Home | History | Annotate | Download | only in Utils
      1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines various functions that are used to clone chunks of LLVM
     11 // code for various purposes.  This varies from copying whole modules into new
     12 // modules, to cloning functions with different arguments, to inlining
     13 // functions, to copying basic blocks to support loop unrolling or superblock
     14 // formation, etc.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
     19 #define LLVM_TRANSFORMS_UTILS_CLONING_H
     20 
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Twine.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/Analysis/AssumptionCache.h"
     25 #include "llvm/IR/CallSite.h"
     26 #include "llvm/IR/ValueHandle.h"
     27 #include "llvm/Transforms/Utils/ValueMapper.h"
     28 #include <functional>
     29 #include <memory>
     30 #include <vector>
     31 
     32 namespace llvm {
     33 
     34 class AllocaInst;
     35 class BasicBlock;
     36 class BlockFrequencyInfo;
     37 class CallInst;
     38 class CallGraph;
     39 class DominatorTree;
     40 class Function;
     41 class Instruction;
     42 class InvokeInst;
     43 class Loop;
     44 class LoopInfo;
     45 class Module;
     46 class ReturnInst;
     47 
     48 /// Return an exact copy of the specified module
     49 ///
     50 std::unique_ptr<Module> CloneModule(const Module *M);
     51 std::unique_ptr<Module> CloneModule(const Module *M, ValueToValueMapTy &VMap);
     52 
     53 /// Return a copy of the specified module. The ShouldCloneDefinition function
     54 /// controls whether a specific GlobalValue's definition is cloned. If the
     55 /// function returns false, the module copy will contain an external reference
     56 /// in place of the global definition.
     57 std::unique_ptr<Module>
     58 CloneModule(const Module *M, ValueToValueMapTy &VMap,
     59             function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);
     60 
     61 /// ClonedCodeInfo - This struct can be used to capture information about code
     62 /// being cloned, while it is being cloned.
     63 struct ClonedCodeInfo {
     64   /// ContainsCalls - This is set to true if the cloned code contains a normal
     65   /// call instruction.
     66   bool ContainsCalls = false;
     67 
     68   /// ContainsDynamicAllocas - This is set to true if the cloned code contains
     69   /// a 'dynamic' alloca.  Dynamic allocas are allocas that are either not in
     70   /// the entry block or they are in the entry block but are not a constant
     71   /// size.
     72   bool ContainsDynamicAllocas = false;
     73 
     74   /// All cloned call sites that have operand bundles attached are appended to
     75   /// this vector.  This vector may contain nulls or undefs if some of the
     76   /// originally inserted callsites were DCE'ed after they were cloned.
     77   std::vector<WeakVH> OperandBundleCallSites;
     78 
     79   ClonedCodeInfo() = default;
     80 };
     81 
     82 /// CloneBasicBlock - Return a copy of the specified basic block, but without
     83 /// embedding the block into a particular function.  The block returned is an
     84 /// exact copy of the specified basic block, without any remapping having been
     85 /// performed.  Because of this, this is only suitable for applications where
     86 /// the basic block will be inserted into the same function that it was cloned
     87 /// from (loop unrolling would use this, for example).
     88 ///
     89 /// Also, note that this function makes a direct copy of the basic block, and
     90 /// can thus produce illegal LLVM code.  In particular, it will copy any PHI
     91 /// nodes from the original block, even though there are no predecessors for the
     92 /// newly cloned block (thus, phi nodes will have to be updated).  Also, this
     93 /// block will branch to the old successors of the original block: these
     94 /// successors will have to have any PHI nodes updated to account for the new
     95 /// incoming edges.
     96 ///
     97 /// The correlation between instructions in the source and result basic blocks
     98 /// is recorded in the VMap map.
     99 ///
    100 /// If you have a particular suffix you'd like to use to add to any cloned
    101 /// names, specify it as the optional third parameter.
    102 ///
    103 /// If you would like the basic block to be auto-inserted into the end of a
    104 /// function, you can specify it as the optional fourth parameter.
    105 ///
    106 /// If you would like to collect additional information about the cloned
    107 /// function, you can specify a ClonedCodeInfo object with the optional fifth
    108 /// parameter.
    109 ///
    110 BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
    111                             const Twine &NameSuffix = "", Function *F = nullptr,
    112                             ClonedCodeInfo *CodeInfo = nullptr);
    113 
    114 /// CloneFunction - Return a copy of the specified function and add it to that
    115 /// function's module.  Also, any references specified in the VMap are changed
    116 /// to refer to their mapped value instead of the original one.  If any of the
    117 /// arguments to the function are in the VMap, the arguments are deleted from
    118 /// the resultant function.  The VMap is updated to include mappings from all of
    119 /// the instructions and basicblocks in the function from their old to new
    120 /// values.  The final argument captures information about the cloned code if
    121 /// non-null.
    122 ///
    123 /// VMap contains no non-identity GlobalValue mappings and debug info metadata
    124 /// will not be cloned.
    125 ///
    126 Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
    127                         ClonedCodeInfo *CodeInfo = nullptr);
    128 
    129 /// Clone OldFunc into NewFunc, transforming the old arguments into references
    130 /// to VMap values.  Note that if NewFunc already has basic blocks, the ones
    131 /// cloned into it will be added to the end of the function.  This function
    132 /// fills in a list of return instructions, and can optionally remap types
    133 /// and/or append the specified suffix to all values cloned.
    134 ///
    135 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
    136 /// mappings.
