Home | History | Annotate | Download | only in IR
      1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// This header defines various interfaces for pass management in LLVM. There
     12 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
     13 /// which supports a method to 'run' it over a unit of IR can be used as
     14 /// a pass. A pass manager is generally a tool to collect a sequence of passes
     15 /// which run over a particular IR construct, and run each of them in sequence
     16 /// over each such construct in the containing IR construct. As there is no
     17 /// containing IR construct for a Module, a manager for passes over modules
     18 /// forms the base case which runs its managed passes in sequence over the
     19 /// single module provided.
     20 ///
     21 /// The core IR library provides managers for running passes over
     22 /// modules and functions.
     23 ///
     24 /// * FunctionPassManager can run over a Module, runs each pass over
     25 ///   a Function.
     26 /// * ModulePassManager must be directly run, runs each pass over the Module.
     27 ///
     28 /// Note that the implementations of the pass managers use concept-based
     29 /// polymorphism as outlined in the "Value Semantics and Concept-based
     30 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
     31 /// Class of Evil") by Sean Parent:
     32 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
     33 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
     34 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
     35 ///
     36 //===----------------------------------------------------------------------===//
     37 
     38 #ifndef LLVM_IR_PASSMANAGER_H
     39 #define LLVM_IR_PASSMANAGER_H
     40 
     41 #include "llvm/ADT/DenseMap.h"
     42 #include "llvm/ADT/STLExtras.h"
     43 #include "llvm/ADT/SmallPtrSet.h"
     44 #include "llvm/ADT/TinyPtrVector.h"
     45 #include "llvm/IR/Function.h"
     46 #include "llvm/IR/Module.h"
     47 #include "llvm/IR/PassManagerInternal.h"
     48 #include "llvm/Support/Debug.h"
     49 #include "llvm/Support/TypeName.h"
     50 #include "llvm/Support/raw_ostream.h"
     51 #include "llvm/Support/type_traits.h"
     52 #include <list>
     53 #include <memory>
     54 #include <vector>
     55 
     56 namespace llvm {
     57 
     58 /// A special type used by analysis passes to provide an address that
     59 /// identifies that particular analysis pass type.
     60 ///
     61 /// Analysis passes should have a static data member of this type and derive
     62 /// from the \c AnalysisInfoMixin to get a static ID method used to identify
     63 /// the analysis in the pass management infrastructure.
     64 struct alignas(8) AnalysisKey {};
     65 
     66 /// A special type used to provide an address that identifies a set of related
     67 /// analyses.  These sets are primarily used below to mark sets of analyses as
     68 /// preserved.
     69 ///
     70 /// For example, a transformation can indicate that it preserves the CFG of a
     71 /// function by preserving the appropriate AnalysisSetKey.  An analysis that
     72 /// depends only on the CFG can then check if that AnalysisSetKey is preserved;
     73 /// if it is, the analysis knows that it itself is preserved.
     74 struct alignas(8) AnalysisSetKey {};
     75 
     76 /// This templated class represents "all analyses that operate over \<a
     77 /// particular IR unit\>" (e.g. a Function or a Module) in instances of
     78 /// PreservedAnalysis.
     79 ///
     80 /// This lets a transformation say e.g. "I preserved all function analyses".
     81 ///
     82 /// Note that you must provide an explicit instantiation declaration and
     83 /// definition for this template in order to get the correct behavior on
     84 /// Windows. Otherwise, the address of SetKey will not be stable.
     85 template <typename IRUnitT> class AllAnalysesOn {
     86 public:
     87   static AnalysisSetKey *ID() { return &SetKey; }
     88 
     89 private:
     90   static AnalysisSetKey SetKey;
     91 };
     92 
     93 template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey;
     94 
     95 extern template class AllAnalysesOn<Module>;
     96 extern template class AllAnalysesOn<Function>;
     97 
     98 /// Represents analyses that only rely on functions' control flow.
     99 ///
    100 /// This can be used with \c PreservedAnalyses to mark the CFG as preserved and
    101 /// to query whether it has been preserved.
    102 ///
    103 /// The CFG of a function is defined as the set of basic blocks and the edges
    104 /// between them. Changing the set of basic blocks in a function is enough to
    105 /// mutate the CFG. Mutating the condition of a branch or argument of an
    106 /// invoked function does not mutate the CFG, but changing the successor labels
    107 /// of those instructions does.
    108 class CFGAnalyses {
    109 public:
    110   static AnalysisSetKey *ID() { return &SetKey; }
    111 
    112 private:
    113   static AnalysisSetKey SetKey;
    114 };
    115 
    116 /// A set of analyses that are preserved following a run of a transformation
    117 /// pass.
    118 ///
    119 /// Transformation passes build and return these objects to communicate which
    120 /// analyses are still valid after the transformation. For most passes this is
    121 /// fairly simple: if they don't change anything all analyses are preserved,
    122 /// otherwise only a short list of analyses that have been explicitly updated
    123 /// are preserved.
    124 ///
    125 /// This class also lets transformation passes mark abstract *sets* of analyses
    126 /// as preserved. A transformation that (say) does not alter the CFG can
    127 /// indicate such by marking a particular AnalysisSetKey as preserved, and
    128 /// then analyses can query whether that AnalysisSetKey is preserved.
    129 ///
    130 /// Finally, this class can represent an "abandoned" analysis, which is
    131 /// not preserved even if it would be covered by some abstract set of analyses.
    132 ///
    133 /// Given a `PreservedAnalyses` object, an analysis will typically want to
    134 /// figure out whether it is preserved. In the example below, MyAnalysisType is
    135 /// preserved if it's not abandoned, and (a) it's explicitly marked as
    136 /// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both
    137 /// AnalysisSetA and AnalysisSetB are preserved.
    138 ///
    139 /// ```
    140 ///   auto PAC = PA.getChecker<MyAnalysisType>();
    141 ///   if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() ||
    142 ///       (PAC.preservedSet<AnalysisSetA>() &&
    143 ///        PAC.preservedSet<AnalysisSetB>())) {
    144 ///     // The analysis has been successfully preserved ...
    145 ///   }
    146 /// ```
    147 class PreservedAnalyses {
    148 public:
    149   /// \brief Convenience factory function for the empty preserved set.
    150   static PreservedAnalyses none() { return PreservedAnalyses(); }
    151 
    152   /// \brief Construct a special preserved set that preserves all passes.
