Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief This file implements a class to represent arbitrary precision
     12 /// integral constant values and operations on them.
     13 ///
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_ADT_APINT_H
     17 #define LLVM_ADT_APINT_H
     18 
     19 #include "llvm/Support/Compiler.h"
     20 #include "llvm/Support/MathExtras.h"
     21 #include <cassert>
     22 #include <climits>
     23 #include <cstring>
     24 #include <string>
     25 
     26 namespace llvm {
     27 class FoldingSetNodeID;
     28 class StringRef;
     29 class hash_code;
     30 class raw_ostream;
     31 
     32 template <typename T> class SmallVectorImpl;
     33 template <typename T> class ArrayRef;
     34 
     35 class APInt;
     36 
     37 inline APInt operator-(APInt);
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                              APInt Class
     41 //===----------------------------------------------------------------------===//
     42 
     43 /// \brief Class for arbitrary precision integers.
     44 ///
     45 /// APInt is a functional replacement for common case unsigned integer type like
     46 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
     47 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
     48 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
     49 /// and methods to manipulate integer values of any bit-width. It supports both
     50 /// the typical integer arithmetic and comparison operations as well as bitwise
     51 /// manipulation.
     52 ///
     53 /// The class has several invariants worth noting:
     54 ///   * All bit, byte, and word positions are zero-based.
     55 ///   * Once the bit width is set, it doesn't change except by the Truncate,
     56 ///     SignExtend, or ZeroExtend operations.
     57 ///   * All binary operators must be on APInt instances of the same bit width.
     58 ///     Attempting to use these operators on instances with different bit
     59 ///     widths will yield an assertion.
     60 ///   * The value is stored canonically as an unsigned value. For operations
     61 ///     where it makes a difference, there are both signed and unsigned variants
     62 ///     of the operation. For example, sdiv and udiv. However, because the bit
     63 ///     widths must be the same, operations such as Mul and Add produce the same
     64 ///     results regardless of whether the values are interpreted as signed or
     65 ///     not.
     66 ///   * In general, the class tries to follow the style of computation that LLVM
     67 ///     uses in its IR. This simplifies its use for LLVM.
     68 ///
     69 class LLVM_NODISCARD APInt {
     70 public:
     71   typedef uint64_t WordType;
     72 
     73   /// This enum is used to hold the constants we needed for APInt.
     74   enum : unsigned {
     75     /// Byte size of a word.
     76     APINT_WORD_SIZE = sizeof(WordType),
     77     /// Bits in a word.
     78     APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
     79   };
     80 
     81   static const WordType WORD_MAX = ~WordType(0);
     82 
     83 private:
     84   /// This union is used to store the integer value. When the
     85   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
     86   union {
     87     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
     88     uint64_t *pVal; ///< Used to store the >64 bits integer value.
     89   } U;
     90 
     91   unsigned BitWidth; ///< The number of bits in this APInt.
     92 
     93   friend struct DenseMapAPIntKeyInfo;
     94 
     95   friend class APSInt;
     96 
     97   /// \brief Fast internal constructor
     98   ///
     99   /// This constructor is used only internally for speed of construction of
    100   /// temporaries. It is unsafe for general use so it is not public.
    101   APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
    102     U.pVal = val;
    103   }
    104 
    105   /// \brief Determine if this APInt just has one word to store value.
    106   ///
    107   /// \returns true if the number of bits <= 64, false otherwise.
    108   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
    109 
    110   /// \brief Determine which word a bit is in.
    111   ///
    112   /// \returns the word position for the specified bit position.
    113   static unsigned whichWord(unsigned bitPosition) {
    114     return bitPosition / APINT_BITS_PER_WORD;
    115   }
    116 
    117   /// \brief Determine which bit in a word a bit is in.
    118   ///
    119   /// \returns the bit position in a word for the specified bit position
    120   /// in the APInt.
    121   static unsigned whichBit(unsigned bitPosition) {
    122     return bitPosition % APINT_BITS_PER_WORD;
    123   }
    124 
    125   /// \brief Get a single bit mask.
    126   ///
    127   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
    128   /// This method generates and returns a uint64_t (word) mask for a single
    129   /// bit at a specific bit position. This is used to mask the bit in the
    130   /// corresponding word.
    131   static uint64_t maskBit(unsigned bitPosition) {
    132     return 1ULL << whichBit(bitPosition);
    133   }
    134 
    135   /// \brief Clear unused high order bits
    136   ///
    137   /// This method is used internally to clear the top "N" bits in the high order
    138   /// word that are not used by the APInt. This is needed after the most
    139   /// significant word is assigned a value to ensure that those bits are
    140   /// zero'd out.
    141   APInt &clearUnusedBits() {
    142     // Compute how many bits are used in the final word
    143     unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
    144 
    145     // Mask out the high bits.
    146     uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits);
    147     if (isSingleWord())
    148       U.VAL &= mask;
    149     else
    150       U.pVal[getNumWords() - 1] &= mask;
    151     return *this;
    152   }
    153 
    154   /// \brief Get the word corresponding to a bit position
    155   /// \returns the corresponding word for the specified bit position.
    156   uint64_t getWord(unsigned bitPosition) const {
    157     return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
    158   }
    159 
    160   /// Utility method to change the bit width of this APInt to new bit width,
    161   /// allocating and/or deallocating as necessary. There is no guarantee on the
    162   /// value of any bits upon return. Caller should populate the bits after.
    163   void reallocate(unsigned NewBitWidth);
    164 
    165   /// \brief Convert a char array into an APInt
    166   ///
    167   /// \param radix 2, 8, 10, 16, or 36
    168   /// Converts a string into a number.  The string must be non-empty
    169   /// and well-formed as a number of the given base. The bit-width
    170   /// must be sufficient to hold the result.
    171   ///
    172   /// This is used by the constructors that take string arguments.
    173   ///
    174   /// StringRef::getAsInteger is superficially similar but (1) does
    175   /// not assume that the string is well-formed and (2) grows the
    176   /// result to hold the input.
    177   void fromString(unsigned numBits, StringRef str, uint8_t radix);
    178 
    179   /// \brief An internal division function for dividing APInts.
    180   ///
    181   /// This is used by the toString method to divide by the radix. It simply
    182   /// provides a more convenient form of divide for internal use since KnuthDiv
    183   /// has specific constraints on its inputs. If those constraints are not met
    184   /// then it provides a simpler form of divide.