    137 ///
    138 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
    139                        ValueToValueMapTy &VMap, bool ModuleLevelChanges,
    140                        SmallVectorImpl<ReturnInst*> &Returns,
    141                        const char *NameSuffix = "",
    142                        ClonedCodeInfo *CodeInfo = nullptr,
    143                        ValueMapTypeRemapper *TypeMapper = nullptr,
    144                        ValueMaterializer *Materializer = nullptr);
    145 
    146 void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
    147                                const Instruction *StartingInst,
    148                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
    149                                SmallVectorImpl<ReturnInst *> &Returns,
    150                                const char *NameSuffix = "",
    151                                ClonedCodeInfo *CodeInfo = nullptr);
    152 
    153 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
    154 /// except that it does some simple constant prop and DCE on the fly.  The
    155 /// effect of this is to copy significantly less code in cases where (for
    156 /// example) a function call with constant arguments is inlined, and those
    157 /// constant arguments cause a significant amount of code in the callee to be
    158 /// dead.  Since this doesn't produce an exactly copy of the input, it can't be
    159 /// used for things like CloneFunction or CloneModule.
    160 ///
    161 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
    162 /// mappings.
    163 ///
    164 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
    165                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
    166                                SmallVectorImpl<ReturnInst*> &Returns,
    167                                const char *NameSuffix = "",
    168                                ClonedCodeInfo *CodeInfo = nullptr,
    169                                Instruction *TheCall = nullptr);
    170 
    171 /// InlineFunctionInfo - This class captures the data input to the
    172 /// InlineFunction call, and records the auxiliary results produced by it.
    173 class InlineFunctionInfo {
    174 public:
    175   explicit InlineFunctionInfo(CallGraph *cg = nullptr,
    176                               std::function<AssumptionCache &(Function &)>
    177                                   *GetAssumptionCache = nullptr,
    178                               BlockFrequencyInfo *CallerBFI = nullptr,
    179                               BlockFrequencyInfo *CalleeBFI = nullptr)
    180       : CG(cg), GetAssumptionCache(GetAssumptionCache), CallerBFI(CallerBFI),
    181         CalleeBFI(CalleeBFI) {}
    182 
    183   /// CG - If non-null, InlineFunction will update the callgraph to reflect the
    184   /// changes it makes.
    185   CallGraph *CG;
    186   std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
    187   BlockFrequencyInfo *CallerBFI, *CalleeBFI;
    188 
    189   /// StaticAllocas - InlineFunction fills this in with all static allocas that
    190   /// get copied into the caller.
    191   SmallVector<AllocaInst *, 4> StaticAllocas;
    192 
    193   /// InlinedCalls - InlineFunction fills this in with callsites that were
    194   /// inlined from the callee.  This is only filled in if CG is non-null.
    195   SmallVector<WeakVH, 8> InlinedCalls;
    196 
    197   /// All of the new call sites inlined into the caller.
    198   ///
    199   /// 'InlineFunction' fills this in by scanning the inlined instructions, and
    200   /// only if CG is null. If CG is non-null, instead the value handle
    201   /// `InlinedCalls` above is used.
    202   SmallVector<CallSite, 8> InlinedCallSites;
    203 
    204   void reset() {
    205     StaticAllocas.clear();
    206     InlinedCalls.clear();
    207     InlinedCallSites.clear();
    208   }
    209 };
    210 
    211 /// InlineFunction - This function inlines the called function into the basic
    212 /// block of the caller.  This returns false if it is not possible to inline
    213 /// this call.  The program is still in a well defined state if this occurs
    214 /// though.
    215 ///
    216 /// Note that this only does one level of inlining.  For example, if the
    217 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
    218 /// exists in the instruction stream.  Similarly this will inline a recursive
    219 /// function by one level.
    220 ///
    221 /// Note that while this routine is allowed to cleanup and optimize the
    222 /// *inlined* code to minimize the actual inserted code, it must not delete
    223 /// code in the caller as users of this routine may have pointers to
    224 /// instructions in the caller that need to remain stable.
    225 bool InlineFunction(CallInst *C, InlineFunctionInfo &IFI,
    226                     AAResults *CalleeAAR = nullptr, bool InsertLifetime = true);
    227 bool InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
    228                     AAResults *CalleeAAR = nullptr, bool InsertLifetime = true);
    229 bool InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
    230                     AAResults *CalleeAAR = nullptr, bool InsertLifetime = true);
    231 
    232 /// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
    233 /// Blocks.
    234 ///
    235 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
    236 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
    237 /// Note: Only innermost loops are supported.
    238 Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
    239                              Loop *OrigLoop, ValueToValueMapTy &VMap,
    240                              const Twine &NameSuffix, LoopInfo *LI,
    241                              DominatorTree *DT,
    242                              SmallVectorImpl<BasicBlock *> &Blocks);
    243 
    244 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
    245 void remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock *> &Blocks,
    246                                ValueToValueMapTy &VMap);
    247 
    248 /// Split edge between BB and PredBB and duplicate all non-Phi instructions
    249 /// from BB between its beginning and the StopAt instruction into the split
    250 /// block. Phi nodes are not duplicated, but their uses are handled correctly:
    251 /// we replace them with the uses of corresponding Phi inputs. ValueMapping
    252 /// is used to map the original instructions from BB to their newly-created
    253 /// copies. Returns the split block.
    254 BasicBlock *
    255 DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB,
    256                                     Instruction *StopAt,
    257                                     ValueToValueMapTy &ValueMapping);
    258 } // end namespace llvm
    259 
    260 #endif // LLVM_TRANSFORMS_UTILS_CLONING_H
    261