Home | History | Annotate | Download | only in IR
      1 //===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the declarations of classes that represent "derived
     11 // types".  These are things like "arrays of x" or "structure of x, y, z" or
     12 // "function returning x taking (y,z) as parameters", etc...
     13 //
     14 // The implementations of these classes live in the Type.cpp file.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #ifndef LLVM_IR_DERIVEDTYPES_H
     19 #define LLVM_IR_DERIVEDTYPES_H
     20 
     21 #include "llvm/ADT/ArrayRef.h"
     22 #include "llvm/ADT/StringRef.h"
     23 #include "llvm/IR/Type.h"
     24 #include "llvm/Support/Casting.h"
     25 #include "llvm/Support/Compiler.h"
     26 #include <cassert>
     27 #include <cstdint>
     28 
     29 namespace llvm {
     30 
     31 class Value;
     32 class APInt;
     33 class LLVMContext;
     34 
     35 /// Class to represent integer types. Note that this class is also used to
     36 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
     37 /// Int64Ty.
     38 /// @brief Integer representation type
     39 class IntegerType : public Type {
     40   friend class LLVMContextImpl;
     41 
     42 protected:
     43   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
     44     setSubclassData(NumBits);
     45   }
     46 
     47 public:
     48   /// This enum is just used to hold constants we need for IntegerType.
     49   enum {
     50     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
     51     MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
     52       ///< Note that bit width is stored in the Type classes SubclassData field
     53       ///< which has 24 bits. This yields a maximum bit width of 16,777,215
     54       ///< bits.
     55   };
     56 
     57   /// This static method is the primary way of constructing an IntegerType.
     58   /// If an IntegerType with the same NumBits value was previously instantiated,
     59   /// that instance will be returned. Otherwise a new one will be created. Only
     60   /// one instance with a given NumBits value is ever created.
     61   /// @brief Get or create an IntegerType instance.
     62   static IntegerType *get(LLVMContext &C, unsigned NumBits);
     63 
     64   /// @brief Get the number of bits in this IntegerType
     65   unsigned getBitWidth() const { return getSubclassData(); }
     66 
     67   /// Return a bitmask with ones set for all of the bits that can be set by an
     68   /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
     69   uint64_t getBitMask() const {
     70     return ~uint64_t(0UL) >> (64-getBitWidth());
     71   }
     72 
     73   /// Return a uint64_t with just the most significant bit set (the sign bit, if
     74   /// the value is treated as a signed number).
     75   uint64_t getSignBit() const {
     76     return 1ULL << (getBitWidth()-1);
     77   }
     78 
     79   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
     80   /// @returns a bit mask with ones set for all the bits of this type.
     81   /// @brief Get a bit mask for this type.
     82   APInt getMask() const;
     83 
     84   /// This method determines if the width of this IntegerType is a power-of-2
     85   /// in terms of 8 bit bytes.
     86   /// @returns true if this is a power-of-2 byte width.
     87   /// @brief Is this a power-of-2 byte-width IntegerType ?
     88   bool isPowerOf2ByteWidth() const;
     89 
     90   /// Methods for support type inquiry through isa, cast, and dyn_cast.
     91   static inline bool classof(const Type *T) {
     92     return T->getTypeID() == IntegerTyID;
     93   }
     94 };
     95 
     96 unsigned Type::getIntegerBitWidth() const {
     97   return cast<IntegerType>(this)->getBitWidth();
     98 }
     99 
    100 /// Class to represent function types
    101 ///
    102 class FunctionType : public Type {
    103   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
    104 
    105 public:
    106   FunctionType(const FunctionType &) = delete;
    107   FunctionType &operator=(const FunctionType &) = delete;
    108 
    109   /// This static method is the primary way of constructing a FunctionType.
    110   static FunctionType *get(Type *Result,
    111                            ArrayRef<Type*> Params, bool isVarArg);
    112 
    113   /// Create a FunctionType taking no parameters.
    114   static FunctionType *get(Type *Result, bool isVarArg);
    115 
    116   /// Return true if the specified type is valid as a return type.
    117   static bool isValidReturnType(Type *RetTy);
    118 
    119   /// Return true if the specified type is valid as an argument type.
    120   static bool isValidArgumentType(Type *ArgTy);
    121 
    122   bool isVarArg() const { return getSubclassData()!=0; }
    123   Type *getReturnType() const { return ContainedTys[0]; }
    124 
    125   typedef Type::subtype_iterator param_iterator;
    126   param_iterator param_begin() const { return ContainedTys + 1; }
    127   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
    128   ArrayRef<Type *> params() const {
    129     return makeArrayRef(param_begin(), param_end());
    130   }
    131 
    132   /// Parameter type accessors.
