Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief
     12 /// This file declares a class to represent arbitrary precision floating point
     13 /// values and provide a variety of arithmetic operations on them.
     14 ///
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_ADT_APFLOAT_H
     18 #define LLVM_ADT_APFLOAT_H
     19 
     20 #include "llvm/ADT/APInt.h"
     21 #include "llvm/ADT/ArrayRef.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include <memory>
     24 
     25 #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
     26   do {                                                                         \
     27     if (usesLayout<IEEEFloat>(getSemantics()))                                 \
     28       return U.IEEE.METHOD_CALL;                                               \
     29     if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
     30       return U.Double.METHOD_CALL;                                             \
     31     llvm_unreachable("Unexpected semantics");                                  \
     32   } while (false)
     33 
     34 namespace llvm {
     35 
     36 struct fltSemantics;
     37 class APSInt;
     38 class StringRef;
     39 class APFloat;
     40 class raw_ostream;
     41 
     42 template <typename T> class SmallVectorImpl;
     43 
     44 /// Enum that represents what fraction of the LSB truncated bits of an fp number
     45 /// represent.
     46 ///
     47 /// This essentially combines the roles of guard and sticky bits.
     48 enum lostFraction { // Example of truncated bits:
     49   lfExactlyZero,    // 000000
     50   lfLessThanHalf,   // 0xxxxx  x's not all zero
     51   lfExactlyHalf,    // 100000
     52   lfMoreThanHalf    // 1xxxxx  x's not all zero
     53 };
     54 
     55 /// A self-contained host- and target-independent arbitrary-precision
     56 /// floating-point software implementation.
     57 ///
     58 /// APFloat uses bignum integer arithmetic as provided by static functions in
     59 /// the APInt class.  The library will work with bignum integers whose parts are
     60 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
     61 ///
     62 /// Written for clarity rather than speed, in particular with a view to use in
     63 /// the front-end of a cross compiler so that target arithmetic can be correctly
     64 /// performed on the host.  Performance should nonetheless be reasonable,
     65 /// particularly for its intended use.  It may be useful as a base
     66 /// implementation for a run-time library during development of a faster
     67 /// target-specific one.
     68 ///
     69 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
     70 /// implemented operations.  Currently implemented operations are add, subtract,
     71 /// multiply, divide, fused-multiply-add, conversion-to-float,
     72 /// conversion-to-integer and conversion-from-integer.  New rounding modes
     73 /// (e.g. away from zero) can be added with three or four lines of code.
     74 ///
     75 /// Four formats are built-in: IEEE single precision, double precision,
     76 /// quadruple precision, and x87 80-bit extended double (when operating with
     77 /// full extended precision).  Adding a new format that obeys IEEE semantics
     78 /// only requires adding two lines of code: a declaration and definition of the
     79 /// format.
     80 ///
     81 /// All operations return the status of that operation as an exception bit-mask,
     82 /// so multiple operations can be done consecutively with their results or-ed
     83 /// together.  The returned status can be useful for compiler diagnostics; e.g.,
     84 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
     85 /// and compiler optimizers can determine what exceptions would be raised by
     86 /// folding operations and optimize, or perhaps not optimize, accordingly.
     87 ///
     88 /// At present, underflow tininess is detected after rounding; it should be
     89 /// straight forward to add support for the before-rounding case too.
     90 ///
     91 /// The library reads hexadecimal floating point numbers as per C99, and
     92 /// correctly rounds if necessary according to the specified rounding mode.
     93 /// Syntax is required to have been validated by the caller.  It also converts
     94 /// floating point numbers to hexadecimal text as per the C99 %a and %A
     95 /// conversions.  The output precision (or alternatively the natural minimal
     96 /// precision) can be specified; if the requested precision is less than the
     97 /// natural precision the output is correctly rounded for the specified rounding
     98 /// mode.
     99 ///
    100 /// It also reads decimal floating point numbers and correctly rounds according
    101 /// to the specified rounding mode.
    102 ///
    103 /// Conversion to decimal text is not currently implemented.
    104 ///
    105 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
    106 /// signed exponent, and the significand as an array of integer parts.  After
    107 /// normalization of a number of precision P the exponent is within the range of
    108 /// the format, and if the number is not denormal the P-th bit of the
    109 /// significand is set as an explicit integer bit.  For denormals the most
    110 /// significant bit is shifted right so that the exponent is maintained at the
    111 /// format's minimum, so that the smallest denormal has just the least
    112 /// significant bit of the significand set.  The sign of zeroes and infinities
    113 /// is significant; the exponent and significand of such numbers is not stored,
    114 /// but has a known implicit (deterministic) value: 0 for the significands, 0
    115 /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
    116 /// significand are deterministic, although not really meaningful, and preserved
    117 /// in non-conversion operations.  The exponent is implicitly all 1 bits.
    118 ///
    119 /// APFloat does not provide any exception handling beyond default exception
    120 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
    121 /// by encoding Signaling NaNs with the first bit of its trailing significand as
    122 /// 0.
    123 ///
    124 /// TODO
    125 /// ====
    126 ///
    127 /// Some features that may or may not be worth adding:
    128 ///
    129 /// Binary to decimal conversion (hard).
    130 ///
    131 /// Optional ability to detect underflow tininess before rounding.
    132 ///
    133 /// New formats: x87 in single and double precision mode (IEEE apart from
    134 /// extended exponent range) (hard).
    135 ///
    136 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
    137 ///
    138 
    139 // This is the common type definitions shared by APFloat and its internal
    140 // implementation classes. This struct should not define any non-static data
    141 // members.
    142 struct APFloatBase {
    143   // TODO remove this and use APInt typedef directly.
    144   typedef APInt::WordType integerPart;
    145 
    146   /// A signed type to represent a floating point numbers unbiased exponent.
    147   typedef signed short ExponentType;
    148 
    149   /// \name Floating Point Semantics.