    185   static void divide(const WordType *LHS, unsigned lhsWords,
    186                      const WordType *RHS, unsigned rhsWords, WordType *Quotient,
    187                      WordType *Remainder);
    188 
    189   /// out-of-line slow case for inline constructor
    190   void initSlowCase(uint64_t val, bool isSigned);
    191 
    192   /// shared code between two array constructors
    193   void initFromArray(ArrayRef<uint64_t> array);
    194 
    195   /// out-of-line slow case for inline copy constructor
    196   void initSlowCase(const APInt &that);
    197 
    198   /// out-of-line slow case for shl
    199   void shlSlowCase(unsigned ShiftAmt);
    200 
    201   /// out-of-line slow case for lshr.
    202   void lshrSlowCase(unsigned ShiftAmt);
    203 
    204   /// out-of-line slow case for ashr.
    205   void ashrSlowCase(unsigned ShiftAmt);
    206 
    207   /// out-of-line slow case for operator=
    208   void AssignSlowCase(const APInt &RHS);
    209 
    210   /// out-of-line slow case for operator==
    211   bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
    212 
    213   /// out-of-line slow case for countLeadingZeros
    214   unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
    215 
    216   /// out-of-line slow case for countTrailingOnes
    217   unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
    218 
    219   /// out-of-line slow case for countPopulation
    220   unsigned countPopulationSlowCase() const LLVM_READONLY;
    221 
    222   /// out-of-line slow case for intersects.
    223   bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
    224 
    225   /// out-of-line slow case for isSubsetOf.
    226   bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
    227 
    228   /// out-of-line slow case for setBits.
    229   void setBitsSlowCase(unsigned loBit, unsigned hiBit);
    230 
    231   /// out-of-line slow case for flipAllBits.
    232   void flipAllBitsSlowCase();
    233 
    234   /// out-of-line slow case for operator&=.
    235   void AndAssignSlowCase(const APInt& RHS);
    236 
    237   /// out-of-line slow case for operator|=.
    238   void OrAssignSlowCase(const APInt& RHS);
    239 
    240   /// out-of-line slow case for operator^=.
    241   void XorAssignSlowCase(const APInt& RHS);
    242 
    243   /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
    244   /// to, or greater than RHS.
    245   int compare(const APInt &RHS) const LLVM_READONLY;
    246 
    247   /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
    248   /// to, or greater than RHS.
    249   int compareSigned(const APInt &RHS) const LLVM_READONLY;
    250 
    251 public:
    252   /// \name Constructors
    253   /// @{
    254 
    255   /// \brief Create a new APInt of numBits width, initialized as val.
    256   ///
    257   /// If isSigned is true then val is treated as if it were a signed value
    258   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
    259   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
    260   /// the range of val are zero filled).
    261   ///
    262   /// \param numBits the bit width of the constructed APInt
    263   /// \param val the initial value of the APInt
    264   /// \param isSigned how to treat signedness of val
    265   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
    266       : BitWidth(numBits) {
    267     assert(BitWidth && "bitwidth too small");
    268     if (isSingleWord()) {
    269       U.VAL = val;
    270       clearUnusedBits();
    271     } else {
    272       initSlowCase(val, isSigned);
    273     }
    274   }
    275 
    276   /// \brief Construct an APInt of numBits width, initialized as bigVal[].
    277   ///
    278   /// Note that bigVal.size() can be smaller or larger than the corresponding
    279   /// bit width but any extraneous bits will be dropped.
    280   ///
    281   /// \param numBits the bit width of the constructed APInt
    282   /// \param bigVal a sequence of words to form the initial value of the APInt
    283   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
    284 
    285   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
    286   /// deprecated because this constructor is prone to ambiguity with the
    287   /// APInt(unsigned, uint64_t, bool) constructor.
    288   ///
    289   /// If this overload is ever deleted, care should be taken to prevent calls
    290   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
    291   /// constructor.
    292   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
    293 
    294   /// \brief Construct an APInt from a string representation.
    295   ///
    296   /// This constructor interprets the string \p str in the given radix. The
    297   /// interpretation stops when the first character that is not suitable for the
    298   /// radix is encountered, or the end of the string. Acceptable radix values
    299   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
    300   /// string to require more bits than numBits.
    301   ///
    302   /// \param numBits the bit width of the constructed APInt
    303   /// \param str the string to be interpreted
    304   /// \param radix the radix to use for the conversion
    305   APInt(unsigned numBits, StringRef str, uint8_t radix);
    306 
    307   /// Simply makes *this a copy of that.
    308   /// @brief Copy Constructor.
    309   APInt(const APInt &that) : BitWidth(that.BitWidth) {
    310     if (isSingleWord())
    311       U.VAL = that.U.VAL;
    312     else
    313       initSlowCase(that);
    314   }
    315 
    316   /// \brief Move Constructor.
    317   APInt(APInt &&that) : BitWidth(that.BitWidth) {
    318     memcpy(&U, &that.U, sizeof(U));
    319     that.BitWidth = 0;
    320   }
    321 
    322   /// \brief Destructor.
    323   ~APInt() {
    324     if (needsCleanup())
    325       delete[] U.pVal;
    326   }
    327 
    328   /// \brief Default constructor that creates an uninteresting APInt
    329   /// representing a 1-bit zero value.
    330   ///
    331   /// This is useful for object deserialization (pair this with the static
    332   ///  method Read).
    333   explicit APInt() : BitWidth(1) { U.VAL = 0; }
    334 
    335   /// \brief Returns whether this instance allocated memory.
    336   bool needsCleanup() const { return !isSingleWord(); }
    337 
    338   /// Used to insert APInt objects, or objects that contain APInt objects, into
    339   ///  FoldingSets.
    340   void Profile(FoldingSetNodeID &id) const;
    341 
    342   /// @}
    343   /// \name Value Tests
    344   /// @{
    345 
    346   /// \brief Determine sign of this APInt.
    347   ///
    348   /// This tests the high bit of this APInt to determine if it is set.
    349   ///
    350   /// \returns true if this APInt is negative, false otherwise
    351   bool isNegative() const { return (*this)[BitWidth - 1]; }
    352 
    353   /// \brief Determine if this APInt Value is non-negative (>= 0)
    354   ///
    355   /// This tests the high bit of the APInt to determine if it is unset.
    356   bool isNonNegative() const { return !isNegative(); }
    357 
    358   /// \brief Determine if sign bit of this APInt is set.
    359   ///
    360   /// This tests the high bit of this APInt to determine if it is set.
    361   ///
    362   /// \returns true if this APInt has its sign bit set, false otherwise.
    363   bool isSignBitSet() const { return (*this)[BitWidth-1]; }
    364 
    365   /// \brief Determine if sign bit of this APInt is clear.