    153   static PreservedAnalyses all() {
    154     PreservedAnalyses PA;
    155     PA.PreservedIDs.insert(&AllAnalysesKey);
    156     return PA;
    157   }
    158 
    159   /// Mark an analysis as preserved.
    160   template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); }
    161 
    162   /// \brief Given an analysis's ID, mark the analysis as preserved, adding it
    163   /// to the set.
    164   void preserve(AnalysisKey *ID) {
    165     // Clear this ID from the explicit not-preserved set if present.
    166     NotPreservedAnalysisIDs.erase(ID);
    167 
    168     // If we're not already preserving all analyses (other than those in
    169     // NotPreservedAnalysisIDs).
    170     if (!areAllPreserved())
    171       PreservedIDs.insert(ID);
    172   }
    173 
    174   /// Mark an analysis set as preserved.
    175   template <typename AnalysisSetT> void preserveSet() {
    176     preserveSet(AnalysisSetT::ID());
    177   }
    178 
    179   /// Mark an analysis set as preserved using its ID.
    180   void preserveSet(AnalysisSetKey *ID) {
    181     // If we're not already in the saturated 'all' state, add this set.
    182     if (!areAllPreserved())
    183       PreservedIDs.insert(ID);
    184   }
    185 
    186   /// Mark an analysis as abandoned.
    187   ///
    188   /// An abandoned analysis is not preserved, even if it is nominally covered
    189   /// by some other set or was previously explicitly marked as preserved.
    190   ///
    191   /// Note that you can only abandon a specific analysis, not a *set* of
    192   /// analyses.
    193   template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); }
    194 
    195   /// Mark an analysis as abandoned using its ID.
    196   ///
    197   /// An abandoned analysis is not preserved, even if it is nominally covered
    198   /// by some other set or was previously explicitly marked as preserved.
    199   ///
    200   /// Note that you can only abandon a specific analysis, not a *set* of
    201   /// analyses.
    202   void abandon(AnalysisKey *ID) {
    203     PreservedIDs.erase(ID);
    204     NotPreservedAnalysisIDs.insert(ID);
    205   }
    206 
    207   /// \brief Intersect this set with another in place.
    208   ///
    209   /// This is a mutating operation on this preserved set, removing all
    210   /// preserved passes which are not also preserved in the argument.
    211   void intersect(const PreservedAnalyses &Arg) {
    212     if (Arg.areAllPreserved())
    213       return;
    214     if (areAllPreserved()) {
    215       *this = Arg;
    216       return;
    217     }
    218     // The intersection requires the *union* of the explicitly not-preserved
    219     // IDs and the *intersection* of the preserved IDs.
    220     for (auto ID : Arg.NotPreservedAnalysisIDs) {
    221       PreservedIDs.erase(ID);
    222       NotPreservedAnalysisIDs.insert(ID);
    223     }
    224     for (auto ID : PreservedIDs)
    225       if (!Arg.PreservedIDs.count(ID))
    226         PreservedIDs.erase(ID);
    227   }
    228 
    229   /// \brief Intersect this set with a temporary other set in place.
    230   ///
    231   /// This is a mutating operation on this preserved set, removing all
    232   /// preserved passes which are not also preserved in the argument.
    233   void intersect(PreservedAnalyses &&Arg) {
    234     if (Arg.areAllPreserved())
    235       return;
    236     if (areAllPreserved()) {
    237       *this = std::move(Arg);
    238       return;
    239     }
    240     // The intersection requires the *union* of the explicitly not-preserved
    241     // IDs and the *intersection* of the preserved IDs.
    242     for (auto ID : Arg.NotPreservedAnalysisIDs) {
    243       PreservedIDs.erase(ID);
    244       NotPreservedAnalysisIDs.insert(ID);
    245     }
    246     for (auto ID : PreservedIDs)
    247       if (!Arg.PreservedIDs.count(ID))
    248         PreservedIDs.erase(ID);
    249   }
    250 
    251   /// A checker object that makes it easy to query for whether an analysis or
    252   /// some set covering it is preserved.
    253   class PreservedAnalysisChecker {
    254     friend class PreservedAnalyses;
    255 
    256     const PreservedAnalyses &PA;
    257     AnalysisKey *const ID;
    258     const bool IsAbandoned;
    259 
    260     /// A PreservedAnalysisChecker is tied to a particular Analysis because
    261     /// `preserved()` and `preservedSet()` both return false if the Analysis
    262     /// was abandoned.
    263     PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID)
    264         : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {}
    265 
    266   public:
    267     /// Returns true if the checker's analysis was not abandoned and either
    268     ///  - the analysis is explicitly preserved or
    269     ///  - all analyses are preserved.
    270     bool preserved() {
    271       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
    272                               PA.PreservedIDs.count(ID));
    273     }
    274 
    275     /// Returns true if the checker's analysis was not abandoned and either
    276     ///  - \p AnalysisSetT is explicitly preserved or
    277     ///  - all analyses are preserved.
    278     template <typename AnalysisSetT> bool preservedSet() {
    279       AnalysisSetKey *SetID = AnalysisSetT::ID();
    280       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
    281                               PA.PreservedIDs.count(SetID));
    282     }
    283   };
    284 
    285   /// Build a checker for this `PreservedAnalyses` and the specified analysis
    286   /// type.
    287   ///
    288   /// You can use the returned object to query whether an analysis was
    289   /// preserved. See the example in the comment on `PreservedAnalysis`.
    290   template <typename AnalysisT> PreservedAnalysisChecker getChecker() const {
    291     return PreservedAnalysisChecker(*this, AnalysisT::ID());
    292   }
    293 
    294   /// Build a checker for this `PreservedAnalyses` and the specified analysis
    295   /// ID.
    296   ///
    297   /// You can use the returned object to query whether an analysis was
    298   /// preserved. See the example in the comment on `PreservedAnalysis`.
    299   PreservedAnalysisChecker getChecker(AnalysisKey *ID) const {
    300     return PreservedAnalysisChecker(*this, ID);
    301   }
    302 
    303   /// Test whether all analyses are preserved (and none are abandoned).
    304   ///
    305   /// This is used primarily to optimize for the common case of a transformation
    306   /// which makes no changes to the IR.
    307   bool areAllPreserved() const {
    308     return NotPreservedAnalysisIDs.empty() &&
    309            PreservedIDs.count(&AllAnalysesKey);
    310   }
    311 
    312   /// Directly test whether a set of analyses is preserved.
    313   ///
    314   /// This is only true when no analyses have been explicitly abandoned.
