Home | History | Annotate | Download | only in IR
      1 //===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines layout properties related to datatype size/offset/alignment
     11 // information.  It uses lazy annotations to cache information about how
     12 // structure types are laid out and used.
     13 //
     14 // This structure should be created once, filled in if the defaults are not
     15 // correct and then passed around by const&.  None of the members functions
     16 // require modification to the object.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #ifndef LLVM_IR_DATALAYOUT_H
     21 #define LLVM_IR_DATALAYOUT_H
     22 
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/Type.h"
     27 #include "llvm/Pass.h"
     28 #include "llvm/Support/DataTypes.h"
     29 
     30 // This needs to be outside of the namespace, to avoid conflict with llvm-c
     31 // decl.
     32 typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
     33 
     34 namespace llvm {
     35 
     36 class Value;
     37 class StructType;
     38 class StructLayout;
     39 class Triple;
     40 class GlobalVariable;
     41 class LLVMContext;
     42 template<typename T>
     43 class ArrayRef;
     44 
     45 /// Enum used to categorize the alignment types stored by LayoutAlignElem
     46 enum AlignTypeEnum {
     47   INVALID_ALIGN = 0,
     48   INTEGER_ALIGN = 'i',
     49   VECTOR_ALIGN = 'v',
     50   FLOAT_ALIGN = 'f',
     51   AGGREGATE_ALIGN = 'a'
     52 };
     53 
     54 // FIXME: Currently the DataLayout string carries a "preferred alignment"
     55 // for types. As the DataLayout is module/global, this should likely be
     56 // sunk down to an FTTI element that is queried rather than a global
     57 // preference.
     58 
     59 /// \brief Layout alignment element.
     60 ///
     61 /// Stores the alignment data associated with a given alignment type (integer,
     62 /// vector, float) and type bit width.
     63 ///
     64 /// \note The unusual order of elements in the structure attempts to reduce
     65 /// padding and make the structure slightly more cache friendly.
     66 struct LayoutAlignElem {
     67   /// \brief Alignment type from \c AlignTypeEnum
     68   unsigned AlignType : 8;
     69   unsigned TypeBitWidth : 24;
     70   unsigned ABIAlign : 16;
     71   unsigned PrefAlign : 16;
     72 
     73   static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
     74                              unsigned pref_align, uint32_t bit_width);
     75   bool operator==(const LayoutAlignElem &rhs) const;
     76 };
     77 
     78 /// \brief Layout pointer alignment element.
     79 ///
     80 /// Stores the alignment data associated with a given pointer and address space.
     81 ///
     82 /// \note The unusual order of elements in the structure attempts to reduce
     83 /// padding and make the structure slightly more cache friendly.
     84 struct PointerAlignElem {
     85   unsigned ABIAlign;
     86   unsigned PrefAlign;
     87   uint32_t TypeByteWidth;
     88   uint32_t AddressSpace;
     89 
     90   /// Initializer
     91   static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
     92                               unsigned PrefAlign, uint32_t TypeByteWidth);
     93   bool operator==(const PointerAlignElem &rhs) const;
     94 };
     95 
     96 /// \brief A parsed version of the target data layout string in and methods for
     97 /// querying it.
     98 ///
     99 /// The target data layout string is specified *by the target* - a frontend
    100 /// generating LLVM IR is required to generate the right target data for the
    101 /// target being codegen'd to.
    102 class DataLayout {
    103 private:
    104   /// Defaults to false.
    105   bool BigEndian;
    106 
    107   unsigned AllocaAddrSpace;
    108   unsigned StackNaturalAlign;
    109 
    110   enum ManglingModeT {
    111     MM_None,
    112     MM_ELF,
    113     MM_MachO,
    114     MM_WinCOFF,
    115     MM_WinCOFFX86,
    116     MM_Mips
    117   };
    118   ManglingModeT ManglingMode;
    119 
    120   SmallVector<unsigned char, 8> LegalIntWidths;
    121 
    122   /// \brief Primitive type alignment data. This is sorted by type and bit
    123   /// width during construction.