    150   /// @{
    151 
    152   static const fltSemantics &IEEEhalf() LLVM_READNONE;
    153   static const fltSemantics &IEEEsingle() LLVM_READNONE;
    154   static const fltSemantics &IEEEdouble() LLVM_READNONE;
    155   static const fltSemantics &IEEEquad() LLVM_READNONE;
    156   static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
    157   static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
    158 
    159   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
    160   /// anything real.
    161   static const fltSemantics &Bogus() LLVM_READNONE;
    162 
    163   /// @}
    164 
    165   /// IEEE-754R 5.11: Floating Point Comparison Relations.
    166   enum cmpResult {
    167     cmpLessThan,
    168     cmpEqual,
    169     cmpGreaterThan,
    170     cmpUnordered
    171   };
    172 
    173   /// IEEE-754R 4.3: Rounding-direction attributes.
    174   enum roundingMode {
    175     rmNearestTiesToEven,
    176     rmTowardPositive,
    177     rmTowardNegative,
    178     rmTowardZero,
    179     rmNearestTiesToAway
    180   };
    181 
    182   /// IEEE-754R 7: Default exception handling.
    183   ///
    184   /// opUnderflow or opOverflow are always returned or-ed with opInexact.
    185   enum opStatus {
    186     opOK = 0x00,
    187     opInvalidOp = 0x01,
    188     opDivByZero = 0x02,
    189     opOverflow = 0x04,
    190     opUnderflow = 0x08,
    191     opInexact = 0x10
    192   };
    193 
    194   /// Category of internally-represented number.
    195   enum fltCategory {
    196     fcInfinity,
    197     fcNaN,
    198     fcNormal,
    199     fcZero
    200   };
    201 
    202   /// Convenience enum used to construct an uninitialized APFloat.
    203   enum uninitializedTag {
    204     uninitialized
    205   };
    206 
    207   /// Enumeration of \c ilogb error results.
    208   enum IlogbErrorKinds {
    209     IEK_Zero = INT_MIN + 1,
    210     IEK_NaN = INT_MIN,
    211     IEK_Inf = INT_MAX
    212   };
    213 
    214   static unsigned int semanticsPrecision(const fltSemantics &);
    215   static ExponentType semanticsMinExponent(const fltSemantics &);
    216   static ExponentType semanticsMaxExponent(const fltSemantics &);
    217   static unsigned int semanticsSizeInBits(const fltSemantics &);
    218 
    219   /// Returns the size of the floating point number (in bits) in the given
    220   /// semantics.
    221   static unsigned getSizeInBits(const fltSemantics &Sem);
    222 };
    223 
    224 namespace detail {
    225 
    226 class IEEEFloat final : public APFloatBase {
    227 public:
    228   /// \name Constructors
    229   /// @{
    230 
    231   IEEEFloat(const fltSemantics &); // Default construct to 0.0
    232   IEEEFloat(const fltSemantics &, integerPart);
    233   IEEEFloat(const fltSemantics &, uninitializedTag);
    234   IEEEFloat(const fltSemantics &, const APInt &);
    235   explicit IEEEFloat(double d);
    236   explicit IEEEFloat(float f);
    237   IEEEFloat(const IEEEFloat &);
    238   IEEEFloat(IEEEFloat &&);
    239   ~IEEEFloat();
    240 
    241   /// @}
    242 
    243   /// Returns whether this instance allocated memory.
    244   bool needsCleanup() const { return partCount() > 1; }
    245 
    246   /// \name Convenience "constructors"
    247   /// @{
    248 
    249   /// @}
    250 
    251   /// \name Arithmetic
    252   /// @{
    253 
    254   opStatus add(const IEEEFloat &, roundingMode);
    255   opStatus subtract(const IEEEFloat &, roundingMode);
    256   opStatus multiply(const IEEEFloat &, roundingMode);
    257   opStatus divide(const IEEEFloat &, roundingMode);
    258   /// IEEE remainder.
    259   opStatus remainder(const IEEEFloat &);
    260   /// C fmod, or llvm frem.
    261   opStatus mod(const IEEEFloat &);
    262   opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
    263   opStatus roundToIntegral(roundingMode);
    264   /// IEEE-754R 5.3.1: nextUp/nextDown.
    265   opStatus next(bool nextDown);
    266 
    267   /// @}
    268 
    269   /// \name Sign operations.
    270   /// @{
    271 
    272   void changeSign();
    273 
    274   /// @}
    275 
    276   /// \name Conversions
    277   /// @{
    278 
    279   opStatus convert(const fltSemantics &, roundingMode, bool *);
    280   opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
    281                             roundingMode, bool *) const;
    282   opStatus convertFromAPInt(const APInt &, bool, roundingMode);
    283   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
    284                                           bool, roundingMode);
    285   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
    286                                           bool, roundingMode);
    287   opStatus convertFromString(StringRef, roundingMode);
    288   APInt bitcastToAPInt() const;
    289   double convertToDouble() const;
    290   float convertToFloat() const;
    291 
    292   /// @}
    293 
    294   /// The definition of equality is not straightforward for floating point, so
    295   /// we won't use operator==.  Use one of the following, or write whatever it
    296   /// is you really mean.
    297   bool operator==(const IEEEFloat &) const = delete;
    298 
    299   /// IEEE comparison with another floating point number (NaNs compare
    300   /// unordered, 0==-0).
    301   cmpResult compare(const IEEEFloat &) const;
    302 
    303   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
    304   bool bitwiseIsEqual(const IEEEFloat &) const;
    305 
    306   /// Write out a hexadecimal representation of the floating point value to DST,
    307   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
    308   /// Return the number of characters written, excluding the terminating NUL.
    309   unsigned int convertToHexString(char *dst, unsigned int hexDigits,
    310                                   bool upperCase, roundingMode) const;
    311 
    312   /// \name IEEE-754R 5.7.2 General operations.