    315   template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const {
    316     return allAnalysesInSetPreserved(AnalysisSetT::ID());
    317   }
    318 
    319   /// Directly test whether a set of analyses is preserved.
    320   ///
    321   /// This is only true when no analyses have been explicitly abandoned.
    322   bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const {
    323     return NotPreservedAnalysisIDs.empty() &&
    324            (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID));
    325   }
    326 
    327 private:
    328   /// A special key used to indicate all analyses.
    329   static AnalysisSetKey AllAnalysesKey;
    330 
    331   /// The IDs of analyses and analysis sets that are preserved.
    332   SmallPtrSet<void *, 2> PreservedIDs;
    333 
    334   /// The IDs of explicitly not-preserved analyses.
    335   ///
    336   /// If an analysis in this set is covered by a set in `PreservedIDs`, we
    337   /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always
    338   /// "wins" over analysis sets in `PreservedIDs`.
    339   ///
    340   /// Also, a given ID should never occur both here and in `PreservedIDs`.
    341   SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs;
    342 };
    343 
    344 // Forward declare the analysis manager template.
    345 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
    346 
    347 /// A CRTP mix-in to automatically provide informational APIs needed for
    348 /// passes.
    349 ///
    350 /// This provides some boilerplate for types that are passes.
    351 template <typename DerivedT> struct PassInfoMixin {
    352   /// Gets the name of the pass we are mixed into.
    353   static StringRef name() {
    354     static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
    355                   "Must pass the derived type as the template argument!");
    356     StringRef Name = getTypeName<DerivedT>();
    357     if (Name.startswith("llvm::"))
    358       Name = Name.drop_front(strlen("llvm::"));
    359     return Name;
    360   }
    361 };
    362 
    363 /// A CRTP mix-in that provides informational APIs needed for analysis passes.
    364 ///
    365 /// This provides some boilerplate for types that are analysis passes. It
    366 /// automatically mixes in \c PassInfoMixin.
    367 template <typename DerivedT>
    368 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
    369   /// Returns an opaque, unique ID for this analysis type.
    370   ///
    371   /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
    372   /// suitable for use in sets, maps, and other data structures that use the low
    373   /// bits of pointers.
    374   ///
    375   /// Note that this requires the derived type provide a static \c AnalysisKey
    376   /// member called \c Key.
    377   ///
    378   /// FIXME: The only reason the mixin type itself can't declare the Key value
    379   /// is that some compilers cannot correctly unique a templated static variable
    380   /// so it has the same addresses in each instantiation. The only currently
    381   /// known platform with this limitation is Windows DLL builds, specifically
    382   /// building each part of LLVM as a DLL. If we ever remove that build
    383   /// configuration, this mixin can provide the static key as well.
    384   static AnalysisKey *ID() {
    385     static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
    386                   "Must pass the derived type as the template argument!");
    387     return &DerivedT::Key;
    388   }
    389 };
    390 
    391 /// \brief Manages a sequence of passes over a particular unit of IR.
    392 ///
    393 /// A pass manager contains a sequence of passes to run over a particular unit
    394 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
    395 /// IR, and when run over some given IR will run each of its contained passes in
    396 /// sequence. Pass managers are the primary and most basic building block of a
    397 /// pass pipeline.
    398 ///
    399 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
    400 /// argument. The pass manager will propagate that analysis manager to each
    401 /// pass it runs, and will call the analysis manager's invalidation routine with
    402 /// the PreservedAnalyses of each pass it runs.
    403 template <typename IRUnitT,
    404           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
    405           typename... ExtraArgTs>
    406 class PassManager : public PassInfoMixin<
    407                         PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
    408 public:
    409   /// \brief Construct a pass manager.
    410   ///
    411   /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
    412   explicit PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
    413 
    414   // FIXME: These are equivalent to the default move constructor/move
    415   // assignment. However, using = default triggers linker errors due to the
    416   // explicit instantiations below. Find away to use the default and remove the
    417   // duplicated code here.
    418   PassManager(PassManager &&Arg)
    419       : Passes(std::move(Arg.Passes)),
    420         DebugLogging(std::move(Arg.DebugLogging)) {}
    421 
    422   PassManager &operator=(PassManager &&RHS) {
    423     Passes = std::move(RHS.Passes);
    424     DebugLogging = std::move(RHS.DebugLogging);
    425     return *this;
    426   }
    427 
    428   /// \brief Run all of the passes in this manager over the given unit of IR.
    429   /// ExtraArgs are passed to each pass.
    430   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
    431                         ExtraArgTs... ExtraArgs) {
    432     PreservedAnalyses PA = PreservedAnalyses::all();
    433 
    434     if (DebugLogging)
    435       dbgs() << "Starting " << getTypeName<IRUnitT>() << " pass manager run.\n";
    436 
    437     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
    438       if (DebugLogging)
    439         dbgs() << "Running pass: " << Passes[Idx]->name() << " on "
    440                << IR.getName() << "\n";
    441 
    442       PreservedAnalyses PassPA = Passes[Idx]->run(IR, AM, ExtraArgs...);
    443 
    444       // Update the analysis manager as each pass runs and potentially
    445       // invalidates analyses.
    446       AM.invalidate(IR, PassPA);
    447 
    448       // Finally, intersect the preserved analyses to compute the aggregate
    449       // preserved set for this pass manager.
    450       PA.intersect(std::move(PassPA));
    451 
    452       // FIXME: Historically, the pass managers all called the LLVM context's
    453       // yield function here. We don't have a generic way to acquire the
    454       // context and it isn't yet clear what the right pattern is for yielding
    455       // in the new pass manager so it is currently omitted.
    456       //IR.getContext().yield();
    457     }
    458 
    459     // Invaliadtion was handled after each pass in the above loop for the
    460     // current unit of IR. Therefore, the remaining analysis results in the
    461     // AnalysisManager are preserved. We mark this with a set so that we don't
    462     // need to inspect each one individually.
    463     PA.preserveSet<AllAnalysesOn<IRUnitT>>();
    464 
    465     if (DebugLogging)
    466       dbgs() << "Finished " << getTypeName<IRUnitT>() << " pass manager run.\n";
    467 
    468     return PA;
    469   }
    470 
    471   template <typename PassT> void addPass(PassT Pass) {
    472     typedef detail::PassModel<IRUnitT, PassT, PreservedAnalyses,
    473                               AnalysisManagerT, ExtraArgTs...>
    474         PassModelT;
    475     Passes.emplace_back(new PassModelT(std::move(Pass)));
    476   }
    477 
    478 private:
    479   typedef detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>
    480       PassConceptT;
    481 
    482   std::vector<std::unique_ptr<PassConceptT>> Passes;
    483 
    484   /// \brief Flag indicating whether we should do debug logging.