    133   Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
    134 
    135   /// Return the number of fixed parameters this function type requires.
    136   /// This does not consider varargs.
    137   unsigned getNumParams() const { return NumContainedTys - 1; }
    138 
    139   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    140   static inline bool classof(const Type *T) {
    141     return T->getTypeID() == FunctionTyID;
    142   }
    143 };
    144 static_assert(alignof(FunctionType) >= alignof(Type *),
    145               "Alignment sufficient for objects appended to FunctionType");
    146 
    147 bool Type::isFunctionVarArg() const {
    148   return cast<FunctionType>(this)->isVarArg();
    149 }
    150 
    151 Type *Type::getFunctionParamType(unsigned i) const {
    152   return cast<FunctionType>(this)->getParamType(i);
    153 }
    154 
    155 unsigned Type::getFunctionNumParams() const {
    156   return cast<FunctionType>(this)->getNumParams();
    157 }
    158 
    159 /// Common super class of ArrayType, StructType and VectorType.
    160 class CompositeType : public Type {
    161 protected:
    162   explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
    163 
    164 public:
    165   /// Given an index value into the type, return the type of the element.
    166   Type *getTypeAtIndex(const Value *V) const;
    167   Type *getTypeAtIndex(unsigned Idx) const;
    168   bool indexValid(const Value *V) const;
    169   bool indexValid(unsigned Idx) const;
    170 
    171   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    172   static inline bool classof(const Type *T) {
    173     return T->getTypeID() == ArrayTyID ||
    174            T->getTypeID() == StructTyID ||
    175            T->getTypeID() == VectorTyID;
    176   }
    177 };
    178 
    179 /// Class to represent struct types. There are two different kinds of struct
    180 /// types: Literal structs and Identified structs.
    181 ///
    182 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
    183 /// always have a body when created.  You can get one of these by using one of
    184 /// the StructType::get() forms.
    185 ///
    186 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
    187 /// uniqued.  The names for identified structs are managed at the LLVMContext
    188 /// level, so there can only be a single identified struct with a given name in
    189 /// a particular LLVMContext.  Identified structs may also optionally be opaque
    190 /// (have no body specified).  You get one of these by using one of the
    191 /// StructType::create() forms.
    192 ///
    193 /// Independent of what kind of struct you have, the body of a struct type are
    194 /// laid out in memory consequtively with the elements directly one after the
    195 /// other (if the struct is packed) or (if not packed) with padding between the
    196 /// elements as defined by DataLayout (which is required to match what the code
    197 /// generator for a target expects).
    198 ///
    199 class StructType : public CompositeType {
    200   StructType(LLVMContext &C)
    201     : CompositeType(C, StructTyID), SymbolTableEntry(nullptr) {}
    202 
    203   enum {
    204     /// This is the contents of the SubClassData field.
    205     SCDB_HasBody = 1,
    206     SCDB_Packed = 2,
    207     SCDB_IsLiteral = 4,
    208     SCDB_IsSized = 8
    209   };
    210 
    211   /// For a named struct that actually has a name, this is a pointer to the
    212   /// symbol table entry (maintained by LLVMContext) for the struct.
    213   /// This is null if the type is an literal struct or if it is a identified
    214   /// type that has an empty name.
    215   void *SymbolTableEntry;
    216 
    217 public:
    218   StructType(const StructType &) = delete;
    219   StructType &operator=(const StructType &) = delete;
    220 
    221   /// This creates an identified struct.
    222   static StructType *create(LLVMContext &Context, StringRef Name);
    223   static StructType *create(LLVMContext &Context);
    224 
    225   static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
    226                             bool isPacked = false);
    227   static StructType *create(ArrayRef<Type *> Elements);
    228   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
    229                             StringRef Name, bool isPacked = false);
    230   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
    231   static StructType *create(StringRef Name, Type *elt1, ...) LLVM_END_WITH_NULL;
    232 
    233   /// This static method is the primary way to create a literal StructType.
    234   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
    235                          bool isPacked = false);
    236 
    237   /// Create an empty structure type.
    238   static StructType *get(LLVMContext &Context, bool isPacked = false);
    239 
    240   /// This static method is a convenience method for creating structure types by
    241   /// specifying the elements as arguments. Note that this method always returns
    242   /// a non-packed struct, and requires at least one element type.