    313   /// @{
    314 
    315   /// IEEE-754R isSignMinus: Returns true if and only if the current value is
    316   /// negative.
    317   ///
    318   /// This applies to zeros and NaNs as well.
    319   bool isNegative() const { return sign; }
    320 
    321   /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
    322   ///
    323   /// This implies that the current value of the float is not zero, subnormal,
    324   /// infinite, or NaN following the definition of normality from IEEE-754R.
    325   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
    326 
    327   /// Returns true if and only if the current value is zero, subnormal, or
    328   /// normal.
    329   ///
    330   /// This means that the value is not infinite or NaN.
    331   bool isFinite() const { return !isNaN() && !isInfinity(); }
    332 
    333   /// Returns true if and only if the float is plus or minus zero.
    334   bool isZero() const { return category == fcZero; }
    335 
    336   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
    337   /// denormal.
    338   bool isDenormal() const;
    339 
    340   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
    341   bool isInfinity() const { return category == fcInfinity; }
    342 
    343   /// Returns true if and only if the float is a quiet or signaling NaN.
    344   bool isNaN() const { return category == fcNaN; }
    345 
    346   /// Returns true if and only if the float is a signaling NaN.
    347   bool isSignaling() const;
    348 
    349   /// @}
    350 
    351   /// \name Simple Queries
    352   /// @{
    353 
    354   fltCategory getCategory() const { return category; }
    355   const fltSemantics &getSemantics() const { return *semantics; }
    356   bool isNonZero() const { return category != fcZero; }
    357   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
    358   bool isPosZero() const { return isZero() && !isNegative(); }
    359   bool isNegZero() const { return isZero() && isNegative(); }
    360 
    361   /// Returns true if and only if the number has the smallest possible non-zero
    362   /// magnitude in the current semantics.
    363   bool isSmallest() const;
    364 
    365   /// Returns true if and only if the number has the largest possible finite
    366   /// magnitude in the current semantics.
    367   bool isLargest() const;
    368 
    369   /// Returns true if and only if the number is an exact integer.
    370   bool isInteger() const;
    371 
    372   /// @}
    373 
    374   IEEEFloat &operator=(const IEEEFloat &);
    375   IEEEFloat &operator=(IEEEFloat &&);
    376 
    377   /// Overload to compute a hash code for an APFloat value.
    378   ///
    379   /// Note that the use of hash codes for floating point values is in general
    380   /// frought with peril. Equality is hard to define for these values. For
    381   /// example, should negative and positive zero hash to different codes? Are
    382   /// they equal or not? This hash value implementation specifically
    383   /// emphasizes producing different codes for different inputs in order to
    384   /// be used in canonicalization and memoization. As such, equality is
    385   /// bitwiseIsEqual, and 0 != -0.
    386   friend hash_code hash_value(const IEEEFloat &Arg);
    387 
    388   /// Converts this value into a decimal string.
    389   ///
    390   /// \param FormatPrecision The maximum number of digits of
    391   ///   precision to output.  If there are fewer digits available,
    392   ///   zero padding will not be used unless the value is
    393   ///   integral and small enough to be expressed in
    394   ///   FormatPrecision digits.  0 means to use the natural
    395   ///   precision of the number.
    396   /// \param FormatMaxPadding The maximum number of zeros to
    397   ///   consider inserting before falling back to scientific
    398   ///   notation.  0 means to always use scientific notation.
    399   ///
    400   /// \param TruncateZero Indicate whether to remove the trailing zero in
    401   ///   fraction part or not. Also setting this parameter to false forcing
    402   ///   producing of output more similar to default printf behavior.
    403   ///   Specifically the lower e is used as exponent delimiter and exponent
    404   ///   always contains no less than two digits.
    405   ///
    406   /// Number       Precision    MaxPadding      Result
    407   /// ------       ---------    ----------      ------
    408   /// 1.01E+4              5             2       10100
    409   /// 1.01E+4              4             2       1.01E+4
    410   /// 1.01E+4              5             1       1.01E+4
    411   /// 1.01E-2              5             2       0.0101
    412   /// 1.01E-2              4             2       0.0101
    413   /// 1.01E-2              4             1       1.01E-2
    414   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
    415                 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
    416 
    417   /// If this value has an exact multiplicative inverse, store it in inv and
    418   /// return true.
    419   bool getExactInverse(APFloat *inv) const;
    420 
    421   /// Returns the exponent of the internal representation of the APFloat.
    422   ///
    423   /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
    424   /// For special APFloat values, this returns special error codes:
    425   ///
    426   ///   NaN -> \c IEK_NaN
    427   ///   0   -> \c IEK_Zero
    428   ///   Inf -> \c IEK_Inf
    429   ///
    430   friend int ilogb(const IEEEFloat &Arg);
    431 
    432   /// Returns: X * 2^Exp for integral exponents.
    433   friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
    434 
    435   friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
    436 
    437   /// \name Special value setters.
    438   /// @{
    439 
    440   void makeLargest(bool Neg = false);
    441   void makeSmallest(bool Neg = false);
    442   void makeNaN(bool SNaN = false, bool Neg = false,
    443                const APInt *fill = nullptr);
    444   void makeInf(bool Neg = false);
    445   void makeZero(bool Neg = false);
    446   void makeQuiet();
    447 
    448   /// Returns the smallest (by magnitude) normalized finite number in the given
    449   /// semantics.
    450   ///
    451   /// \param Negative - True iff the number should be negative
    452   void makeSmallestNormalized(bool Negative = false);
    453 
    454   /// @}
    455 
    456   cmpResult compareAbsoluteValue(const IEEEFloat &) const;
    457 
    458 private:
    459   /// \name Simple Queries
    460   /// @{
    461 
    462   integerPart *significandParts();
    463   const integerPart *significandParts() const;
    464   unsigned int partCount() const;
    465 
    466   /// @}
    467 
    468   /// \name Significand operations.