    485   bool DebugLogging;
    486 };
    487 
    488 extern template class PassManager<Module>;
    489 /// \brief Convenience typedef for a pass manager over modules.
    490 typedef PassManager<Module> ModulePassManager;
    491 
    492 extern template class PassManager<Function>;
    493 /// \brief Convenience typedef for a pass manager over functions.
    494 typedef PassManager<Function> FunctionPassManager;
    495 
    496 /// \brief A container for analyses that lazily runs them and caches their
    497 /// results.
    498 ///
    499 /// This class can manage analyses for any IR unit where the address of the IR
    500 /// unit sufficies as its identity.
    501 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
    502 public:
    503   class Invalidator;
    504 
    505 private:
    506   // Now that we've defined our invalidator, we can define the concept types.
    507   typedef detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>
    508       ResultConceptT;
    509   typedef detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator,
    510                                       ExtraArgTs...>
    511       PassConceptT;
    512 
    513   /// \brief List of analysis pass IDs and associated concept pointers.
    514   ///
    515   /// Requires iterators to be valid across appending new entries and arbitrary
    516   /// erases. Provides the analysis ID to enable finding iterators to a given
    517   /// entry in maps below, and provides the storage for the actual result
    518   /// concept.
    519   typedef std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>
    520       AnalysisResultListT;
    521 
    522   /// \brief Map type from IRUnitT pointer to our custom list type.
    523   typedef DenseMap<IRUnitT *, AnalysisResultListT> AnalysisResultListMapT;
    524 
    525   /// \brief Map type from a pair of analysis ID and IRUnitT pointer to an
    526   /// iterator into a particular result list (which is where the actual analysis
    527   /// result is stored).
    528   typedef DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
    529                    typename AnalysisResultListT::iterator>
    530       AnalysisResultMapT;
    531 
    532 public:
    533   /// API to communicate dependencies between analyses during invalidation.
    534   ///
    535   /// When an analysis result embeds handles to other analysis results, it
    536   /// needs to be invalidated both when its own information isn't preserved and
    537   /// when any of its embedded analysis results end up invalidated. We pass an
    538   /// \c Invalidator object as an argument to \c invalidate() in order to let
    539   /// the analysis results themselves define the dependency graph on the fly.
    540   /// This lets us avoid building building an explicit representation of the
    541   /// dependencies between analysis results.
    542   class Invalidator {
    543   public:
    544     /// Trigger the invalidation of some other analysis pass if not already
    545     /// handled and return whether it was in fact invalidated.
    546     ///
    547     /// This is expected to be called from within a given analysis result's \c
    548     /// invalidate method to trigger a depth-first walk of all inter-analysis
    549     /// dependencies. The same \p IR unit and \p PA passed to that result's \c
    550     /// invalidate method should in turn be provided to this routine.
    551     ///
    552     /// The first time this is called for a given analysis pass, it will call
    553     /// the corresponding result's \c invalidate method.  Subsequent calls will
    554     /// use a cache of the results of that initial call.  It is an error to form
    555     /// cyclic dependencies between analysis results.
    556     ///
    557     /// This returns true if the given analysis's result is invalid. Any
    558     /// dependecies on it will become invalid as a result.
    559     template <typename PassT>
    560     bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
    561       typedef detail::AnalysisResultModel<IRUnitT, PassT,
    562                                           typename PassT::Result,
    563                                           PreservedAnalyses, Invalidator>
    564           ResultModelT;
    565       return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
    566     }
    567 
    568     /// A type-erased variant of the above invalidate method with the same core
    569     /// API other than passing an analysis ID rather than an analysis type
    570     /// parameter.
    571     ///
    572     /// This is sadly less efficient than the above routine, which leverages
    573     /// the type parameter to avoid the type erasure overhead.
    574     bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
    575       return invalidateImpl<>(ID, IR, PA);
    576     }
    577 
    578   private:
    579     friend class AnalysisManager;
    580 
    581     template <typename ResultT = ResultConceptT>
    582     bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
    583                         const PreservedAnalyses &PA) {
    584       // If we've already visited this pass, return true if it was invalidated
    585       // and false otherwise.
    586       auto IMapI = IsResultInvalidated.find(ID);
    587       if (IMapI != IsResultInvalidated.end())
    588         return IMapI->second;
    589 
    590       // Otherwise look up the result object.
    591       auto RI = Results.find({ID, &IR});
    592       assert(RI != Results.end() &&
    593              "Trying to invalidate a dependent result that isn't in the "
    594              "manager's cache is always an error, likely due to a stale result "
    595              "handle!");
    596 
    597       auto &Result = static_cast<ResultT &>(*RI->second->second);
    598 
    599       // Insert into the map whether the result should be invalidated and return
    600       // that. Note that we cannot reuse IMapI and must do a fresh insert here,
    601       // as calling invalidate could (recursively) insert things into the map,
    602       // making any iterator or reference invalid.
    603       bool Inserted;
    604       std::tie(IMapI, Inserted) =
    605           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
    606       (void)Inserted;
    607       assert(Inserted && "Should not have already inserted this ID, likely "
    608                          "indicates a dependency cycle!");
    609       return IMapI->second;
    610     }
    611 
    612     Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
    613                 const AnalysisResultMapT &Results)
    614         : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
    615 
    616     SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
    617     const AnalysisResultMapT &Results;
    618   };
    619 
    620   /// \brief Construct an empty analysis manager.
    621   ///
    622   /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
    623   AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
    624   AnalysisManager(AnalysisManager &&) = default;
    625   AnalysisManager &operator=(AnalysisManager &&) = default;
    626 
    627   /// \brief Returns true if the analysis manager has an empty results cache.
    628   bool empty() const {
    629     assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
    630            "The storage and index of analysis results disagree on how many "
    631            "there are!");
    632     return AnalysisResults.empty();
    633   }
    634 
    635   /// \brief Clear any cached analysis results for a single unit of IR.
    636   ///
    637   /// This doesn't invalidate, but instead simply deletes, the relevant results.
    638   /// It is useful when the IR is being removed and we want to clear out all the
    639   /// memory pinned for it.