    366   ///
    367   /// This tests the high bit of this APInt to determine if it is clear.
    368   ///
    369   /// \returns true if this APInt has its sign bit clear, false otherwise.
    370   bool isSignBitClear() const { return !isSignBitSet(); }
    371 
    372   /// \brief Determine if this APInt Value is positive.
    373   ///
    374   /// This tests if the value of this APInt is positive (> 0). Note
    375   /// that 0 is not a positive value.
    376   ///
    377   /// \returns true if this APInt is positive.
    378   bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
    379 
    380   /// \brief Determine if all bits are set
    381   ///
    382   /// This checks to see if the value has all bits of the APInt are set or not.
    383   bool isAllOnesValue() const {
    384     if (isSingleWord())
    385       return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth);
    386     return countPopulationSlowCase() == BitWidth;
    387   }
    388 
    389   /// \brief Determine if all bits are clear
    390   ///
    391   /// This checks to see if the value has all bits of the APInt are clear or
    392   /// not.
    393   bool isNullValue() const { return !*this; }
    394 
    395   /// \brief Determine if this is a value of 1.
    396   ///
    397   /// This checks to see if the value of this APInt is one.
    398   bool isOneValue() const { return getActiveBits() == 1; }
    399 
    400   /// \brief Determine if this is the largest unsigned value.
    401   ///
    402   /// This checks to see if the value of this APInt is the maximum unsigned
    403   /// value for the APInt's bit width.
    404   bool isMaxValue() const { return isAllOnesValue(); }
    405 
    406   /// \brief Determine if this is the largest signed value.
    407   ///
    408   /// This checks to see if the value of this APInt is the maximum signed
    409   /// value for the APInt's bit width.
    410   bool isMaxSignedValue() const {
    411     return !isNegative() && countPopulation() == BitWidth - 1;
    412   }
    413 
    414   /// \brief Determine if this is the smallest unsigned value.
    415   ///
    416   /// This checks to see if the value of this APInt is the minimum unsigned
    417   /// value for the APInt's bit width.
    418   bool isMinValue() const { return isNullValue(); }
    419 
    420   /// \brief Determine if this is the smallest signed value.
    421   ///
    422   /// This checks to see if the value of this APInt is the minimum signed
    423   /// value for the APInt's bit width.
    424   bool isMinSignedValue() const {
    425     return isNegative() && isPowerOf2();
    426   }
    427 
    428   /// \brief Check if this APInt has an N-bits unsigned integer value.
    429   bool isIntN(unsigned N) const {
    430     assert(N && "N == 0 ???");
    431     return getActiveBits() <= N;
    432   }
    433 
    434   /// \brief Check if this APInt has an N-bits signed integer value.
    435   bool isSignedIntN(unsigned N) const {
    436     assert(N && "N == 0 ???");
    437     return getMinSignedBits() <= N;
    438   }
    439 
    440   /// \brief Check if this APInt's value is a power of two greater than zero.
    441   ///
    442   /// \returns true if the argument APInt value is a power of two > 0.
    443   bool isPowerOf2() const {
    444     if (isSingleWord())
    445       return isPowerOf2_64(U.VAL);
    446     return countPopulationSlowCase() == 1;
    447   }
    448 
    449   /// \brief Check if the APInt's value is returned by getSignMask.
    450   ///
    451   /// \returns true if this is the value returned by getSignMask.
    452   bool isSignMask() const { return isMinSignedValue(); }
    453 
    454   /// \brief Convert APInt to a boolean value.
    455   ///
    456   /// This converts the APInt to a boolean value as a test against zero.
    457   bool getBoolValue() const { return !!*this; }
    458 
    459   /// If this value is smaller than the specified limit, return it, otherwise
    460   /// return the limit value.  This causes the value to saturate to the limit.
    461   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
    462     return ugt(Limit) ? Limit : getZExtValue();
    463   }
    464 
    465   /// \brief Check if the APInt consists of a repeated bit pattern.
    466   ///
    467   /// e.g. 0x01010101 satisfies isSplat(8).
    468   /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
    469   /// width without remainder.
    470   bool isSplat(unsigned SplatSizeInBits) const;
    471 
    472   /// \returns true if this APInt value is a sequence of \param numBits ones
    473   /// starting at the least significant bit with the remainder zero.
    474   bool isMask(unsigned numBits) const {
    475     assert(numBits != 0 && "numBits must be non-zero");
    476     assert(numBits <= BitWidth && "numBits out of range");
    477     if (isSingleWord())
    478       return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits));
    479     unsigned Ones = countTrailingOnesSlowCase();
    480     return (numBits == Ones) &&
    481            ((Ones + countLeadingZerosSlowCase()) == BitWidth);
    482   }
    483 
    484   /// \returns true if this APInt is a non-empty sequence of ones starting at
    485   /// the least significant bit with the remainder zero.
    486   /// Ex. isMask(0x0000FFFFU) == true.
    487   bool isMask() const {
    488     if (isSingleWord())
    489       return isMask_64(U.VAL);
    490     unsigned Ones = countTrailingOnesSlowCase();
    491     return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
    492   }
    493 
    494   /// \brief Return true if this APInt value contains a sequence of ones with
    495   /// the remainder zero.
    496   bool isShiftedMask() const {
    497     if (isSingleWord())
    498       return isShiftedMask_64(U.VAL);
    499     unsigned Ones = countPopulationSlowCase();
    500     unsigned LeadZ = countLeadingZerosSlowCase();
    501     return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
    502   }
    503 
    504   /// @}
    505   /// \name Value Generators
    506   /// @{
    507 
    508   /// \brief Gets maximum unsigned value of APInt for specific bit width.
    509   static APInt getMaxValue(unsigned numBits) {
    510     return getAllOnesValue(numBits);
    511   }
    512 
    513   /// \brief Gets maximum signed value of APInt for a specific bit width.
    514   static APInt getSignedMaxValue(unsigned numBits) {
    515     APInt API = getAllOnesValue(numBits);
    516     API.clearBit(numBits - 1);
    517     return API;
    518   }
    519 
    520   /// \brief Gets minimum unsigned value of APInt for a specific bit width.
    521   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
    522 
    523   /// \brief Gets minimum signed value of APInt for a specific bit width.
    524   static APInt getSignedMinValue(unsigned numBits) {
    525     APInt API(numBits, 0);
    526     API.setBit(numBits - 1);
    527     return API;
    528   }
    529 
    530   /// \brief Get the SignMask for a specific bit width.
    531   ///
    532   /// This is just a wrapper function of getSignedMinValue(), and it helps code
    533   /// readability when we want to get a SignMask.