    469   /// @{
    470 
    471   integerPart addSignificand(const IEEEFloat &);
    472   integerPart subtractSignificand(const IEEEFloat &, integerPart);
    473   lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
    474   lostFraction multiplySignificand(const IEEEFloat &, const IEEEFloat *);
    475   lostFraction divideSignificand(const IEEEFloat &);
    476   void incrementSignificand();
    477   void initialize(const fltSemantics *);
    478   void shiftSignificandLeft(unsigned int);
    479   lostFraction shiftSignificandRight(unsigned int);
    480   unsigned int significandLSB() const;
    481   unsigned int significandMSB() const;
    482   void zeroSignificand();
    483   /// Return true if the significand excluding the integral bit is all ones.
    484   bool isSignificandAllOnes() const;
    485   /// Return true if the significand excluding the integral bit is all zeros.
    486   bool isSignificandAllZeros() const;
    487 
    488   /// @}
    489 
    490   /// \name Arithmetic on special values.
    491   /// @{
    492 
    493   opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
    494   opStatus divideSpecials(const IEEEFloat &);
    495   opStatus multiplySpecials(const IEEEFloat &);
    496   opStatus modSpecials(const IEEEFloat &);
    497 
    498   /// @}
    499 
    500   /// \name Miscellany
    501   /// @{
    502 
    503   bool convertFromStringSpecials(StringRef str);
    504   opStatus normalize(roundingMode, lostFraction);
    505   opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
    506   opStatus handleOverflow(roundingMode);
    507   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
    508   opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
    509                                         unsigned int, bool, roundingMode,
    510                                         bool *) const;
    511   opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
    512                                     roundingMode);
    513   opStatus convertFromHexadecimalString(StringRef, roundingMode);
    514   opStatus convertFromDecimalString(StringRef, roundingMode);
    515   char *convertNormalToHexString(char *, unsigned int, bool,
    516                                  roundingMode) const;
    517   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
    518                                         roundingMode);
    519 
    520   /// @}
    521 
    522   APInt convertHalfAPFloatToAPInt() const;
    523   APInt convertFloatAPFloatToAPInt() const;
    524   APInt convertDoubleAPFloatToAPInt() const;
    525   APInt convertQuadrupleAPFloatToAPInt() const;
    526   APInt convertF80LongDoubleAPFloatToAPInt() const;
    527   APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
    528   void initFromAPInt(const fltSemantics *Sem, const APInt &api);
    529   void initFromHalfAPInt(const APInt &api);
    530   void initFromFloatAPInt(const APInt &api);
    531   void initFromDoubleAPInt(const APInt &api);
    532   void initFromQuadrupleAPInt(const APInt &api);
    533   void initFromF80LongDoubleAPInt(const APInt &api);
    534   void initFromPPCDoubleDoubleAPInt(const APInt &api);
    535 
    536   void assign(const IEEEFloat &);
    537   void copySignificand(const IEEEFloat &);
    538   void freeSignificand();
    539 
    540   /// Note: this must be the first data member.
    541   /// The semantics that this value obeys.
    542   const fltSemantics *semantics;
    543 
    544   /// A binary fraction with an explicit integer bit.
    545   ///
    546   /// The significand must be at least one bit wider than the target precision.
    547   union Significand {
    548     integerPart part;
    549     integerPart *parts;
    550   } significand;
    551 
    552   /// The signed unbiased exponent of the value.
    553   ExponentType exponent;
    554 
    555   /// What kind of floating point number this is.
    556   ///
    557   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
    558   /// Using the extra bit keeps it from failing under VisualStudio.
    559   fltCategory category : 3;
    560 
    561   /// Sign bit of the number.
    562   unsigned int sign : 1;
    563 };
    564 
    565 hash_code hash_value(const IEEEFloat &Arg);
    566 int ilogb(const IEEEFloat &Arg);
    567 IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
    568 IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
    569 
    570 // This mode implements more precise float in terms of two APFloats.
    571 // The interface and layout is designed for arbitray underlying semantics,
    572 // though currently only PPCDoubleDouble semantics are supported, whose
    573 // corresponding underlying semantics are IEEEdouble.
    574 class DoubleAPFloat final : public APFloatBase {
    575   // Note: this must be the first data member.