    640   void clear(IRUnitT &IR) {
    641     if (DebugLogging)
    642       dbgs() << "Clearing all analysis results for: " << IR.getName() << "\n";
    643 
    644     auto ResultsListI = AnalysisResultLists.find(&IR);
    645     if (ResultsListI == AnalysisResultLists.end())
    646       return;
    647     // Delete the map entries that point into the results list.
    648     for (auto &IDAndResult : ResultsListI->second)
    649       AnalysisResults.erase({IDAndResult.first, &IR});
    650 
    651     // And actually destroy and erase the results associated with this IR.
    652     AnalysisResultLists.erase(ResultsListI);
    653   }
    654 
    655   /// \brief Clear all analysis results cached by this AnalysisManager.
    656   ///
    657   /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
    658   /// deletes them.  This lets you clean up the AnalysisManager when the set of
    659   /// IR units itself has potentially changed, and thus we can't even look up a
    660   /// a result and invalidate/clear it directly.
    661   void clear() {
    662     AnalysisResults.clear();
    663     AnalysisResultLists.clear();
    664   }
    665 
    666   /// \brief Get the result of an analysis pass for a given IR unit.
    667   ///
    668   /// Runs the analysis if a cached result is not available.
    669   template <typename PassT>
    670   typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
    671     assert(AnalysisPasses.count(PassT::ID()) &&
    672            "This analysis pass was not registered prior to being queried");
    673     ResultConceptT &ResultConcept =
    674         getResultImpl(PassT::ID(), IR, ExtraArgs...);
    675     typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
    676                                         PreservedAnalyses, Invalidator>
    677         ResultModelT;
    678     return static_cast<ResultModelT &>(ResultConcept).Result;
    679   }
    680 
    681   /// \brief Get the cached result of an analysis pass for a given IR unit.
    682   ///
    683   /// This method never runs the analysis.
    684   ///
    685   /// \returns null if there is no cached result.
    686   template <typename PassT>
    687   typename PassT::Result *getCachedResult(IRUnitT &IR) const {
    688     assert(AnalysisPasses.count(PassT::ID()) &&
    689            "This analysis pass was not registered prior to being queried");
    690 
    691     ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
    692     if (!ResultConcept)
    693       return nullptr;
    694 
    695     typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
    696                                         PreservedAnalyses, Invalidator>
    697         ResultModelT;
    698     return &static_cast<ResultModelT *>(ResultConcept)->Result;
    699   }
    700 
    701   /// \brief Register an analysis pass with the manager.
    702   ///
    703   /// The parameter is a callable whose result is an analysis pass. This allows
    704   /// passing in a lambda to construct the analysis.
    705   ///
    706   /// The analysis type to register is the type returned by calling the \c
    707   /// PassBuilder argument. If that type has already been registered, then the
    708   /// argument will not be called and this function will return false.
    709   /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
    710   /// and this function returns true.
    711   ///
    712   /// (Note: Although the return value of this function indicates whether or not
    713   /// an analysis was previously registered, there intentionally isn't a way to
    714   /// query this directly.  Instead, you should just register all the analyses
    715   /// you might want and let this class run them lazily.  This idiom lets us
    716   /// minimize the number of times we have to look up analyses in our
    717   /// hashtable.)
    718   template <typename PassBuilderT>
    719   bool registerPass(PassBuilderT &&PassBuilder) {
    720     typedef decltype(PassBuilder()) PassT;
    721     typedef detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses,
    722                                       Invalidator, ExtraArgTs...>
    723         PassModelT;
    724 
    725     auto &PassPtr = AnalysisPasses[PassT::ID()];
    726     if (PassPtr)
    727       // Already registered this pass type!
    728       return false;
    729 
    730     // Construct a new model around the instance returned by the builder.
    731     PassPtr.reset(new PassModelT(PassBuilder()));
    732     return true;
    733   }
    734 
    735   /// \brief Invalidate a specific analysis pass for an IR module.
    736   ///
    737   /// Note that the analysis result can disregard invalidation, if it determines
    738   /// it is in fact still valid.
    739   template <typename PassT> void invalidate(IRUnitT &IR) {
    740     assert(AnalysisPasses.count(PassT::ID()) &&
    741            "This analysis pass was not registered prior to being invalidated");
    742     invalidateImpl(PassT::ID(), IR);
    743   }
    744 
    745   /// \brief Invalidate cached analyses for an IR unit.
    746   ///
    747   /// Walk through all of the analyses pertaining to this unit of IR and
    748   /// invalidate them, unless they are preserved by the PreservedAnalyses set.
    749   void invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
    750     // We're done if all analyses on this IR unit are preserved.
    751     if (PA.allAnalysesInSetPreserved<AllAnalysesOn<IRUnitT>>())
    752       return;
    753 
    754     if (DebugLogging)
    755       dbgs() << "Invalidating all non-preserved analyses for: " << IR.getName()
    756              << "\n";
    757 
    758     // Track whether each analysis's result is invalidated in
    759     // IsResultInvalidated.
    760     SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
    761     Invalidator Inv(IsResultInvalidated, AnalysisResults);
    762     AnalysisResultListT &ResultsList = AnalysisResultLists[&IR];
    763     for (auto &AnalysisResultPair : ResultsList) {
    764       // This is basically the same thing as Invalidator::invalidate, but we
    765       // can't call it here because we're operating on the type-erased result.
    766       // Moreover if we instead called invalidate() directly, it would do an
    767       // unnecessary look up in ResultsList.
    768       AnalysisKey *ID = AnalysisResultPair.first;
    769       auto &Result = *AnalysisResultPair.second;
    770 
    771       auto IMapI = IsResultInvalidated.find(ID);
    772       if (IMapI != IsResultInvalidated.end())
    773         // This result was already handled via the Invalidator.
    774         continue;
    775 
    776       // Try to invalidate the result, giving it the Invalidator so it can
    777       // recursively query for any dependencies it has and record the result.
    778       // Note that we cannot reuse 'IMapI' here or pre-insert the ID, as
    779       // Result.invalidate may insert things into the map, invalidating our
    780       // iterator.
    781       bool Inserted =
    782           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, Inv)})
    783               .second;
    784       (void)Inserted;
    785       assert(Inserted && "Should never have already inserted this ID, likely "
    786                          "indicates a cycle!");
    787     }
    788 
    789     // Now erase the results that were marked above as invalidated.
