAllocatable() const {
    251     return everConservativelyAllocatable;
    252   }
    253 #endif
    254 
    255 private:
    256   ReductionState RS = Unprocessed;
    257   unsigned NumOpts = 0;
    258   unsigned DeniedOpts = 0;
    259   std::unique_ptr<unsigned[]> OptUnsafeEdges;
    260   unsigned VReg = 0;
    261   GraphMetadata::AllowedRegVecRef AllowedRegs;
    262 
    263 #ifndef NDEBUG
    264   bool everConservativelyAllocatable = false;
    265 #endif
    266 };
    267 
    268 class RegAllocSolverImpl {
    269 private:
    270   typedef MDMatrix<MatrixMetadata> RAMatrix;
    271 
    272 public:
    273   typedef PBQP::Vector RawVector;
    274   typedef PBQP::Matrix RawMatrix;
    275   typedef PBQP::Vector Vector;
    276   typedef RAMatrix     Matrix;
    277   typedef PBQP::PoolCostAllocator<Vector, Matrix> CostAllocator;
    278 
    279   typedef GraphBase::NodeId NodeId;
    280   typedef GraphBase::EdgeId EdgeId;
    281 
    282   typedef RegAlloc::NodeMetadata NodeMetadata;
    283   struct EdgeMetadata { };
    284   typedef RegAlloc::GraphMetadata GraphMetadata;
    285 
    286   typedef PBQP::Graph<RegAllocSolverImpl> Graph;
    287 
    288   RegAllocSolverImpl(Graph &G) : G(G) {}
    289 
    290   Solution solve() {
    291     G.setSolver(*this);
    292     Solution S;
    293     setup();
    294     S = backpropagate(G, reduce());
    295     G.unsetSolver();
    296     return S;
    297   }
    298 
    299   void handleAddNode(NodeId NId) {
    300     assert(G.getNodeCosts(NId).getLength() > 1 &&
    301            "PBQP Graph should not contain single or zero-option nodes");
    302     G.getNodeMetadata(NId).setup(G.getNodeCosts(NId));
    303   }
    304 
    305   void handleRemoveNode(NodeId NId) {}
    306   void handleSetNodeCosts(NodeId NId, const Vector& newCosts) {}
    307 
    308   void handleAddEdge(EdgeId EId) {
    309     handleReconnectEdge(EId, G.getEdgeNode1Id(EId));
    310     handleReconnectEdge(EId, G.getEdgeNode2Id(EId));
    311   }
    312 
    313   void handleDisconnectEdge(EdgeId EId, NodeId NId) {
    314     NodeMetadata& NMd = G.getNodeMetadata(NId);
    315     const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
    316     NMd.handleRemoveEdge(MMd, NId == G.getEdgeNode2Id(EId));
    317     promote(NId, NMd);
    318   }
    319 
    320   void handleReconnectEdge(EdgeId EId, NodeId NId) {
    321     NodeMetadata& NMd = G.getNodeMetadata(NId);
    322     const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
    323     NMd.handleAddEdge(MMd, NId == G.getEdgeNode2Id(EId));
    324   }
    325 
    326   void handleUpdateCosts(EdgeId EId, const Matrix& NewCosts) {
    327     NodeId N1Id = G.getEdgeNode1Id(EId);
    328     NodeId N2Id = G.getEdgeNode2Id(EId);
    329     NodeMetadata& N1Md = G.getNodeMetadata(N1Id);
    330     NodeMetadata& N2Md = G.getNodeMetadata(N2Id);
    331     bool Transpose = N1Id != G.getEdgeNode1Id(EId);
    332 
    333     // Metadata are computed incrementally. First, update them
    334     // by removing the old cost.
    335     const MatrixMetadata& OldMMd = G.getEdgeCosts(EId).getMetadata();
    336     N1Md.handleRemoveEdge(OldMMd, Transpose);
    337     N2Md.handleRemoveEdge(OldMMd, !Transpose);
    338 
    339     // And update now the metadata with the new cost.
    340     const MatrixMetadata& MMd = NewCosts.getMetadata();
    341     N1Md.handleAddEdge(MMd, Transpose);
    342     N2Md.handleAddEdge(MMd, !Transpose);
    343 
    344     // As the metadata may have changed with the update, the nodes may have
    345     // become ConservativelyAllocatable or OptimallyReducible.