    124   typedef SmallVector<LayoutAlignElem, 16> AlignmentsTy;
    125   AlignmentsTy Alignments;
    126 
    127   AlignmentsTy::const_iterator
    128   findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const {
    129     return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType,
    130                                                                    BitWidth);
    131   }
    132 
    133   AlignmentsTy::iterator
    134   findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth);
    135 
    136   /// \brief The string representation used to create this DataLayout
    137   std::string StringRepresentation;
    138 
    139   typedef SmallVector<PointerAlignElem, 8> PointersTy;
    140   PointersTy Pointers;
    141 
    142   PointersTy::const_iterator
    143   findPointerLowerBound(uint32_t AddressSpace) const {
    144     return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
    145   }
    146 
    147   PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
    148 
    149   // The StructType -> StructLayout map.
    150   mutable void *LayoutMap;
    151 
    152   /// Pointers in these address spaces are non-integral, and don't have a
    153   /// well-defined bitwise representation.
    154   SmallVector<unsigned, 8> NonIntegralAddressSpaces;
    155 
    156   void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
    157                     unsigned pref_align, uint32_t bit_width);
    158   unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
    159                             bool ABIAlign, Type *Ty) const;
    160   void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
    161                            unsigned PrefAlign, uint32_t TypeByteWidth);
    162 
    163   /// Internal helper method that returns requested alignment for type.
    164   unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
    165 
    166   /// Parses a target data specification string. Assert if the string is
    167   /// malformed.
    168   void parseSpecifier(StringRef LayoutDescription);
    169 
    170   // Free all internal data structures.
    171   void clear();
    172 
    173 public:
    174   /// Constructs a DataLayout from a specification string. See reset().
    175   explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) {
    176     reset(LayoutDescription);
    177   }
    178 
    179   /// Initialize target data from properties stored in the module.
    180   explicit DataLayout(const Module *M);
    181 
    182   void init(const Module *M);
    183 
    184   DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; }
    185 
    186   DataLayout &operator=(const DataLayout &DL) {
    187     clear();
    188     StringRepresentation = DL.StringRepresentation;
    189     BigEndian = DL.isBigEndian();
    190     AllocaAddrSpace = DL.AllocaAddrSpace;
    191     StackNaturalAlign = DL.StackNaturalAlign;
    192     ManglingMode = DL.ManglingMode;
    193     LegalIntWidths = DL.LegalIntWidths;
    194     Alignments = DL.Alignments;
    195     Pointers = DL.Pointers;
    196     NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
    197     return *this;
    198   }
    199 
    200   bool operator==(const DataLayout &Other) const;
    201   bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
    202 
    203   ~DataLayout(); // Not virtual, do not subclass this class
    204 
    205   /// Parse a data layout string (with fallback to default values).
    206   void reset(StringRef LayoutDescription);
    207 
    208   /// Layout endianness...
    209   bool isLittleEndian() const { return !BigEndian; }
    210   bool isBigEndian() const { return BigEndian; }
    211 
    212   /// \brief Returns the string representation of the DataLayout.
    213   ///
    214   /// This representation is in the same format accepted by the string
    215   /// constructor above. This should not be used to compare two DataLayout as
    216   /// different string can represent the same layout.
    217   const std::string &getStringRepresentation() const {
    218     return StringRepresentation;
    219   }
    220 
    221   /// \brief Test if the DataLayout was constructed from an empty string.
    222   bool isDefault() const { return StringRepresentation.empty(); }
    223 
    224   /// \brief Returns true if the specified type is known to be a native integer
    225   /// type supported by the CPU.
    226   ///
    227   /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
    228   /// on any known one. This returns false if the integer width is not legal.
    229   ///
    230   /// The width is specified in bits.
    231   bool isLegalInteger(uint64_t Width) const {
    232     for (unsigned LegalIntWidth : LegalIntWidths)
    233       if (LegalIntWidth == Width)
    234         return true;
    235     return false;
    236   }
    237 
    238   bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
    239 
    240   /// Returns true if the given alignment exceeds the natural stack alignment.