    534   static APInt getSignMask(unsigned BitWidth) {
    535     return getSignedMinValue(BitWidth);
    536   }
    537 
    538   /// \brief Get the all-ones value.
    539   ///
    540   /// \returns the all-ones value for an APInt of the specified bit-width.
    541   static APInt getAllOnesValue(unsigned numBits) {
    542     return APInt(numBits, WORD_MAX, true);
    543   }
    544 
    545   /// \brief Get the '0' value.
    546   ///
    547   /// \returns the '0' value for an APInt of the specified bit-width.
    548   static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
    549 
    550   /// \brief Compute an APInt containing numBits highbits from this APInt.
    551   ///
    552   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    553   /// the low bits and right shift to the least significant bit.
    554   ///
    555   /// \returns the high "numBits" bits of this APInt.
    556   APInt getHiBits(unsigned numBits) const;
    557 
    558   /// \brief Compute an APInt containing numBits lowbits from this APInt.
    559   ///
    560   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    561   /// the high bits.
    562   ///
    563   /// \returns the low "numBits" bits of this APInt.
    564   APInt getLoBits(unsigned numBits) const;
    565 
    566   /// \brief Return an APInt with exactly one bit set in the result.
    567   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
    568     APInt Res(numBits, 0);
    569     Res.setBit(BitNo);
    570     return Res;
    571   }
    572 
    573   /// \brief Get a value with a block of bits set.
    574   ///
    575   /// Constructs an APInt value that has a contiguous range of bits set. The
    576   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
    577   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
    578   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
    579   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
    580   ///
    581   /// \param numBits the intended bit width of the result
    582   /// \param loBit the index of the lowest bit set.
    583   /// \param hiBit the index of the highest bit set.
    584   ///
    585   /// \returns An APInt value with the requested bits set.
    586   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
    587     APInt Res(numBits, 0);
    588     Res.setBits(loBit, hiBit);
    589     return Res;
    590   }
    591 
    592   /// \brief Get a value with upper bits starting at loBit set.
    593   ///
    594   /// Constructs an APInt value that has a contiguous range of bits set. The
    595   /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
    596   /// bits will be zero. For example, with parameters(32, 12) you would get
    597   /// 0xFFFFF000.
    598   ///
    599   /// \param numBits the intended bit width of the result
    600   /// \param loBit the index of the lowest bit to set.
    601   ///
    602   /// \returns An APInt value with the requested bits set.
    603   static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
    604     APInt Res(numBits, 0);
    605     Res.setBitsFrom(loBit);
    606     return Res;
    607   }
    608 
    609   /// \brief Get a value with high bits set
    610   ///
    611   /// Constructs an APInt value that has the top hiBitsSet bits set.
    612   ///
    613   /// \param numBits the bitwidth of the result
    614   /// \param hiBitsSet the number of high-order bits set in the result.
    615   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
    616     APInt Res(numBits, 0);
    617     Res.setHighBits(hiBitsSet);
    618     return Res;
    619   }
    620 
    621   /// \brief Get a value with low bits set
    622   ///
    623   /// Constructs an APInt value that has the bottom loBitsSet bits set.
    624   ///
    625   /// \param numBits the bitwidth of the result
    626   /// \param loBitsSet the number of low-order bits set in the result.
    627   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
    628     APInt Res(numBits, 0);
    629     Res.setLowBits(loBitsSet);
    630     return Res;
    631   }
    632 
    633   /// \brief Return a value containing V broadcasted over NewLen bits.
    634   static APInt getSplat(unsigned NewLen, const APInt &V);
    635 
    636   /// \brief Determine if two APInts have the same value, after zero-extending
    637   /// one of them (if needed!) to ensure that the bit-widths match.
    638   static bool isSameValue(const APInt &I1, const APInt &I2) {
    639     if (I1.getBitWidth() == I2.getBitWidth())
    640       return I1 == I2;
    641 
    642     if (I1.getBitWidth() > I2.getBitWidth())
    643       return I1 == I2.zext(I1.getBitWidth());
    644 
    645     return I1.zext(I2.getBitWidth()) == I2;
    646   }
    647 
    648   /// \brief Overload to compute a hash_code for an APInt value.
    649   friend hash_code hash_value(const APInt &Arg);
    650 
    651   /// This function returns a pointer to the internal storage of the APInt.
    652   /// This is useful for writing out the APInt in binary form without any
    653   /// conversions.
    654   const uint64_t *getRawData() const {
    655     if (isSingleWord())
    656       return &U.VAL;
    657     return &U.pVal[0];
    658   }
    659 
    660   /// @}
    661   /// \name Unary Operators
    662   /// @{
    663 
    664   /// \brief Postfix increment operator.
    665   ///
    666   /// Increments *this by 1.
    667   ///
    668   /// \returns a new APInt value representing the original value of *this.
    669   const APInt operator++(int) {
    670     APInt API(*this);
    671     ++(*this);
    672     return API;
    673   }
    674 
    675   /// \brief Prefix increment operator.
    676   ///
    677   /// \returns *this incremented by one
    678   APInt &operator++();
    679 
    680   /// \brief Postfix decrement operator.
    681   ///
    682   /// Decrements *this by 1.
    683   ///
    684   /// \returns a new APInt value representing the original value of *this.
    685   const APInt operator--(int) {
    686     APInt API(*this);
    687     --(*this);
    688     return API;
    689   }
    690 
    691   /// \brief Prefix decrement operator.
    692   ///
    693   /// \returns *this decremented by one.
    694   APInt &operator--();
    695 
    696   /// \brief Logical negation operator.
    697   ///
    698   /// Performs logical negation operation on this APInt.
    699   ///
    700   /// \returns true if *this is zero, false otherwise.
    701   bool operator!() const {
    702     if (isSingleWord())
    703       return U.VAL == 0;
    704     return countLeadingZerosSlowCase() == BitWidth;
    705   }
    706 
    707   /// @}
    708   /// \name Assignment Operators
    709   /// @{
    710 
    711   /// \brief Copy assignment operator.
    712   ///
    713   /// \returns *this after assignment of RHS.
    714   APInt &operator=(const APInt &RHS) {
    715     // If the bitwidths are the same, we can avoid mucking with memory
    716     if (isSingleWord() && RHS.isSingleWord()) {
    717       U.VAL = RHS.U.VAL;
    718       BitWidth = RHS.BitWidth;
    719       return clearUnusedBits();
    720     }
    721 
    722     AssignSlowCase(RHS);
    723     return *this;
    724   }
    725 
    726   /// @brief Move assignment operator.