    576   const fltSemantics *Semantics;
    577   std::unique_ptr<APFloat[]> Floats;
    578 
    579   opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
    580                    const APFloat &cc, roundingMode RM);
    581 
    582   opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
    583                           DoubleAPFloat &Out, roundingMode RM);
    584 
    585 public:
    586   DoubleAPFloat(const fltSemantics &S);
    587   DoubleAPFloat(const fltSemantics &S, uninitializedTag);
    588   DoubleAPFloat(const fltSemantics &S, integerPart);
    589   DoubleAPFloat(const fltSemantics &S, const APInt &I);
    590   DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
    591   DoubleAPFloat(const DoubleAPFloat &RHS);
    592   DoubleAPFloat(DoubleAPFloat &&RHS);
    593 
    594   DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
    595 
    596   DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
    597     if (this != &RHS) {
    598       this->~DoubleAPFloat();
    599       new (this) DoubleAPFloat(std::move(RHS));
    600     }
    601     return *this;
    602   }
    603 
    604   bool needsCleanup() const { return Floats != nullptr; }
    605 
    606   APFloat &getFirst() { return Floats[0]; }
    607   const APFloat &getFirst() const { return Floats[0]; }
    608   APFloat &getSecond() { return Floats[1]; }
    609   const APFloat &getSecond() const { return Floats[1]; }
    610 
    611   opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
    612   opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
    613   opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
    614   opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
    615   opStatus remainder(const DoubleAPFloat &RHS);
    616   opStatus mod(const DoubleAPFloat &RHS);
    617   opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
    618                             const DoubleAPFloat &Addend, roundingMode RM);
    619   opStatus roundToIntegral(roundingMode RM);
    620   void changeSign();
    621   cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
    622 
    623   fltCategory getCategory() const;
    624   bool isNegative() const;
    625 
    626   void makeInf(bool Neg);
    627   void makeZero(bool Neg);
    628   void makeLargest(bool Neg);
    629   void makeSmallest(bool Neg);
    630   void makeSmallestNormalized(bool Neg);
    631   void makeNaN(bool SNaN, bool Neg, const APInt *fill);
    632 
    633   cmpResult compare(const DoubleAPFloat &RHS) const;
    634   bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
    635   APInt bitcastToAPInt() const;
    636   opStatus convertFromString(StringRef, roundingMode);
    637   opStatus next(bool nextDown);
    638 
    639   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
    640                             unsigned int Width, bool IsSigned, roundingMode RM,
    641                             bool *IsExact) const;
    642   opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
    643   opStatus convertFromSignExtendedInteger(const integerPart *Input,
    644                                           unsigned int InputSize, bool IsSigned,
    645                                           roundingMode RM);
    646   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
    647                                           unsigned int InputSize, bool IsSigned,
    648                                           roundingMode RM);
    649   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
    650                                   bool UpperCase, roundingMode RM) const;
    651 
    652   bool isDenormal() const;
    653   bool isSmallest() const;
    654   bool isLargest() const;
    655   bool isInteger() const;
    656 
    657   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
    658                 unsigned FormatMaxPadding, bool TruncateZero = true) const;
    659 
    660   bool getExactInverse(APFloat *inv) const;
    661 
    662   friend int ilogb(const DoubleAPFloat &Arg);
    663   friend DoubleAPFloat scalbn(DoubleAPFloat X, int Exp, roundingMode);
    664   friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
    665   friend hash_code hash_value(const DoubleAPFloat &Arg);
    666 };
    667 
    668 hash_code hash_value(const DoubleAPFloat &Arg);
    669 
    670 } // End detail namespace
    671 
    672 // This is a interface class that is currently forwarding functionalities from
    673 // detail::IEEEFloat.
    674 class APFloat : public APFloatBase {
    675   typedef detail::IEEEFloat IEEEFloat;
    676   typedef detail::DoubleAPFloat DoubleAPFloat;
    677 
    678   static_assert(std::is_standard_layout<IEEEFloat>::value, "");
    679 
    680   union Storage {
    681     const fltSemantics *semantics;
    682     IEEEFloat IEEE;
    683     DoubleAPFloat Double;
    684 
    685     explicit Storage(IEEEFloat F, const fltSemantics &S);
    686     explicit Storage(DoubleAPFloat F, const fltSemantics &S)
    687         : Double(std::move(F)) {
    688       assert(&S == &PPCDoubleDouble());
    689     }
    690 
    691     template <typename... ArgTypes>
    692     Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
    693       if (usesLayout<IEEEFloat>(Semantics)) {
    694         new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
    695         return;
    696       }
    697       if (usesLayout<DoubleAPFloat>(Semantics)) {
    698         new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
    699         return;
    700       }
    701       llvm_unreachable("Unexpected semantics");
    702     }
    703 
    704     ~Storage() {
    705       if (usesLayout<IEEEFloat>(*semantics)) {
    706         IEEE.~IEEEFloat();
    707         return;
    708       }
    709       if (usesLayout<DoubleAPFloat>(*semantics)) {
    710         Double.~DoubleAPFloat();
    711         return;
    712       }
    713       llvm_unreachable("Unexpected semantics");
    714     }
    715 
    716     Storage(const Storage &RHS) {
    717       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
    718         new (this) IEEEFloat(RHS.IEEE);
    719         return;
    720       }
    721       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
    722         new (this) DoubleAPFloat(RHS.Double);
    723         return;
    724       }
    725       llvm_unreachable("Unexpected semantics");
    726     }
    727 
    728     Storage(Storage &&RHS) {
    729       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
    730         new (this) IEEEFloat(std::move(RHS.IEEE));
    731         return;
    732       }
    733       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
    734         new (this) DoubleAPFloat(std::move(RHS.Double));
    735         return;
    736       }
    737       llvm_unreachable("Unexpected semantics");
    738     }
    739 
    740     Storage &operator=(const Storage &RHS) {
    741       if (usesLayout<IEEEFloat>(*semantics) &&
    742           usesLayout<IEEEFloat>(*RHS.semantics)) {
    743         IEEE = RHS.IEEE;
    744       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
    745                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
    746         Double = RHS.Double;
    747       } else if (this != &RHS) {
    748         this->~Storage();
    749         new (this) Storage(RHS);
    750       }
    751       return *this;
    752     }
    753 
    754     Storage &operator=(Storage &&RHS) {
    755       if (usesLayout<IEEEFloat>(*semantics) &&
    756           usesLayout<IEEEFloat>(*RHS.semantics)) {
    757         IEEE = std::move(RHS.IEEE);
    758       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
    759                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
    760         Double = std::move(RHS.Double);
    761       } else if (this != &RHS) {
    762         this->~Storage();
    763         new (this) Storage(std::move(RHS));
    764       }
    765       return *this;
    766     }
    767   } U;
    768 
    769   template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
    770     static_assert(std::is_same<T, IEEEFloat>::value ||
    771                   std::is_same<T, DoubleAPFloat>::value, "");
    772     if (std::is_same<T, DoubleAPFloat>::value) {
    773       return &Semantics == &PPCDoubleDouble();
    774     }
    775     return &Semantics != &PPCDoubleDouble();
    776   }
    777 
    778   IEEEFloat &getIEEE() {
    779     if (usesLayout<IEEEFloat>(*U.semantics))
    780       return U.IEEE;
    781     if (usesLayout<DoubleAPFloat>(*U.semantics))
    782       return U.Double.getFirst().U.IEEE;
    783     llvm_unreachable("Unexpected semantics");
    784   }
    785 
    786   const IEEEFloat &getIEEE() const {
    787     if (usesLayout<IEEEFloat>(*U.semantics))
    788       return U.IEEE;
    789     if (usesLayout<DoubleAPFloat>(*U.semantics))
    790       return U.Double.getFirst().U.IEEE;
    791     llvm_unreachable("Unexpected semantics");
    792   }
    793 
    794   void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
    795 
    796   void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
    797 
    798   void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
    799     APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
    800   }
    801 
    802   void makeLargest(bool Neg) {
    803     APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
    804   }
    805 
    806   void makeSmallest(bool Neg) {
    807     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
    808   }
    809 
    810   void makeSmallestNormalized(bool Neg) {
    811     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
    812   }
    813 
    814   // FIXME: This is due to clang 3.3 (or older version) always checks for the
    815   // default constructor in an array aggregate initialization, even if no
    816   // elements in the array is default initialized.