    241   bool exceedsNaturalStackAlignment(unsigned Align) const {
    242     return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
    243   }
    244 
    245   unsigned getStackAlignment() const { return StackNaturalAlign; }
    246   unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
    247 
    248   bool hasMicrosoftFastStdCallMangling() const {
    249     return ManglingMode == MM_WinCOFFX86;
    250   }
    251 
    252   bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
    253 
    254   StringRef getLinkerPrivateGlobalPrefix() const {
    255     if (ManglingMode == MM_MachO)
    256       return "l";
    257     return "";
    258   }
    259 
    260   char getGlobalPrefix() const {
    261     switch (ManglingMode) {
    262     case MM_None:
    263     case MM_ELF:
    264     case MM_Mips:
    265     case MM_WinCOFF:
    266       return '\0';
    267     case MM_MachO:
    268     case MM_WinCOFFX86:
    269       return '_';
    270     }
    271     llvm_unreachable("invalid mangling mode");
    272   }
    273 
    274   StringRef getPrivateGlobalPrefix() const {
    275     switch (ManglingMode) {
    276     case MM_None:
    277       return "";
    278     case MM_ELF:
    279     case MM_WinCOFF:
    280       return ".L";
    281     case MM_Mips:
    282       return "$";
    283     case MM_MachO:
    284     case MM_WinCOFFX86:
    285       return "L";
    286     }
    287     llvm_unreachable("invalid mangling mode");
    288   }
    289 
    290   static const char *getManglingComponent(const Triple &T);
    291 
    292   /// \brief Returns true if the specified type fits in a native integer type
    293   /// supported by the CPU.
    294   ///
    295   /// For example, if the CPU only supports i32 as a native integer type, then
    296   /// i27 fits in a legal integer type but i45 does not.
    297   bool fitsInLegalInteger(unsigned Width) const {
    298     for (unsigned LegalIntWidth : LegalIntWidths)
    299       if (Width <= LegalIntWidth)
    300         return true;
    301     return false;
    302   }
    303 
    304   /// Layout pointer alignment
    305   /// FIXME: The defaults need to be removed once all of
    306   /// the backends/clients are updated.
    307   unsigned getPointerABIAlignment(unsigned AS = 0) const;
    308 
    309   /// Return target's alignment for stack-based pointers
    310   /// FIXME: The defaults need to be removed once all of
    311   /// the backends/clients are updated.
    312   unsigned getPointerPrefAlignment(unsigned AS = 0) const;
    313 
    314   /// Layout pointer size
    315   /// FIXME: The defaults need to be removed once all of
    316   /// the backends/clients are updated.
    317   unsigned getPointerSize(unsigned AS = 0) const;
    318 
    319   /// Return the address spaces containing non-integral pointers.  Pointers in
    320   /// this address space don't have a well-defined bitwise representation.
    321   ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
    322     return NonIntegralAddressSpaces;
    323   }
    324 
    325   bool isNonIntegralPointerType(PointerType *PT) const {
    326     ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
    327     return find(NonIntegralSpaces, PT->getAddressSpace()) !=
    328            NonIntegralSpaces.end();
    329   }
    330 
    331   bool isNonIntegralPointerType(Type *Ty) const {
    332     auto *PTy = dyn_cast<PointerType>(Ty);
    333     return PTy && isNonIntegralPointerType(PTy);
    334   }
    335 
    336   /// Layout pointer size, in bits
    337   /// FIXME: The defaults need to be removed once all of
    338   /// the backends/clients are updated.
    339   unsigned getPointerSizeInBits(unsigned AS = 0) const {
    340     return getPointerSize(AS) * 8;
    341   }
    342 
    343   /// Layout pointer size, in bits, based on the type.  If this function is
    344   /// called with a pointer type, then the type size of the pointer is returned.
    345   /// If this function is called with a vector of pointers, then the type size
    346   /// of the pointer is returned.  This should only be called with a pointer or
    347   /// vector of pointers.