    790     if (!IsResultInvalidated.empty()) {
    791       for (auto I = ResultsList.begin(), E = ResultsList.end(); I != E;) {
    792         AnalysisKey *ID = I->first;
    793         if (!IsResultInvalidated.lookup(ID)) {
    794           ++I;
    795           continue;
    796         }
    797 
    798         if (DebugLogging)
    799           dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
    800                  << " on " << IR.getName() << "\n";
    801 
    802         I = ResultsList.erase(I);
    803         AnalysisResults.erase({ID, &IR});
    804       }
    805     }
    806 
    807     if (ResultsList.empty())
    808       AnalysisResultLists.erase(&IR);
    809   }
    810 
    811 private:
    812   /// \brief Look up a registered analysis pass.
    813   PassConceptT &lookUpPass(AnalysisKey *ID) {
    814     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
    815     assert(PI != AnalysisPasses.end() &&
    816            "Analysis passes must be registered prior to being queried!");
    817     return *PI->second;
    818   }
    819 
    820   /// \brief Look up a registered analysis pass.
    821   const PassConceptT &lookUpPass(AnalysisKey *ID) const {
    822     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
    823     assert(PI != AnalysisPasses.end() &&
    824            "Analysis passes must be registered prior to being queried!");
    825     return *PI->second;
    826   }
    827 
    828   /// \brief Get an analysis result, running the pass if necessary.
    829   ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
    830                                 ExtraArgTs... ExtraArgs) {
    831     typename AnalysisResultMapT::iterator RI;
    832     bool Inserted;
    833     std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair(
    834         std::make_pair(ID, &IR), typename AnalysisResultListT::iterator()));
    835 
    836     // If we don't have a cached result for this function, look up the pass and
    837     // run it to produce a result, which we then add to the cache.
    838     if (Inserted) {
    839       auto &P = this->lookUpPass(ID);
    840       if (DebugLogging)
    841         dbgs() << "Running analysis: " << P.name() << " on " << IR.getName()
    842                << "\n";
    843       AnalysisResultListT &ResultList = AnalysisResultLists[&IR];
    844       ResultList.emplace_back(ID, P.run(IR, *this, ExtraArgs...));
    845 
    846       // P.run may have inserted elements into AnalysisResults and invalidated
    847       // RI.
    848       RI = AnalysisResults.find({ID, &IR});
    849       assert(RI != AnalysisResults.end() && "we just inserted it!");
    850 
    851       RI->second = std::prev(ResultList.end());
    852     }
    853 
    854     return *RI->second->second;
    855   }
    856 
    857   /// \brief Get a cached analysis result or return null.
    858   ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
    859     typename AnalysisResultMapT::const_iterator RI =
    860         AnalysisResults.find({ID, &IR});
    861     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
    862   }
    863 
    864   /// \brief Invalidate a function pass result.
    865   void invalidateImpl(AnalysisKey *ID, IRUnitT &IR) {
    866     typename AnalysisResultMapT::iterator RI =
    867         AnalysisResults.find({ID, &IR});
    868     if (RI == AnalysisResults.end())
    869       return;
    870 
    871     if (DebugLogging)
    872       dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
    873              << " on " << IR.getName() << "\n";
    874     AnalysisResultLists[&IR].erase(RI->second);
    875     AnalysisResults.erase(RI);
    876   }
    877 
    878   /// \brief Map type from module analysis pass ID to pass concept pointer.
    879   typedef DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>> AnalysisPassMapT;
    880 
    881   /// \brief Collection of module analysis passes, indexed by ID.
    882   AnalysisPassMapT AnalysisPasses;
    883 
    884   /// \brief Map from function to a list of function analysis results.
    885   ///
    886   /// Provides linear time removal of all analysis results for a function and
    887   /// the ultimate storage for a particular cached analysis result.
    888   AnalysisResultListMapT AnalysisResultLists;
    889 
    890   /// \brief Map from an analysis ID and function to a particular cached
    891   /// analysis result.
    892   AnalysisResultMapT AnalysisResults;
    893 
    894   /// \brief Indicates whether we log to \c llvm::dbgs().
    895   bool DebugLogging;
    896 };
    897 
    898 extern template class AnalysisManager<Module>;
    899 /// \brief Convenience typedef for the Module analysis manager.
    900 typedef AnalysisManager<Module> ModuleAnalysisManager;
    901 
    902 extern template class AnalysisManager<Function>;
    903 /// \brief Convenience typedef for the Function analysis manager.
    904 typedef AnalysisManager<Function> FunctionAnalysisManager;
    905 
    906 /// \brief An analysis over an "outer" IR unit that provides access to an
    907 /// analysis manager over an "inner" IR unit.  The inner unit must be contained
    908 /// in the outer unit.
    909 ///
    910 /// Fore example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
    911 /// an analysis over Modules (the "outer" unit) that provides access to a
    912 /// Function analysis manager.  The FunctionAnalysisManager is the "inner"
    913 /// manager being proxied, and Functions are the "inner" unit.  The inner/outer
    914 /// relationship is valid because each Function is contained in one Module.
    915 ///
    916 /// If you're (transitively) within a pass manager for an IR unit U that
    917 /// contains IR unit V, you should never use an analysis manager over V, except
    918 /// via one of these proxies.
    919 ///
    920 /// Note that the proxy's result is a move-only RAII object.  The validity of
    921 /// the analyses in the inner analysis manager is tied to its lifetime.
    922 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
    923 class InnerAnalysisManagerProxy
    924     : public AnalysisInfoMixin<
    925           InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
    926 public:
    927   class Result {
    928   public:
    929     explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
    930     Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
    931       // We have to null out the analysis manager in the moved-from state
    932       // because we are taking ownership of the responsibilty to clear the
    933       // analysis state.
    934       Arg.InnerAM = nullptr;
    935     }
    936     Result &operator=(Result &&RHS) {
    937       InnerAM = RHS.InnerAM;
    938       // We have to null out the analysis manager in the moved-from state
    939       // because we are taking ownership of the responsibilty to clear the
    940       // analysis state.
    941       RHS.InnerAM = nullptr;
    942       return *this;
    943     }
    944     ~Result() {
    945       // InnerAM is cleared in a moved from state where there is nothing to do.
    946       if (!InnerAM)
    947         return;
    948 
    949       // Clear out the analysis manager if we're being destroyed -- it means we
    950       // didn't even see an invalidate call when we got invalidated.
    951       InnerAM->clear();
    952     }
    953 
    954     /// \brief Accessor for the analysis manager.