    817   APFloat() : U(IEEEdouble()) {
    818     llvm_unreachable("This is a workaround for old clang.");
    819   }
    820 
    821   explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
    822   explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
    823       : U(std::move(F), S) {}
    824 
    825   cmpResult compareAbsoluteValue(const APFloat &RHS) const {
    826     assert(&getSemantics() == &RHS.getSemantics() &&
    827            "Should only compare APFloats with the same semantics");
    828     if (usesLayout<IEEEFloat>(getSemantics()))
    829       return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
    830     if (usesLayout<DoubleAPFloat>(getSemantics()))
    831       return U.Double.compareAbsoluteValue(RHS.U.Double);
    832     llvm_unreachable("Unexpected semantics");
    833   }
    834 
    835 public:
    836   APFloat(const fltSemantics &Semantics) : U(Semantics) {}
    837   APFloat(const fltSemantics &Semantics, StringRef S);
    838   APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
    839   // TODO: Remove this constructor. This isn't faster than the first one.
    840   APFloat(const fltSemantics &Semantics, uninitializedTag)
    841       : U(Semantics, uninitialized) {}
    842   APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
    843   explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
    844   explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
    845   APFloat(const APFloat &RHS) = default;
    846   APFloat(APFloat &&RHS) = default;
    847 
    848   ~APFloat() = default;
    849 
    850   bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
    851 
    852   /// Factory for Positive and Negative Zero.
    853   ///
    854   /// \param Negative True iff the number should be negative.
    855   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
    856     APFloat Val(Sem, uninitialized);
    857     Val.makeZero(Negative);
    858     return Val;
    859   }
    860 
    861   /// Factory for Positive and Negative Infinity.
    862   ///
    863   /// \param Negative True iff the number should be negative.
    864   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
    865     APFloat Val(Sem, uninitialized);
    866     Val.makeInf(Negative);
    867     return Val;
    868   }
    869 
    870   /// Factory for NaN values.
    871   ///
    872   /// \param Negative - True iff the NaN generated should be negative.
    873   /// \param type - The unspecified fill bits for creating the NaN, 0 by
    874   /// default.  The value is truncated as necessary.
    875   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
    876                         unsigned type = 0) {
    877     if (type) {
    878       APInt fill(64, type);
    879       return getQNaN(Sem, Negative, &fill);
    880     } else {
    881       return getQNaN(Sem, Negative, nullptr);
    882     }
    883   }
    884 
    885   /// Factory for QNaN values.
    886   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
    887                          const APInt *payload = nullptr) {
    888     APFloat Val(Sem, uninitialized);
    889     Val.makeNaN(false, Negative, payload);
    890     return Val;
    891   }
    892 
    893   /// Factory for SNaN values.
    894   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
    895                          const APInt *payload = nullptr) {
    896     APFloat Val(Sem, uninitialized);
    897     Val.makeNaN(true, Negative, payload);
    898     return Val;
    899   }
    900 
    901   /// Returns the largest finite number in the given semantics.
    902   ///
    903   /// \param Negative - True iff the number should be negative
    904   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
    905     APFloat Val(Sem, uninitialized);
    906     Val.makeLargest(Negative);
    907     return Val;
    908   }
    909 
    910   /// Returns the smallest (by magnitude) finite number in the given semantics.
    911   /// Might be denormalized, which implies a relative loss of precision.
    912   ///
    913   /// \param Negative - True iff the number should be negative
    914   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
    915     APFloat Val(Sem, uninitialized);
    916     Val.makeSmallest(Negative);
    917     return Val;
    918   }
    919 
    920   /// Returns the smallest (by magnitude) normalized finite number in the given
    921   /// semantics.
    922   ///
    923   /// \param Negative - True iff the number should be negative
    924   static APFloat getSmallestNormalized(const fltSemantics &Sem,
    925                                        bool Negative = false) {
    926     APFloat Val(Sem, uninitialized);
    927     Val.makeSmallestNormalized(Negative);
    928     return Val;
    929   }
    930 
    931   /// Returns a float which is bitcasted from an all one value int.
    932   ///
    933   /// \param BitWidth - Select float type
    934   /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
    935   static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
    936 
    937   /// Used to insert APFloat objects, or objects that contain APFloat objects,
    938   /// into FoldingSets.