    243   static StructType *get(Type *elt1, ...) LLVM_END_WITH_NULL;
    244 
    245   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
    246 
    247   /// Return true if this type is uniqued by structural equivalence, false if it
    248   /// is a struct definition.
    249   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
    250 
    251   /// Return true if this is a type with an identity that has no body specified
    252   /// yet. These prints as 'opaque' in .ll files.
    253   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
    254 
    255   /// isSized - Return true if this is a sized type.
    256   bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
    257 
    258   /// Return true if this is a named struct that has a non-empty name.
    259   bool hasName() const { return SymbolTableEntry != nullptr; }
    260 
    261   /// Return the name for this struct type if it has an identity.
    262   /// This may return an empty string for an unnamed struct type.  Do not call
    263   /// this on an literal type.
    264   StringRef getName() const;
    265 
    266   /// Change the name of this type to the specified name, or to a name with a
    267   /// suffix if there is a collision. Do not call this on an literal type.
    268   void setName(StringRef Name);
    269 
    270   /// Specify a body for an opaque identified type.
    271   void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
    272   void setBody(Type *elt1, ...) LLVM_END_WITH_NULL;
    273 
    274   /// Return true if the specified type is valid as a element type.
    275   static bool isValidElementType(Type *ElemTy);
    276 
    277   // Iterator access to the elements.
    278   typedef Type::subtype_iterator element_iterator;
    279   element_iterator element_begin() const { return ContainedTys; }
    280   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
    281   ArrayRef<Type *> const elements() const {
    282     return makeArrayRef(element_begin(), element_end());
    283   }
    284 
    285   /// Return true if this is layout identical to the specified struct.
    286   bool isLayoutIdentical(StructType *Other) const;
    287 
    288   /// Random access to the elements
    289   unsigned getNumElements() const { return NumContainedTys; }
    290   Type *getElementType(unsigned N) const {
    291     assert(N < NumContainedTys && "Element number out of range!");
    292     return ContainedTys[N];
    293   }
    294 
    295   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    296   static inline bool classof(const Type *T) {
    297     return T->getTypeID() == StructTyID;
    298   }
    299 };
    300 
    301 StringRef Type::getStructName() const {
    302   return cast<StructType>(this)->getName();
    303 }
    304 
    305 unsigned Type::getStructNumElements() const {
    306   return cast<StructType>(this)->getNumElements();
    307 }
    308 
    309 Type *Type::getStructElementType(unsigned N) const {
    310   return cast<StructType>(this)->getElementType(N);
    311 }
    312 
    313 /// This is the superclass of the array and vector type classes. Both of these
    314 /// represent "arrays" in memory. The array type represents a specifically sized
    315 /// array, and the vector type represents a specifically sized array that allows
    316 /// for use of SIMD instructions. SequentialType holds the common features of
    317 /// both, which stem from the fact that both lay their components out in memory
    318 /// identically.
    319 class SequentialType : public CompositeType {
    320   Type *ContainedType;               ///< Storage for the single contained type.
    321   uint64_t NumElements;
    322 
    323 protected:
    324   SequentialType(TypeID TID, Type *ElType, uint64_t NumElements)
    325     : CompositeType(ElType->getContext(), TID), ContainedType(ElType),
    326       NumElements(NumElements) {
    327     ContainedTys = &ContainedType;
    328     NumContainedTys = 1;
    329   }
    330 
    331 public:
    332   SequentialType(const SequentialType &) = delete;
    333   SequentialType &operator=(const SequentialType &) = delete;
    334 
    335   uint64_t getNumElements() const { return NumElements; }
    336   Type *getElementType() const { return ContainedType; }
    337 
    338   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    339   static inline bool classof(const Type *T) {
    340     return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID;
    341   }
    342 };
    343 
    344 /// Class to represent array types.
    345 class ArrayType : public SequentialType {
    346   ArrayType(Type *ElType, uint64_t NumEl);
    347 
    348 public:
    349   ArrayType(const ArrayType &) = delete;
    350   ArrayType &operator=(const ArrayType &) = delete;
    351 
    352   /// This static method is the primary way to construct an ArrayType
    353   static ArrayType *get(Type *ElementType, uint64_t NumElements);
    354 
    355   /// Return true if the specified type is valid as a element type.
    356   static bool isValidElementType(Type *ElemTy);
    357 
    358   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    359   static inline bool classof(const Type *T) {
    360     return T->getTypeID() == ArrayTyID;
    361   }
    362 };
    363 
    364 uint64_t Type::getArrayNumElements() const {
    365   return cast<ArrayType>(this)->getNumElements();
    366 }
    367 
    368 /// Class to represent vector types.