    955     AnalysisManagerT &getManager() { return *InnerAM; }
    956 
    957     /// \brief Handler for invalidation of the outer IR unit, \c IRUnitT.
    958     ///
    959     /// If the proxy analysis itself is not preserved, we assume that the set of
    960     /// inner IR objects contained in IRUnit may have changed.  In this case,
    961     /// we have to call \c clear() on the inner analysis manager, as it may now
    962     /// have stale pointers to its inner IR objects.
    963     ///
    964     /// Regardless of whether the proxy analysis is marked as preserved, all of
    965     /// the analyses in the inner analysis manager are potentially invalidated
    966     /// based on the set of preserved analyses.
    967     bool invalidate(
    968         IRUnitT &IR, const PreservedAnalyses &PA,
    969         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
    970 
    971   private:
    972     AnalysisManagerT *InnerAM;
    973   };
    974 
    975   explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
    976       : InnerAM(&InnerAM) {}
    977 
    978   /// \brief Run the analysis pass and create our proxy result object.
    979   ///
    980   /// This doesn't do any interesting work; it is primarily used to insert our
    981   /// proxy result object into the outer analysis cache so that we can proxy
    982   /// invalidation to the inner analysis manager.
    983   Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
    984              ExtraArgTs...) {
    985     return Result(*InnerAM);
    986   }
    987 
    988 private:
    989   friend AnalysisInfoMixin<
    990       InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
    991   static AnalysisKey Key;
    992 
    993   AnalysisManagerT *InnerAM;
    994 };
    995 
    996 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
    997 AnalysisKey
    998     InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
    999 
   1000 /// Provide the \c FunctionAnalysisManager to \c Module proxy.
   1001 typedef InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>
   1002     FunctionAnalysisManagerModuleProxy;
   1003 
   1004 /// Specialization of the invalidate method for the \c
   1005 /// FunctionAnalysisManagerModuleProxy's result.
   1006 template <>
   1007 bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
   1008     Module &M, const PreservedAnalyses &PA,
   1009     ModuleAnalysisManager::Invalidator &Inv);
   1010 
   1011 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
   1012 // template.
   1013 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
   1014                                                 Module>;
   1015 
   1016 /// \brief An analysis over an "inner" IR unit that provides access to an
   1017 /// analysis manager over a "outer" IR unit.  The inner unit must be contained
   1018 /// in the outer unit.
   1019 ///
   1020 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
   1021 /// analysis over Functions (the "inner" unit) which provides access to a Module
   1022 /// analysis manager.  The ModuleAnalysisManager is the "outer" manager being
   1023 /// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship
   1024 /// is valid because each Function is contained in one Module.
   1025 ///
   1026 /// This proxy only exposes the const interface of the outer analysis manager,
   1027 /// to indicate that you cannot cause an outer analysis to run from within an
   1028 /// inner pass.  Instead, you must rely on the \c getCachedResult API.
   1029 ///
   1030 /// This proxy doesn't manage invalidation in any way -- that is handled by the
   1031 /// recursive return path of each layer of the pass manager.  A consequence of
   1032 /// this is the outer analyses may be stale.  We invalidate the outer analyses
   1033 /// only when we're done running passes over the inner IR units.
   1034 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
   1035 class OuterAnalysisManagerProxy
   1036     : public AnalysisInfoMixin<
   1037           OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
   1038 public:
   1039   /// \brief Result proxy object for \c OuterAnalysisManagerProxy.
   1040   class Result {
   1041   public:
   1042     explicit Result(const AnalysisManagerT &AM) : AM(&AM) {}
   1043 
   1044     const AnalysisManagerT &getManager() const { return *AM; }
   1045 
   1046     /// \brief Handle invalidation by ignoring it; this pass is immutable.
   1047     bool invalidate(
   1048         IRUnitT &, const PreservedAnalyses &,
   1049         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &) {
   1050       return false;
   1051     }
   1052 
   1053     /// Register a deferred invalidation event for when the outer analysis
   1054     /// manager processes its invalidations.
   1055     template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
   1056     void registerOuterAnalysisInvalidation() {
   1057       AnalysisKey *OuterID = OuterAnalysisT::ID();
   1058       AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
   1059 
   1060       auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
   1061       // Note, this is a linear scan. If we end up with large numbers of
   1062       // analyses that all trigger invalidation on the same outer analysis,
   1063       // this entire system should be changed to some other deterministic
   1064       // data structure such as a `SetVector` of a pair of pointers.
   1065       auto InvalidatedIt = std::find(InvalidatedIDList.begin(),
   1066                                      InvalidatedIDList.end(), InvalidatedID);
   1067       if (InvalidatedIt == InvalidatedIDList.end())
   1068         InvalidatedIDList.push_back(InvalidatedID);
   1069     }
   1070 
   1071     /// Access the map from outer analyses to deferred invalidation requiring
   1072     /// analyses.
   1073     const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
   1074     getOuterInvalidations() const {
   1075       return OuterAnalysisInvalidationMap;
   1076     }
   1077 
   1078   private:
   1079     const AnalysisManagerT *AM;
   1080 
   1081     /// A map from an outer analysis ID to the set of this IR-unit's analyses
   1082     /// which need to be invalidated.
   1083     SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
   1084         OuterAnalysisInvalidationMap;
   1085   };
   1086 
   1087   OuterAnalysisManagerProxy(const AnalysisManagerT &AM) : AM(&AM) {}
   1088 
   1089   /// \brief Run the analysis pass and create our proxy result object.
   1090   /// Nothing to see here, it just forwards the \c AM reference into the
   1091   /// result.
   1092   Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
   1093              ExtraArgTs...) {
   1094     return Result(*AM);
   1095   }
   1096 
   1097 private:
   1098   friend AnalysisInfoMixin<
   1099       OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
   1100   static AnalysisKey Key;
   1101 
   1102   const AnalysisManagerT *AM;
   1103 };
   1104 
   1105 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
   1106 AnalysisKey
   1107     OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
   1108 
   1109 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
   1110                                                 Function>;
   1111 /// Provide the \c ModuleAnalysisManager to \c Function proxy.
   1112 typedef OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>
   1113     ModuleAnalysisManagerFunctionProxy;
   1114 
   1115 /// \brief Trivial adaptor that maps from a module to its functions.
   1116 ///
   1117 /// Designed to allow composition of a FunctionPass(Manager) and
   1118 /// a ModulePassManager, by running the FunctionPass(Manager) over every
   1119 /// function in the module.