    939   void Profile(FoldingSetNodeID &NID) const;
    940 
    941   opStatus add(const APFloat &RHS, roundingMode RM) {
    942     assert(&getSemantics() == &RHS.getSemantics() &&
    943            "Should only call on two APFloats with the same semantics");
    944     if (usesLayout<IEEEFloat>(getSemantics()))
    945       return U.IEEE.add(RHS.U.IEEE, RM);
    946     if (usesLayout<DoubleAPFloat>(getSemantics()))
    947       return U.Double.add(RHS.U.Double, RM);
    948     llvm_unreachable("Unexpected semantics");
    949   }
    950   opStatus subtract(const APFloat &RHS, roundingMode RM) {
    951     assert(&getSemantics() == &RHS.getSemantics() &&
    952            "Should only call on two APFloats with the same semantics");
    953     if (usesLayout<IEEEFloat>(getSemantics()))
    954       return U.IEEE.subtract(RHS.U.IEEE, RM);
    955     if (usesLayout<DoubleAPFloat>(getSemantics()))
    956       return U.Double.subtract(RHS.U.Double, RM);
    957     llvm_unreachable("Unexpected semantics");
    958   }
    959   opStatus multiply(const APFloat &RHS, roundingMode RM) {
    960     assert(&getSemantics() == &RHS.getSemantics() &&
    961            "Should only call on two APFloats with the same semantics");
    962     if (usesLayout<IEEEFloat>(getSemantics()))
    963       return U.IEEE.multiply(RHS.U.IEEE, RM);
    964     if (usesLayout<DoubleAPFloat>(getSemantics()))
    965       return U.Double.multiply(RHS.U.Double, RM);
    966     llvm_unreachable("Unexpected semantics");
    967   }
    968   opStatus divide(const APFloat &RHS, roundingMode RM) {
    969     assert(&getSemantics() == &RHS.getSemantics() &&
    970            "Should only call on two APFloats with the same semantics");
    971     if (usesLayout<IEEEFloat>(getSemantics()))
    972       return U.IEEE.divide(RHS.U.IEEE, RM);
    973     if (usesLayout<DoubleAPFloat>(getSemantics()))
    974       return U.Double.divide(RHS.U.Double, RM);
    975     llvm_unreachable("Unexpected semantics");
    976   }
    977   opStatus remainder(const APFloat &RHS) {
    978     assert(&getSemantics() == &RHS.getSemantics() &&
    979            "Should only call on two APFloats with the same semantics");
    980     if (usesLayout<IEEEFloat>(getSemantics()))
    981       return U.IEEE.remainder(RHS.U.IEEE);
    982     if (usesLayout<DoubleAPFloat>(getSemantics()))
    983       return U.Double.remainder(RHS.U.Double);
    984     llvm_unreachable("Unexpected semantics");
    985   }
    986   opStatus mod(const APFloat &RHS) {
    987     assert(&getSemantics() == &RHS.getSemantics() &&
    988            "Should only call on two APFloats with the same semantics");
    989     if (usesLayout<IEEEFloat>(getSemantics()))
    990       return U.IEEE.mod(RHS.U.IEEE);
    991     if (usesLayout<DoubleAPFloat>(getSemantics()))
    992       return U.Double.mod(RHS.U.Double);
    993     llvm_unreachable("Unexpected semantics");
    994   }
    995   opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
    996                             roundingMode RM) {
    997     assert(&getSemantics() == &Multiplicand.getSemantics() &&
    998            "Should only call on APFloats with the same semantics");
    999     assert(&getSemantics() == &Addend.getSemantics() &&
   1000            "Should only call on APFloats with the same semantics");
   1001     if (usesLayout<IEEEFloat>(getSemantics()))
   1002       return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
   1003     if (usesLayout<DoubleAPFloat>(getSemantics()))
   1004       return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
   1005                                        RM);
   1006     llvm_unreachable("Unexpected semantics");
   1007   }
   1008   opStatus roundToIntegral(roundingMode RM) {
   1009     APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
   1010   }
   1011 
   1012   // TODO: bool parameters are not readable and a source of bugs.
   1013   // Do something.
   1014   opStatus next(bool nextDown) {
   1015     APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
   1016   }
   1017 
   1018   /// Add two APFloats, rounding ties to the nearest even.
   1019   /// No error checking.
   1020   APFloat operator+(const APFloat &RHS) const {
   1021     APFloat Result(*this);
   1022     (void)Result.add(RHS, rmNearestTiesToEven);
   1023     return Result;
   1024   }
   1025 
   1026   /// Subtract two APFloats, rounding ties to the nearest even.
   1027   /// No error checking.
   1028   APFloat operator-(const APFloat &RHS) const {
   1029     APFloat Result(*this);
   1030     (void)Result.subtract(RHS, rmNearestTiesToEven);
   1031     return Result;
   1032   }
   1033 
   1034   /// Multiply two APFloats, rounding ties to the nearest even.
   1035   /// No error checking.
   1036   APFloat operator*(const APFloat &RHS) const {
   1037     APFloat Result(*this);
   1038     (void)Result.multiply(RHS, rmNearestTiesToEven);
   1039     return Result;
   1040   }
   1041 
   1042   /// Divide the first APFloat by the second, rounding ties to the nearest even.
   1043   /// No error checking.
   1044   APFloat operator/(const APFloat &RHS) const {
   1045     APFloat Result(*this);
   1046     (void)Result.divide(RHS, rmNearestTiesToEven);
   1047     return Result;
   1048   }
   1049 
   1050   void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
   1051   void clearSign() {
   1052     if (isNegative())
   1053       changeSign();
   1054   }
   1055   void copySign(const APFloat &RHS) {
   1056     if (isNegative() != RHS.isNegative())
   1057       changeSign();
   1058   }
   1059 
   1060   /// A static helper to produce a copy of an APFloat value with its sign
   1061   /// copied from some other APFloat.