    727   APInt &operator=(APInt &&that) {
    728     assert(this != &that && "Self-move not supported");
    729     if (!isSingleWord())
    730       delete[] U.pVal;
    731 
    732     // Use memcpy so that type based alias analysis sees both VAL and pVal
    733     // as modified.
    734     memcpy(&U, &that.U, sizeof(U));
    735 
    736     BitWidth = that.BitWidth;
    737     that.BitWidth = 0;
    738 
    739     return *this;
    740   }
    741 
    742   /// \brief Assignment operator.
    743   ///
    744   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
    745   /// the bit width, the excess bits are truncated. If the bit width is larger
    746   /// than 64, the value is zero filled in the unspecified high order bits.
    747   ///
    748   /// \returns *this after assignment of RHS value.
    749   APInt &operator=(uint64_t RHS) {
    750     if (isSingleWord()) {
    751       U.VAL = RHS;
    752       clearUnusedBits();
    753     } else {
    754       U.pVal[0] = RHS;
    755       memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
    756     }
    757     return *this;
    758   }
    759 
    760   /// \brief Bitwise AND assignment operator.
    761   ///
    762   /// Performs a bitwise AND operation on this APInt and RHS. The result is
    763   /// assigned to *this.
    764   ///
    765   /// \returns *this after ANDing with RHS.
    766   APInt &operator&=(const APInt &RHS) {
    767     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    768     if (isSingleWord())
    769       U.VAL &= RHS.U.VAL;
    770     else
    771       AndAssignSlowCase(RHS);
    772     return *this;
    773   }
    774 
    775   /// \brief Bitwise AND assignment operator.
    776   ///
    777   /// Performs a bitwise AND operation on this APInt and RHS. RHS is
    778   /// logically zero-extended or truncated to match the bit-width of
    779   /// the LHS.
    780   APInt &operator&=(uint64_t RHS) {
    781     if (isSingleWord()) {
    782       U.VAL &= RHS;
    783       return *this;
    784     }
    785     U.pVal[0] &= RHS;
    786     memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
    787     return *this;
    788   }
    789 
    790   /// \brief Bitwise OR assignment operator.
    791   ///
    792   /// Performs a bitwise OR operation on this APInt and RHS. The result is
    793   /// assigned *this;
    794   ///
    795   /// \returns *this after ORing with RHS.
    796   APInt &operator|=(const APInt &RHS) {
    797     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    798     if (isSingleWord())
    799       U.VAL |= RHS.U.VAL;
    800     else
    801       OrAssignSlowCase(RHS);
    802     return *this;
    803   }
    804 
    805   /// \brief Bitwise OR assignment operator.
    806   ///
    807   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
    808   /// logically zero-extended or truncated to match the bit-width of
    809   /// the LHS.
    810   APInt &operator|=(uint64_t RHS) {
    811     if (isSingleWord()) {
    812       U.VAL |= RHS;
    813       clearUnusedBits();
    814     } else {
    815       U.pVal[0] |= RHS;
    816     }
    817     return *this;
    818   }
    819 
    820   /// \brief Bitwise XOR assignment operator.
    821   ///
    822   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
    823   /// assigned to *this.
    824   ///
    825   /// \returns *this after XORing with RHS.
    826   APInt &operator^=(const APInt &RHS) {
    827     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    828     if (isSingleWord())
    829       U.VAL ^= RHS.U.VAL;
    830     else
    831       XorAssignSlowCase(RHS);
    832     return *this;
    833   }
    834 
    835   /// \brief Bitwise XOR assignment operator.
    836   ///
    837   /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
    838   /// logically zero-extended or truncated to match the bit-width of
    839   /// the LHS.
    840   APInt &operator^=(uint64_t RHS) {
    841     if (isSingleWord()) {
    842       U.VAL ^= RHS;
    843       clearUnusedBits();
    844     } else {
    845       U.pVal[0] ^= RHS;
    846     }
    847     return *this;
    848   }
    849 
    850   /// \brief Multiplication assignment operator.
    851   ///
    852   /// Multiplies this APInt by RHS and assigns the result to *this.
    853   ///
    854   /// \returns *this
    855   APInt &operator*=(const APInt &RHS);
    856   APInt &operator*=(uint64_t RHS);
    857 
    858   /// \brief Addition assignment operator.
    859   ///
    860   /// Adds RHS to *this and assigns the result to *this.
    861   ///
    862   /// \returns *this
    863   APInt &operator+=(const APInt &RHS);
    864   APInt &operator+=(uint64_t RHS);
    865 
    866   /// \brief Subtraction assignment operator.
    867   ///
    868   /// Subtracts RHS from *this and assigns the result to *this.
    869   ///
    870   /// \returns *this
    871   APInt &operator-=(const APInt &RHS);
    872   APInt &operator-=(uint64_t RHS);
    873 
    874   /// \brief Left-shift assignment function.
    875   ///
    876   /// Shifts *this left by shiftAmt and assigns the result to *this.
    877   ///
    878   /// \returns *this after shifting left by ShiftAmt
    879   APInt &operator<<=(unsigned ShiftAmt) {
    880     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
    881     if (isSingleWord()) {
    882       if (ShiftAmt == BitWidth)
    883         U.VAL = 0;
    884       else
    885         U.VAL <<= ShiftAmt;
    886       return clearUnusedBits();
    887     }
    888     shlSlowCase(ShiftAmt);
    889     return *this;
    890   }
    891 
    892   /// \brief Left-shift assignment function.
    893   ///
    894   /// Shifts *this left by shiftAmt and assigns the result to *this.
    895   ///
    896   /// \returns *this after shifting left by ShiftAmt
    897   APInt &operator<<=(const APInt &ShiftAmt);
    898 
    899   /// @}
    900   /// \name Binary Operators
    901   /// @{
    902 
    903   /// \brief Multiplication operator.
    904   ///
    905   /// Multiplies this APInt by RHS and returns the result.
    906   APInt operator*(const APInt &RHS) const;
    907 
    908   /// \brief Left logical shift operator.
    909   ///
    910   /// Shifts this APInt left by \p Bits and returns the result.
    911   APInt operator<<(unsigned Bits) const { return shl(Bits); }
    912 
    913   /// \brief Left logical shift operator.
    914   ///
    915   /// Shifts this APInt left by \p Bits and returns the result.
    916   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
    917 
    918   /// \brief Arithmetic right-shift function.
    919   ///
    920   /// Arithmetic right-shift this APInt by shiftAmt.