    346     promote(N1Id, N1Md);
    347     promote(N2Id, N2Md);
    348   }
    349 
    350 private:
    351   void promote(NodeId NId, NodeMetadata& NMd) {
    352     if (G.getNodeDegree(NId) == 3) {
    353       // This node is becoming optimally reducible.
    354       moveToOptimallyReducibleNodes(NId);
    355     } else if (NMd.getReductionState() ==
    356                NodeMetadata::NotProvablyAllocatable &&
    357                NMd.isConservativelyAllocatable()) {
    358       // This node just became conservatively allocatable.
    359       moveToConservativelyAllocatableNodes(NId);
    360     }
    361   }
    362 
    363   void removeFromCurrentSet(NodeId NId) {
    364     switch (G.getNodeMetadata(NId).getReductionState()) {
    365     case NodeMetadata::Unprocessed: break;
    366     case NodeMetadata::OptimallyReducible:
    367       assert(OptimallyReducibleNodes.find(NId) !=
    368              OptimallyReducibleNodes.end() &&
    369              "Node not in optimally reducible set.");
    370       OptimallyReducibleNodes.erase(NId);
    371       break;
    372     case NodeMetadata::ConservativelyAllocatable:
    373       assert(ConservativelyAllocatableNodes.find(NId) !=
    374              ConservativelyAllocatableNodes.end() &&
    375              "Node not in conservatively allocatable set.");
    376       ConservativelyAllocatableNodes.erase(NId);
    377       break;
    378     case NodeMetadata::NotProvablyAllocatable:
    379       assert(NotProvablyAllocatableNodes.find(NId) !=
    380              NotProvablyAllocatableNodes.end() &&
    381              "Node not in not-provably-allocatable set.");
    382       NotProvablyAllocatableNodes.erase(NId);
    383       break;
    384     }
    385   }
    386 
    387   void moveToOptimallyReducibleNodes(NodeId NId) {
    388     removeFromCurrentSet(NId);
    389     OptimallyReducibleNodes.insert(NId);
    390     G.getNodeMetadata(NId).setReductionState(
    391       NodeMetadata::OptimallyReducible);
    392   }
    393 
    394   void moveToConservativelyAllocatableNodes(NodeId NId) {
    395     removeFromCurrentSet(NId);
    396     ConservativelyAllocatableNodes.insert(NId);
    397     G.getNodeMetadata(NId).setReductionState(
    398       NodeMetadata::ConservativelyAllocatable);
    399   }
    400 
    401   void moveToNotProvablyAllocatableNodes(NodeId NId) {
    402     removeFromCurrentSet(NId);
    403     NotProvablyAllocatableNodes.insert(NId);
    404     G.getNodeMetadata(NId).setReductionState(
    405       NodeMetadata::NotProvablyAllocatable);
    406   }
    407 
    408   void setup() {
    409     // Set up worklists.
    410     for (auto NId : G.nodeIds()) {
    411       if (G.getNodeDegree(NId) < 3)
    412         moveToOptimallyReducibleNodes(NId);
    413       else if (G.getNodeMetadata(NId).isConservativelyAllocatable())
    414         moveToConservativelyAllocatableNodes(NId);
    415       else
    416         moveToNotProvablyAllocatableNodes(NId);
    417     }
    418   }
    419 
    420   // Compute a reduction order for the graph by iteratively applying PBQP
    421   // reduction rules. Locally optimal rules are applied whenever possible (R0,
    422   // R1, R2). If no locally-optimal rules apply then any conservatively
    423   // allocatable node is reduced. Finally, if no conservatively allocatable
    424   // node exists then the node with the lowest spill-cost:degree ratio is
    425   // selected.
    426   std::vector<GraphBase::NodeId> reduce() {
    427     assert(!G.empty() && "Cannot reduce empty graph.");
    428 
    429     typedef GraphBase::NodeId NodeId;
    430     std::vector<NodeId> NodeStack;
    431 
    432     // Consume worklists.