   1120 ///
   1121 /// Function passes run within this adaptor can rely on having exclusive access
   1122 /// to the function they are run over. They should not read or modify any other
   1123 /// functions! Other threads or systems may be manipulating other functions in
   1124 /// the module, and so their state should never be relied on.
   1125 /// FIXME: Make the above true for all of LLVM's actual passes, some still
   1126 /// violate this principle.
   1127 ///
   1128 /// Function passes can also read the module containing the function, but they
   1129 /// should not modify that module outside of the use lists of various globals.
   1130 /// For example, a function pass is not permitted to add functions to the
   1131 /// module.
   1132 /// FIXME: Make the above true for all of LLVM's actual passes, some still
   1133 /// violate this principle.
   1134 ///
   1135 /// Note that although function passes can access module analyses, module
   1136 /// analyses are not invalidated while the function passes are running, so they
   1137 /// may be stale.  Function analyses will not be stale.
   1138 template <typename FunctionPassT>
   1139 class ModuleToFunctionPassAdaptor
   1140     : public PassInfoMixin<ModuleToFunctionPassAdaptor<FunctionPassT>> {
   1141 public:
   1142   explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
   1143       : Pass(std::move(Pass)) {}
   1144 
   1145   /// \brief Runs the function pass across every function in the module.
   1146   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM) {
   1147     FunctionAnalysisManager &FAM =
   1148         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
   1149 
   1150     PreservedAnalyses PA = PreservedAnalyses::all();
   1151     for (Function &F : M) {
   1152       if (F.isDeclaration())
   1153         continue;
   1154 
   1155       PreservedAnalyses PassPA = Pass.run(F, FAM);
   1156 
   1157       // We know that the function pass couldn't have invalidated any other
   1158       // function's analyses (that's the contract of a function pass), so
   1159       // directly handle the function analysis manager's invalidation here.
   1160       FAM.invalidate(F, PassPA);
   1161 
   1162       // Then intersect the preserved set so that invalidation of module
   1163       // analyses will eventually occur when the module pass completes.
   1164       PA.intersect(std::move(PassPA));
   1165     }
   1166 
   1167     // The FunctionAnalysisManagerModuleProxy is preserved because (we assume)
   1168     // the function passes we ran didn't add or remove any functions.
   1169     //
   1170     // We also preserve all analyses on Functions, because we did all the
   1171     // invalidation we needed to do above.
   1172     PA.preserveSet<AllAnalysesOn<Function>>();
   1173     PA.preserve<FunctionAnalysisManagerModuleProxy>();
   1174     return PA;
   1175   }
   1176 
   1177 private:
   1178   FunctionPassT Pass;
   1179 };
   1180 
   1181 /// \brief A function to deduce a function pass type and wrap it in the
   1182 /// templated adaptor.
   1183 template <typename FunctionPassT>
   1184 ModuleToFunctionPassAdaptor<FunctionPassT>
   1185 createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
   1186   return ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
   1187 }
   1188 
   1189 /// \brief A utility pass template to force an analysis result to be available.
   1190 ///
   1191 /// If there are extra arguments at the pass's run level there may also be
   1192 /// extra arguments to the analysis manager's \c getResult routine. We can't
   1193 /// guess how to effectively map the arguments from one to the other, and so
   1194 /// this specialization just ignores them.
   1195 ///
   1196 /// Specific patterns of run-method extra arguments and analysis manager extra
   1197 /// arguments will have to be defined as appropriate specializations.
   1198 template <typename AnalysisT, typename IRUnitT,
   1199           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
   1200           typename... ExtraArgTs>
   1201 struct RequireAnalysisPass
   1202     : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
   1203                                         ExtraArgTs...>> {
   1204   /// \brief Run this pass over some unit of IR.
   1205   ///
   1206   /// This pass can be run over any unit of IR and use any analysis manager
   1207   /// provided they satisfy the basic API requirements. When this pass is
   1208   /// created, these methods can be instantiated to satisfy whatever the
   1209   /// context requires.
   1210   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
   1211                         ExtraArgTs &&... Args) {
   1212     (void)AM.template getResult<AnalysisT>(Arg,
   1213                                            std::forward<ExtraArgTs>(Args)...);
   1214 
   1215     return PreservedAnalyses::all();
   1216   }
   1217 };
   1218 
   1219 /// \brief A no-op pass template which simply forces a specific analysis result
   1220 /// to be invalidated.
   1221 template <typename AnalysisT>
   1222 struct InvalidateAnalysisPass
   1223     : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
   1224   /// \brief Run this pass over some unit of IR.
   1225   ///
   1226   /// This pass can be run over any unit of IR and use any analysis manager,
   1227   /// provided they satisfy the basic API requirements. When this pass is
   1228   /// created, these methods can be instantiated to satisfy whatever the
   1229   /// context requires.
   1230   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
   1231   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
   1232     auto PA = PreservedAnalyses::all();
   1233     PA.abandon<AnalysisT>();
   1234     return PA;
   1235   }
   1236 };
   1237 
   1238 /// \brief A utility pass that does nothing, but preserves no analyses.
   1239 ///
   1240 /// Because this preserves no analyses, any analysis passes queried after this
   1241 /// pass runs will recompute fresh results.
   1242 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
   1243   /// \brief Run this pass over some unit of IR.
   1244   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
   1245   PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
   1246     return PreservedAnalyses::none();
   1247   }
   1248 };
   1249 
   1250 /// A utility pass template that simply runs another pass multiple times.
   1251 ///
   1252 /// This can be useful when debugging or testing passes. It also serves as an
   1253 /// example of how to extend the pass manager in ways beyond composition.
   1254 template <typename PassT>
   1255 class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
   1256 public:
   1257   RepeatedPass(int Count, PassT P) : Count(Count), P(std::move(P)) {}
   1258 
   1259   template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
   1260   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, Ts &&... Args) {
   1261     auto PA = PreservedAnalyses::all();
   1262     for (int i = 0; i < Count; ++i)
   1263       PA.intersect(P.run(Arg, AM, std::forward<Ts>(Args)...));
   1264     return PA;
   1265   }
   1266 
   1267 private:
   1268   int Count;
   1269   PassT P;
   1270 };
   1271 
   1272 template <typename PassT>
   1273 RepeatedPass<PassT> createRepeatedPass(int Count, PassT P) {
   1274   return RepeatedPass<PassT>(Count, std::move(P));
   1275 }
   1276 
   1277 }
   1278 
   1279 #endif
   1280