    348   unsigned getPointerTypeSizeInBits(Type *) const;
    349 
    350   unsigned getPointerTypeSize(Type *Ty) const {
    351     return getPointerTypeSizeInBits(Ty) / 8;
    352   }
    353 
    354   /// Size examples:
    355   ///
    356   /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
    357   /// ----        ----------  ---------------  ---------------
    358   ///  i1            1           8                8
    359   ///  i8            8           8                8
    360   ///  i19          19          24               32
    361   ///  i32          32          32               32
    362   ///  i100        100         104              128
    363   ///  i128        128         128              128
    364   ///  Float        32          32               32
    365   ///  Double       64          64               64
    366   ///  X86_FP80     80          80               96
    367   ///
    368   /// [*] The alloc size depends on the alignment, and thus on the target.
    369   ///     These values are for x86-32 linux.
    370 
    371   /// \brief Returns the number of bits necessary to hold the specified type.
    372   ///
    373   /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
    374   /// have a size (Type::isSized() must return true).
    375   uint64_t getTypeSizeInBits(Type *Ty) const;
    376 
    377   /// \brief Returns the maximum number of bytes that may be overwritten by
    378   /// storing the specified type.
    379   ///
    380   /// For example, returns 5 for i36 and 10 for x86_fp80.
    381   uint64_t getTypeStoreSize(Type *Ty) const {
    382     return (getTypeSizeInBits(Ty) + 7) / 8;
    383   }
    384 
    385   /// \brief Returns the maximum number of bits that may be overwritten by
    386   /// storing the specified type; always a multiple of 8.
    387   ///
    388   /// For example, returns 40 for i36 and 80 for x86_fp80.
    389   uint64_t getTypeStoreSizeInBits(Type *Ty) const {
    390     return 8 * getTypeStoreSize(Ty);
    391   }
    392 
    393   /// \brief Returns the offset in bytes between successive objects of the
    394   /// specified type, including alignment padding.
    395   ///
    396   /// This is the amount that alloca reserves for this type. For example,
    397   /// returns 12 or 16 for x86_fp80, depending on alignment.
    398   uint64_t getTypeAllocSize(Type *Ty) const {
    399     // Round up to the next alignment boundary.
    400     return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
    401   }
    402 
    403   /// \brief Returns the offset in bits between successive objects of the
    404   /// specified type, including alignment padding; always a multiple of 8.
    405   ///
    406   /// This is the amount that alloca reserves for this type. For example,
    407   /// returns 96 or 128 for x86_fp80, depending on alignment.
    408   uint64_t getTypeAllocSizeInBits(Type *Ty) const {
    409     return 8 * getTypeAllocSize(Ty);
    410   }
    411 
    412   /// \brief Returns the minimum ABI-required alignment for the specified type.
    413   unsigned getABITypeAlignment(Type *Ty) const;
    414 
    415   /// \brief Returns the minimum ABI-required alignment for an integer type of
    416   /// the specified bitwidth.
    417   unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
    418 
    419   /// \brief Returns the preferred stack/global alignment for the specified
    420   /// type.
    421   ///
    422   /// This is always at least as good as the ABI alignment.
    423   unsigned getPrefTypeAlignment(Type *Ty) const;
    424 
    425   /// \brief Returns the preferred alignment for the specified type, returned as
    426   /// log2 of the value (a shift amount).
    427   unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
    428 
    429   /// \brief Returns an integer type with size at least as big as that of a
    430   /// pointer in the given address space.
    431   IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
    432 
    433   /// \brief Returns an integer (vector of integer) type with size at least as
    434   /// big as that of a pointer of the given pointer (vector of pointer) type.
    435   Type *getIntPtrType(Type *) const;
    436 
    437   /// \brief Returns the smallest integer type with size at least as big as
    438   /// Width bits.
    439   Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
    440 
    441   /// \brief Returns the largest legal integer type, or null if none are set.
    442   Type *getLargestLegalIntType(LLVMContext &C) const {
    443     unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
    444     return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
    445   }
    446 
    447   /// \brief Returns the size of largest legal integer type size, or 0 if none
    448   /// are set.
    449   unsigned getLargestLegalIntTypeSizeInBits() const;
    450 
    451   /// \brief Returns the offset from the beginning of the type for the specified
    452   /// indices.
    453   ///
    454   /// Note that this takes the element type, not the pointer type.
    455   /// This is used to implement getelementptr.