    433     while (true) {
    434       if (!OptimallyReducibleNodes.empty()) {
    435         NodeSet::iterator NItr = OptimallyReducibleNodes.begin();
    436         NodeId NId = *NItr;
    437         OptimallyReducibleNodes.erase(NItr);
    438         NodeStack.push_back(NId);
    439         switch (G.getNodeDegree(NId)) {
    440         case 0:
    441           break;
    442         case 1:
    443           applyR1(G, NId);
    444           break;
    445         case 2:
    446           applyR2(G, NId);
    447           break;
    448         default: llvm_unreachable("Not an optimally reducible node.");
    449         }
    450       } else if (!ConservativelyAllocatableNodes.empty()) {
    451         // Conservatively allocatable nodes will never spill. For now just
    452         // take the first node in the set and push it on the stack. When we
    453         // start optimizing more heavily for register preferencing, it may
    454         // would be better to push nodes with lower 'expected' or worst-case
    455         // register costs first (since early nodes are the most
    456         // constrained).
    457         NodeSet::iterator NItr = ConservativelyAllocatableNodes.begin();
    458         NodeId NId = *NItr;
    459         ConservativelyAllocatableNodes.erase(NItr);
    460         NodeStack.push_back(NId);
    461         G.disconnectAllNeighborsFromNode(NId);
    462 
    463       } else if (!NotProvablyAllocatableNodes.empty()) {
    464         NodeSet::iterator NItr =
    465           std::min_element(NotProvablyAllocatableNodes.begin(),
    466                            NotProvablyAllocatableNodes.end(),
    467                            SpillCostComparator(G));
    468         NodeId NId = *NItr;
    469         NotProvablyAllocatableNodes.erase(NItr);
    470         NodeStack.push_back(NId);
    471         G.disconnectAllNeighborsFromNode(NId);
    472       } else
    473         break;
    474     }
    475 
    476     return NodeStack;
    477   }
    478 
    479   class SpillCostComparator {
    480   public:
    481     SpillCostComparator(const Graph& G) : G(G) {}
    482 
    483     bool operator()(NodeId N1Id, NodeId N2Id) {
    484       PBQPNum N1SC = G.getNodeCosts(N1Id)[0];
    485       PBQPNum N2SC = G.getNodeCosts(N2Id)[0];
    486       if (N1SC == N2SC)
    487         return G.getNodeDegree(N1Id) < G.getNodeDegree(N2Id);
    488       return N1SC < N2SC;
    489     }
    490 
    491   private:
    492     const Graph& G;
    493   };
    494 
    495   Graph& G;
    496   typedef std::set<NodeId> NodeSet;
    497   NodeSet OptimallyReducibleNodes;
    498   NodeSet ConservativelyAllocatableNodes;
    499   NodeSet NotProvablyAllocatableNodes;
    500 };
    501 
    502 class PBQPRAGraph : public PBQP::Graph<RegAllocSolverImpl> {
    503 private:
    504   typedef PBQP::Graph<RegAllocSolverImpl> BaseT;
    505 
    506 public:
    507   PBQPRAGraph(GraphMetadata Metadata) : BaseT(std::move(Metadata)) {}
    508 
    509   /// @brief Dump this graph to dbgs().
    510   void dump() const;
    511 
    512   /// @brief Dump this graph to an output stream.
    513   /// @param OS Output stream to print on.
    514   void dump(raw_ostream &OS) const;
    515 
    516   /// @brief Print a representation of this graph in DOT format.
    517   /// @param OS Output stream to print on.
    518   void printDot(raw_ostream &OS) const;
    519 };
    520 
    521 inline Solution solve(PBQPRAGraph& G) {
    522   if (G.empty())
    523     return Solution();
    524   RegAllocSolverImpl RegAllocSolver(G);
    525   return RegAllocSolver.solve();
    526 }
    527 
    528 } // end namespace RegAlloc
    529 } // end namespace PBQP
    530 
    531 /// @brief Create a PBQP register allocator instance.
    532 FunctionPass *
    533 createPBQPRegisterAllocator(char *customPassID = nullptr);
    534 
    535 } // end namespace llvm
    536 
    537 #endif // LLVM_CODEGEN_REGALLOCPBQP_H
    538