    921   APInt ashr(unsigned ShiftAmt) const {
    922     APInt R(*this);
    923     R.ashrInPlace(ShiftAmt);
    924     return R;
    925   }
    926 
    927   /// Arithmetic right-shift this APInt by ShiftAmt in place.
    928   void ashrInPlace(unsigned ShiftAmt) {
    929     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
    930     if (isSingleWord()) {
    931       int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
    932       if (ShiftAmt == BitWidth)
    933         U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
    934       else
    935         U.VAL = SExtVAL >> ShiftAmt;
    936       clearUnusedBits();
    937       return;
    938     }
    939     ashrSlowCase(ShiftAmt);
    940   }
    941 
    942   /// \brief Logical right-shift function.
    943   ///
    944   /// Logical right-shift this APInt by shiftAmt.
    945   APInt lshr(unsigned shiftAmt) const {
    946     APInt R(*this);
    947     R.lshrInPlace(shiftAmt);
    948     return R;
    949   }
    950 
    951   /// Logical right-shift this APInt by ShiftAmt in place.
    952   void lshrInPlace(unsigned ShiftAmt) {
    953     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
    954     if (isSingleWord()) {
    955       if (ShiftAmt == BitWidth)
    956         U.VAL = 0;
    957       else
    958         U.VAL >>= ShiftAmt;
    959       return;
    960     }
    961     lshrSlowCase(ShiftAmt);
    962   }
    963 
    964   /// \brief Left-shift function.
    965   ///
    966   /// Left-shift this APInt by shiftAmt.
    967   APInt shl(unsigned shiftAmt) const {
    968     APInt R(*this);
    969     R <<= shiftAmt;
    970     return R;
    971   }
    972 
    973   /// \brief Rotate left by rotateAmt.
    974   APInt rotl(unsigned rotateAmt) const;
    975 
    976   /// \brief Rotate right by rotateAmt.
    977   APInt rotr(unsigned rotateAmt) const;
    978 
    979   /// \brief Arithmetic right-shift function.
    980   ///
    981   /// Arithmetic right-shift this APInt by shiftAmt.
    982   APInt ashr(const APInt &ShiftAmt) const {
    983     APInt R(*this);
    984     R.ashrInPlace(ShiftAmt);
    985     return R;
    986   }
    987 
    988   /// Arithmetic right-shift this APInt by shiftAmt in place.
    989   void ashrInPlace(const APInt &shiftAmt);
    990 
    991   /// \brief Logical right-shift function.
    992   ///
    993   /// Logical right-shift this APInt by shiftAmt.
    994   APInt lshr(const APInt &ShiftAmt) const {
    995     APInt R(*this);
    996     R.lshrInPlace(ShiftAmt);
    997     return R;
    998   }
    999 
   1000   /// Logical right-shift this APInt by ShiftAmt in place.
   1001   void lshrInPlace(const APInt &ShiftAmt);
   1002 
   1003   /// \brief Left-shift function.
   1004   ///
   1005   /// Left-shift this APInt by shiftAmt.
   1006   APInt shl(const APInt &ShiftAmt) const {
   1007     APInt R(*this);
   1008     R <<= ShiftAmt;
   1009     return R;
   1010   }
   1011 
   1012   /// \brief Rotate left by rotateAmt.
   1013   APInt rotl(const APInt &rotateAmt) const;
   1014 
   1015   /// \brief Rotate right by rotateAmt.
   1016   APInt rotr(const APInt &rotateAmt) const;
   1017 
   1018   /// \brief Unsigned division operation.
   1019   ///
   1020   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
   1021   /// RHS are treated as unsigned quantities for purposes of this division.
   1022   ///
   1023   /// \returns a new APInt value containing the division result
   1024   APInt udiv(const APInt &RHS) const;
   1025   APInt udiv(uint64_t RHS) const;
   1026 
   1027   /// \brief Signed division function for APInt.
   1028   ///
   1029   /// Signed divide this APInt by APInt RHS.
   1030   APInt sdiv(const APInt &RHS) const;
   1031   APInt sdiv(int64_t RHS) const;
   1032 
   1033   /// \brief Unsigned remainder operation.
   1034   ///
   1035   /// Perform an unsigned remainder operation on this APInt with RHS being the
   1036   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
   1037   /// of this operation. Note that this is a true remainder operation and not a
   1038   /// modulo operation because the sign follows the sign of the dividend which
   1039   /// is *this.
   1040   ///
   1041   /// \returns a new APInt value containing the remainder result
   1042   APInt urem(const APInt &RHS) const;
   1043   uint64_t urem(uint64_t RHS) const;
   1044 
   1045   /// \brief Function for signed remainder operation.
   1046   ///
   1047   /// Signed remainder operation on APInt.
   1048   APInt srem(const APInt &RHS) const;
   1049   int64_t srem(int64_t RHS) const;
   1050 
   1051   /// \brief Dual division/remainder interface.
   1052   ///
   1053   /// Sometimes it is convenient to divide two APInt values and obtain both the
   1054   /// quotient and remainder. This function does both operations in the same
   1055   /// computation making it a little more efficient. The pair of input arguments
   1056   /// may overlap with the pair of output arguments. It is safe to call
   1057   /// udivrem(X, Y, X, Y), for example.
   1058   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
   1059                       APInt &Remainder);
   1060   static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
   1061                       uint64_t &Remainder);
   1062 
   1063   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
   1064                       APInt &Remainder);
   1065   static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
   1066                       int64_t &Remainder);
   1067 
   1068   // Operations that return overflow indicators.
   1069   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
   1070   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
   1071   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
   1072   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
   1073   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
   1074   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
   1075   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
   1076   APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
   1077   APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
   1078 
   1079   /// \brief Array-indexing support.
   1080   ///
   1081   /// \returns the bit value at bitPosition
   1082   bool operator[](unsigned bitPosition) const {
   1083     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
   1084     return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
   1085   }
   1086 
   1087   /// @}
   1088   /// \name Comparison Operators
   1089   /// @{
   1090 
   1091   /// \brief Equality operator.
   1092   ///
   1093   /// Compares this APInt with RHS for the validity of the equality
   1094   /// relationship.
   1095   bool operator==(const APInt &RHS) const {
   1096     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
   1097     if (isSingleWord())
   1098       return U.VAL == RHS.U.VAL;
   1099     return EqualSlowCase(RHS);
   1100   }
   1101 
   1102   /// \brief Equality operator.
   1103   ///
   1104   /// Compares this APInt with a uint64_t for the validity of the equality
   1105   /// relationship.