    456   int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
    457 
    458   /// \brief Returns a StructLayout object, indicating the alignment of the
    459   /// struct, its size, and the offsets of its fields.
    460   ///
    461   /// Note that this information is lazily cached.
    462   const StructLayout *getStructLayout(StructType *Ty) const;
    463 
    464   /// \brief Returns the preferred alignment of the specified global.
    465   ///
    466   /// This includes an explicitly requested alignment (if the global has one).
    467   unsigned getPreferredAlignment(const GlobalVariable *GV) const;
    468 
    469   /// \brief Returns the preferred alignment of the specified global, returned
    470   /// in log form.
    471   ///
    472   /// This includes an explicitly requested alignment (if the global has one).
    473   unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
    474 };
    475 
    476 inline DataLayout *unwrap(LLVMTargetDataRef P) {
    477   return reinterpret_cast<DataLayout *>(P);
    478 }
    479 
    480 inline LLVMTargetDataRef wrap(const DataLayout *P) {
    481   return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
    482 }
    483 
    484 /// Used to lazily calculate structure layout information for a target machine,
    485 /// based on the DataLayout structure.
    486 class StructLayout {
    487   uint64_t StructSize;
    488   unsigned StructAlignment;
    489   unsigned IsPadded : 1;
    490   unsigned NumElements : 31;
    491   uint64_t MemberOffsets[1]; // variable sized array!
    492 public:
    493   uint64_t getSizeInBytes() const { return StructSize; }
    494 
    495   uint64_t getSizeInBits() const { return 8 * StructSize; }
    496 
    497   unsigned getAlignment() const { return StructAlignment; }
    498 
    499   /// Returns whether the struct has padding or not between its fields.
    500   /// NB: Padding in nested element is not taken into account.
    501   bool hasPadding() const { return IsPadded; }
    502 
    503   /// \brief Given a valid byte offset into the structure, returns the structure
    504   /// index that contains it.
    505   unsigned getElementContainingOffset(uint64_t Offset) const;
    506 
    507   uint64_t getElementOffset(unsigned Idx) const {
    508     assert(Idx < NumElements && "Invalid element idx!");
    509     return MemberOffsets[Idx];
    510   }
    511 
    512   uint64_t getElementOffsetInBits(unsigned Idx) const {
    513     return getElementOffset(Idx) * 8;
    514   }
    515 
    516 private:
    517   friend class DataLayout; // Only DataLayout can create this class
    518   StructLayout(StructType *ST, const DataLayout &DL);
    519 };
    520 
    521 // The implementation of this method is provided inline as it is particularly
    522 // well suited to constant folding when called on a specific Type subclass.
    523 inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
    524   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
    525   switch (Ty->getTypeID()) {
    526   case Type::LabelTyID:
    527     return getPointerSizeInBits(0);
    528   case Type::PointerTyID:
    529     return getPointerSizeInBits(Ty->getPointerAddressSpace());
    530   case Type::ArrayTyID: {
    531     ArrayType *ATy = cast<ArrayType>(Ty);
    532     return ATy->getNumElements() *
    533            getTypeAllocSizeInBits(ATy->getElementType());
    534   }
    535   case Type::StructTyID:
    536     // Get the layout annotation... which is lazily created on demand.
    537     return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
    538   case Type::IntegerTyID:
    539     return Ty->getIntegerBitWidth();
    540   case Type::HalfTyID:
    541     return 16;
    542   case Type::FloatTyID:
    543     return 32;
    544   case Type::DoubleTyID:
    545   case Type::X86_MMXTyID:
    546     return 64;
    547   case Type::PPC_FP128TyID:
    548   case Type::FP128TyID:
    549     return 128;
    550   // In memory objects this is always aligned to a higher boundary, but
    551   // only 80 bits contain information.
    552   case Type::X86_FP80TyID:
    553     return 80;
    554   case Type::VectorTyID: {
    555     VectorType *VTy = cast<VectorType>(Ty);
    556     return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
    557   }
    558   default:
    559     llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
    560   }
    561 }
    562 
    563 } // End llvm namespace
    564 
    565 #endif
    566