    369 class VectorType : public SequentialType {
    370   VectorType(Type *ElType, unsigned NumEl);
    371 
    372 public:
    373   VectorType(const VectorType &) = delete;
    374   VectorType &operator=(const VectorType &) = delete;
    375 
    376   /// This static method is the primary way to construct an VectorType.
    377   static VectorType *get(Type *ElementType, unsigned NumElements);
    378 
    379   /// This static method gets a VectorType with the same number of elements as
    380   /// the input type, and the element type is an integer type of the same width
    381   /// as the input element type.
    382   static VectorType *getInteger(VectorType *VTy) {
    383     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    384     assert(EltBits && "Element size must be of a non-zero size");
    385     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
    386     return VectorType::get(EltTy, VTy->getNumElements());
    387   }
    388 
    389   /// This static method is like getInteger except that the element types are
    390   /// twice as wide as the elements in the input type.
    391   static VectorType *getExtendedElementVectorType(VectorType *VTy) {
    392     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    393     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
    394     return VectorType::get(EltTy, VTy->getNumElements());
    395   }
    396 
    397   /// This static method is like getInteger except that the element types are
    398   /// half as wide as the elements in the input type.
    399   static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
    400     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    401     assert((EltBits & 1) == 0 &&
    402            "Cannot truncate vector element with odd bit-width");
    403     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
    404     return VectorType::get(EltTy, VTy->getNumElements());
    405   }
    406 
    407   /// This static method returns a VectorType with half as many elements as the
    408   /// input type and the same element type.
    409   static VectorType *getHalfElementsVectorType(VectorType *VTy) {
    410     unsigned NumElts = VTy->getNumElements();
    411     assert ((NumElts & 1) == 0 &&
    412             "Cannot halve vector with odd number of elements.");
    413     return VectorType::get(VTy->getElementType(), NumElts/2);
    414   }
    415 
    416   /// This static method returns a VectorType with twice as many elements as the
    417   /// input type and the same element type.
    418   static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
    419     unsigned NumElts = VTy->getNumElements();
    420     return VectorType::get(VTy->getElementType(), NumElts*2);
    421   }
    422 
    423   /// Return true if the specified type is valid as a element type.
    424   static bool isValidElementType(Type *ElemTy);
    425 
    426   /// Return the number of bits in the Vector type.
    427   /// Returns zero when the vector is a vector of pointers.
    428   unsigned getBitWidth() const {
    429     return getNumElements() * getElementType()->getPrimitiveSizeInBits();
    430   }
    431 
    432   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    433   static inline bool classof(const Type *T) {
    434     return T->getTypeID() == VectorTyID;
    435   }
    436 };
    437 
    438 unsigned Type::getVectorNumElements() const {
    439   return cast<VectorType>(this)->getNumElements();
    440 }
    441 
    442 /// Class to represent pointers.
    443 class PointerType : public Type {
    444   explicit PointerType(Type *ElType, unsigned AddrSpace);
    445 
    446   Type *PointeeTy;
    447 
    448 public:
    449   PointerType(const PointerType &) = delete;
    450   PointerType &operator=(const PointerType &) = delete;
    451 
    452   /// This constructs a pointer to an object of the specified type in a numbered
    453   /// address space.
    454   static PointerType *get(Type *ElementType, unsigned AddressSpace);
    455 
    456   /// This constructs a pointer to an object of the specified type in the
    457   /// generic address space (address space zero).
    458   static PointerType *getUnqual(Type *ElementType) {
    459     return PointerType::get(ElementType, 0);
    460   }
    461 
    462   Type *getElementType() const { return PointeeTy; }
    463 
    464   /// Return true if the specified type is valid as a element type.
    465   static bool isValidElementType(Type *ElemTy);
    466 
    467   /// Return true if we can load or store from a pointer to this type.
    468   static bool isLoadableOrStorableType(Type *ElemTy);
    469 
    470   /// Return the address space of the Pointer type.
    471   inline unsigned getAddressSpace() const { return getSubclassData(); }
    472 
    473   /// Implement support type inquiry through isa, cast, and dyn_cast.
    474   static inline bool classof(const Type *T) {
    475     return T->getTypeID() == PointerTyID;
    476   }
    477 };
    478 
    479 unsigned Type::getPointerAddressSpace() const {
    480   return cast<PointerType>(getScalarType())->getAddressSpace();
    481 }
    482 
    483 } // end namespace llvm
    484 
    485 #endif // LLVM_IR_DERIVEDTYPES_H
    486