   1106   ///
   1107   /// \returns true if *this == Val
   1108   bool operator==(uint64_t Val) const {
   1109     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
   1110   }
   1111 
   1112   /// \brief Equality comparison.
   1113   ///
   1114   /// Compares this APInt with RHS for the validity of the equality
   1115   /// relationship.
   1116   ///
   1117   /// \returns true if *this == Val
   1118   bool eq(const APInt &RHS) const { return (*this) == RHS; }
   1119 
   1120   /// \brief Inequality operator.
   1121   ///
   1122   /// Compares this APInt with RHS for the validity of the inequality
   1123   /// relationship.
   1124   ///
   1125   /// \returns true if *this != Val
   1126   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
   1127 
   1128   /// \brief Inequality operator.
   1129   ///
   1130   /// Compares this APInt with a uint64_t for the validity of the inequality
   1131   /// relationship.
   1132   ///
   1133   /// \returns true if *this != Val
   1134   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
   1135 
   1136   /// \brief Inequality comparison
   1137   ///
   1138   /// Compares this APInt with RHS for the validity of the inequality
   1139   /// relationship.
   1140   ///
   1141   /// \returns true if *this != Val
   1142   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
   1143 
   1144   /// \brief Unsigned less than comparison
   1145   ///
   1146   /// Regards both *this and RHS as unsigned quantities and compares them for
   1147   /// the validity of the less-than relationship.
   1148   ///
   1149   /// \returns true if *this < RHS when both are considered unsigned.
   1150   bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
   1151 
   1152   /// \brief Unsigned less than comparison
   1153   ///
   1154   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1155   /// the validity of the less-than relationship.
   1156   ///
   1157   /// \returns true if *this < RHS when considered unsigned.
   1158   bool ult(uint64_t RHS) const {
   1159     // Only need to check active bits if not a single word.
   1160     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
   1161   }
   1162 
   1163   /// \brief Signed less than comparison
   1164   ///
   1165   /// Regards both *this and RHS as signed quantities and compares them for
   1166   /// validity of the less-than relationship.
   1167   ///
   1168   /// \returns true if *this < RHS when both are considered signed.
   1169   bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
   1170 
   1171   /// \brief Signed less than comparison
   1172   ///
   1173   /// Regards both *this as a signed quantity and compares it with RHS for
   1174   /// the validity of the less-than relationship.
   1175   ///
   1176   /// \returns true if *this < RHS when considered signed.
   1177   bool slt(int64_t RHS) const {
   1178     return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
   1179                                                         : getSExtValue() < RHS;
   1180   }
   1181 
   1182   /// \brief Unsigned less or equal comparison
   1183   ///
   1184   /// Regards both *this and RHS as unsigned quantities and compares them for
   1185   /// validity of the less-or-equal relationship.
   1186   ///
   1187   /// \returns true if *this <= RHS when both are considered unsigned.
   1188   bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
   1189 
   1190   /// \brief Unsigned less or equal comparison
   1191   ///
   1192   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1193   /// the validity of the less-or-equal relationship.
   1194   ///
   1195   /// \returns true if *this <= RHS when considered unsigned.
   1196   bool ule(uint64_t RHS) const { return !ugt(RHS); }
   1197 
   1198   /// \brief Signed less or equal comparison
   1199   ///
   1200   /// Regards both *this and RHS as signed quantities and compares them for
   1201   /// validity of the less-or-equal relationship.
   1202   ///
   1203   /// \returns true if *this <= RHS when both are considered signed.
   1204   bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
   1205 
   1206   /// \brief Signed less or equal comparison
   1207   ///
   1208   /// Regards both *this as a signed quantity and compares it with RHS for the
   1209   /// validity of the less-or-equal relationship.
   1210   ///
   1211   /// \returns true if *this <= RHS when considered signed.
   1212   bool sle(uint64_t RHS) const { return !sgt(RHS); }
   1213 
   1214   /// \brief Unsigned greather than comparison
   1215   ///
   1216   /// Regards both *this and RHS as unsigned quantities and compares them for
   1217   /// the validity of the greater-than relationship.
   1218   ///
   1219   /// \returns true if *this > RHS when both are considered unsigned.
   1220   bool ugt(const APInt &RHS) const { return !ule(RHS); }
   1221 
   1222   /// \brief Unsigned greater than comparison
   1223   ///
   1224   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1225   /// the validity of the greater-than relationship.
   1226   ///
   1227   /// \returns true if *this > RHS when considered unsigned.
   1228   bool ugt(uint64_t RHS) const {
   1229     // Only need to check active bits if not a single word.
   1230     return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
   1231   }
   1232 
   1233   /// \brief Signed greather than comparison
   1234   ///
   1235   /// Regards both *this and RHS as signed quantities and compares them for the
   1236   /// validity of the greater-than relationship.
   1237   ///
   1238   /// \returns true if *this > RHS when both are considered signed.
   1239   bool sgt(const APInt &RHS) const { return !sle(RHS); }
   1240 
   1241   /// \brief Signed greater than comparison
   1242   ///
   1243   /// Regards both *this as a signed quantity and compares it with RHS for
   1244   /// the validity of the greater-than relationship.
   1245   ///
   1246   /// \returns true if *this > RHS when considered signed.
   1247   bool sgt(int64_t RHS) const {
   1248     return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
   1249                                                         : getSExtValue() > RHS;
   1250   }
   1251 
   1252   /// \brief Unsigned greater or equal comparison
   1253   ///
   1254   /// Regards both *this and RHS as unsigned quantities and compares them for
   1255   /// validity of the greater-or-equal relationship.
   1256   ///
   1257   /// \returns true if *this >= RHS when both are considered unsigned.
   1258   bool uge(const APInt &RHS) const { return !ult(RHS); }
   1259 
   1260   /// \brief Unsigned greater or equal comparison
   1261   ///
   1262   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1263   /// the validity of the greater-or-equal relationship.
   1264   ///
   1265   /// \returns true if *this >= RHS when considered unsigned.
   1266   bool uge(uint64_t RHS) const { return !ult(RHS); }
   1267 
   1268   /// \brief Signed greather or equal comparison
   1269   ///
   1270   /// Regards both *this and RHS as signed quantities and compares them for
   1271   /// validity of the greater-or-equal relationship.
   1272   ///
   1273   /// \returns true if *this >= RHS when both are considered signed.
   1274   bool sge(const APInt &RHS) const { return !slt(RHS); }
   1275 
   1276   /// \brief Signed greater or equal comparison
   1277   ///
   1278   /// Regards both *this as a signed quantity and compares it with RHS for
   1279   /// the validity of the greater-or-equal relationship.