   1062   static APFloat copySign(APFloat Value, const APFloat &Sign) {
   1063     Value.copySign(Sign);
   1064     return Value;
   1065   }
   1066 
   1067   opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
   1068                    bool *losesInfo);
   1069   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
   1070                             unsigned int Width, bool IsSigned, roundingMode RM,
   1071                             bool *IsExact) const {
   1072     APFLOAT_DISPATCH_ON_SEMANTICS(
   1073         convertToInteger(Input, Width, IsSigned, RM, IsExact));
   1074   }
   1075   opStatus convertToInteger(APSInt &Result, roundingMode RM,
   1076                             bool *IsExact) const;
   1077   opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
   1078                             roundingMode RM) {
   1079     APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
   1080   }
   1081   opStatus convertFromSignExtendedInteger(const integerPart *Input,
   1082                                           unsigned int InputSize, bool IsSigned,
   1083                                           roundingMode RM) {
   1084     APFLOAT_DISPATCH_ON_SEMANTICS(
   1085         convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
   1086   }
   1087   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
   1088                                           unsigned int InputSize, bool IsSigned,
   1089                                           roundingMode RM) {
   1090     APFLOAT_DISPATCH_ON_SEMANTICS(
   1091         convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
   1092   }
   1093   opStatus convertFromString(StringRef, roundingMode);
   1094   APInt bitcastToAPInt() const {
   1095     APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
   1096   }
   1097   double convertToDouble() const { return getIEEE().convertToDouble(); }
   1098   float convertToFloat() const { return getIEEE().convertToFloat(); }
   1099 
   1100   bool operator==(const APFloat &) const = delete;
   1101 
   1102   cmpResult compare(const APFloat &RHS) const {
   1103     assert(&getSemantics() == &RHS.getSemantics() &&
   1104            "Should only compare APFloats with the same semantics");
   1105     if (usesLayout<IEEEFloat>(getSemantics()))
   1106       return U.IEEE.compare(RHS.U.IEEE);
   1107     if (usesLayout<DoubleAPFloat>(getSemantics()))
   1108       return U.Double.compare(RHS.U.Double);
   1109     llvm_unreachable("Unexpected semantics");
   1110   }
   1111 
   1112   bool bitwiseIsEqual(const APFloat &RHS) const {
   1113     if (&getSemantics() != &RHS.getSemantics())
   1114       return false;
   1115     if (usesLayout<IEEEFloat>(getSemantics()))
   1116       return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
   1117     if (usesLayout<DoubleAPFloat>(getSemantics()))
   1118       return U.Double.bitwiseIsEqual(RHS.U.Double);
   1119     llvm_unreachable("Unexpected semantics");
   1120   }
   1121 
   1122   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
   1123                                   bool UpperCase, roundingMode RM) const {
   1124     APFLOAT_DISPATCH_ON_SEMANTICS(
   1125         convertToHexString(DST, HexDigits, UpperCase, RM));
   1126   }
   1127 
   1128   bool isZero() const { return getCategory() == fcZero; }
   1129   bool isInfinity() const { return getCategory() == fcInfinity; }
   1130   bool isNaN() const { return getCategory() == fcNaN; }
   1131 
   1132   bool isNegative() const { return getIEEE().isNegative(); }
   1133   bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
   1134   bool isSignaling() const { return getIEEE().isSignaling(); }
   1135 
   1136   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
   1137   bool isFinite() const { return !isNaN() && !isInfinity(); }
   1138 
   1139   fltCategory getCategory() const { return getIEEE().getCategory(); }
   1140   const fltSemantics &getSemantics() const { return *U.semantics; }
   1141   bool isNonZero() const { return !isZero(); }
   1142   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
   1143   bool isPosZero() const { return isZero() && !isNegative(); }
   1144   bool isNegZero() const { return isZero() && isNegative(); }
   1145   bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
   1146   bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
   1147   bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
   1148 
   1149   APFloat &operator=(const APFloat &RHS) = default;
   1150   APFloat &operator=(APFloat &&RHS) = default;
   1151 
   1152   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
   1153                 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
   1154     APFLOAT_DISPATCH_ON_SEMANTICS(
   1155         toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
   1156   }
   1157 
   1158   void print(raw_ostream &) const;
   1159   void dump() const;
   1160 
   1161   bool getExactInverse(APFloat *inv) const {
   1162     APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
   1163   }
   1164 
   1165   friend hash_code hash_value(const APFloat &Arg);
   1166   friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
   1167   friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
   1168   friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
   1169   friend IEEEFloat;
   1170   friend DoubleAPFloat;
   1171 };
   1172 
   1173 /// See friend declarations above.
   1174 ///
   1175 /// These additional declarations are required in order to compile LLVM with IBM
   1176 /// xlC compiler.
   1177 hash_code hash_value(const APFloat &Arg);
   1178 inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
   1179   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
   1180     return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
   1181   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
   1182     return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
   1183   llvm_unreachable("Unexpected semantics");
   1184 }
   1185 
   1186 /// Equivalent of C standard library function.
   1187 ///
   1188 /// While the C standard says Exp is an unspecified value for infinity and nan,
   1189 /// this returns INT_MAX for infinities, and INT_MIN for NaNs.
   1190 inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
   1191   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
   1192     return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
   1193   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
   1194     return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
   1195   llvm_unreachable("Unexpected semantics");
   1196 }
   1197 /// Returns the absolute value of the argument.
   1198 inline APFloat abs(APFloat X) {
   1199   X.clearSign();
   1200   return X;
   1201 }
   1202 
   1203 /// \brief Returns the negated value of the argument.
   1204 inline APFloat neg(APFloat X) {
   1205   X.changeSign();
   1206   return X;
   1207 }
   1208 
   1209 /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
   1210 /// both are not NaN. If either argument is a NaN, returns the other argument.
   1211 LLVM_READONLY
   1212 inline APFloat minnum(const APFloat &A, const APFloat &B) {
   1213   if (A.isNaN())
   1214     return B;
   1215   if (B.isNaN())
   1216     return A;
   1217   return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
   1218 }
   1219 
   1220 /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
   1221 /// both are not NaN. If either argument is a NaN, returns the other argument.
   1222 LLVM_READONLY
   1223 inline APFloat maxnum(const APFloat &A, const APFloat &B) {
   1224   if (A.isNaN())
   1225     return B;
   1226   if (B.isNaN())
   1227     return A;
   1228   return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
   1229 }
   1230 
   1231 } // namespace llvm
   1232 
   1233 #undef APFLOAT_DISPATCH_ON_SEMANTICS
   1234 #endif // LLVM_ADT_APFLOAT_H
   1235