   1280   ///
   1281   /// \returns true if *this >= RHS when considered signed.
   1282   bool sge(int64_t RHS) const { return !slt(RHS); }
   1283 
   1284   /// This operation tests if there are any pairs of corresponding bits
   1285   /// between this APInt and RHS that are both set.
   1286   bool intersects(const APInt &RHS) const {
   1287     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
   1288     if (isSingleWord())
   1289       return (U.VAL & RHS.U.VAL) != 0;
   1290     return intersectsSlowCase(RHS);
   1291   }
   1292 
   1293   /// This operation checks that all bits set in this APInt are also set in RHS.
   1294   bool isSubsetOf(const APInt &RHS) const {
   1295     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
   1296     if (isSingleWord())
   1297       return (U.VAL & ~RHS.U.VAL) == 0;
   1298     return isSubsetOfSlowCase(RHS);
   1299   }
   1300 
   1301   /// @}
   1302   /// \name Resizing Operators
   1303   /// @{
   1304 
   1305   /// \brief Truncate to new width.
   1306   ///
   1307   /// Truncate the APInt to a specified width. It is an error to specify a width
   1308   /// that is greater than or equal to the current width.
   1309   APInt trunc(unsigned width) const;
   1310 
   1311   /// \brief Sign extend to a new width.
   1312   ///
   1313   /// This operation sign extends the APInt to a new width. If the high order
   1314   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
   1315   /// It is an error to specify a width that is less than or equal to the
   1316   /// current width.
   1317   APInt sext(unsigned width) const;
   1318 
   1319   /// \brief Zero extend to a new width.
   1320   ///
   1321   /// This operation zero extends the APInt to a new width. The high order bits
   1322   /// are filled with 0 bits.  It is an error to specify a width that is less
   1323   /// than or equal to the current width.
   1324   APInt zext(unsigned width) const;
   1325 
   1326   /// \brief Sign extend or truncate to width
   1327   ///
   1328   /// Make this APInt have the bit width given by \p width. The value is sign
   1329   /// extended, truncated, or left alone to make it that width.
   1330   APInt sextOrTrunc(unsigned width) const;
   1331 
   1332   /// \brief Zero extend or truncate to width
   1333   ///
   1334   /// Make this APInt have the bit width given by \p width. The value is zero
   1335   /// extended, truncated, or left alone to make it that width.
   1336   APInt zextOrTrunc(unsigned width) const;
   1337 
   1338   /// \brief Sign extend or truncate to width
   1339   ///
   1340   /// Make this APInt have the bit width given by \p width. The value is sign
   1341   /// extended, or left alone to make it that width.
   1342   APInt sextOrSelf(unsigned width) const;
   1343 
   1344   /// \brief Zero extend or truncate to width
   1345   ///
   1346   /// Make this APInt have the bit width given by \p width. The value is zero
   1347   /// extended, or left alone to make it that width.
   1348   APInt zextOrSelf(unsigned width) const;
   1349 
   1350   /// @}
   1351   /// \name Bit Manipulation Operators
   1352   /// @{
   1353 
   1354   /// \brief Set every bit to 1.
   1355   void setAllBits() {
   1356     if (isSingleWord())
   1357       U.VAL = WORD_MAX;
   1358     else
   1359       // Set all the bits in all the words.
   1360       memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
   1361     // Clear the unused ones
   1362     clearUnusedBits();
   1363   }
   1364 
   1365   /// \brief Set a given bit to 1.
   1366   ///
   1367   /// Set the given bit to 1 whose position is given as "bitPosition".
   1368   void setBit(unsigned BitPosition) {
   1369     assert(BitPosition <= BitWidth && "BitPosition out of range");
   1370     WordType Mask = maskBit(BitPosition);
   1371     if (isSingleWord())
   1372       U.VAL |= Mask;
   1373     else
   1374       U.pVal[whichWord(BitPosition)] |= Mask;
   1375   }
   1376 
   1377   /// Set the sign bit to 1.
   1378   void setSignBit() {
   1379     setBit(BitWidth - 1);
   1380   }
   1381 
   1382   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
   1383   void setBits(unsigned loBit, unsigned hiBit) {
   1384     assert(hiBit <= BitWidth && "hiBit out of range");
   1385     assert(loBit <= BitWidth && "loBit out of range");
   1386     assert(loBit <= hiBit && "loBit greater than hiBit");
   1387     if (loBit == hiBit)
   1388       return;
   1389     if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
   1390       uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
   1391       mask <<= loBit;
   1392       if (isSingleWord())
   1393         U.VAL |= mask;
   1394       else
   1395         U.pVal[0] |= mask;
   1396     } else {
   1397       setBitsSlowCase(loBit, hiBit);
   1398     }
   1399   }
   1400 
   1401   /// Set the top bits starting from loBit.
   1402   void setBitsFrom(unsigned loBit) {
   1403     return setBits(loBit, BitWidth);
   1404   }
   1405 
   1406   /// Set the bottom loBits bits.
   1407   void setLowBits(unsigned loBits) {
   1408     return setBits(0, loBits);
   1409   }
   1410 
   1411   /// Set the top hiBits bits.
   1412   void setHighBits(unsigned hiBits) {
   1413     return setBits(BitWidth - hiBits, BitWidth);
   1414   }
   1415 
   1416   /// \brief Set every bit to 0.
   1417   void clearAllBits() {
   1418     if (isSingleWord())
   1419       U.VAL = 0;
   1420     else
   1421       memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
   1422   }
   1423 
   1424   /// \brief Set a given bit to 0.
   1425   ///
   1426   /// Set the given bit to 0 whose position is given as "bitPosition".
   1427   void clearBit(unsigned BitPosition) {
   1428     assert(BitPosition <= BitWidth && "BitPosition out of range");
   1429     WordType Mask = ~maskBit(BitPosition);
   1430     if (isSingleWord())
   1431       U.VAL &= Mask;
   1432     else
   1433       U.pVal[whichWord(BitPosition)] &= Mask;
   1434   }
   1435 
   1436   /// Set the sign bit to 0.
   1437   void clearSignBit() {
   1438     clearBit(BitWidth - 1);
   1439   }
   1440 
   1441   /// \brief Toggle every bit to its opposite value.
   1442   void flipAllBits() {
   1443     if (isSingleWord()) {
   1444       U.VAL ^= WORD_MAX;
   1445       clearUnusedBits();
   1446     } else {
   1447       flipAllBitsSlowCase();
   1448     }
   1449   }
   1450 
   1451   /// \brief Toggles a given bit to its opposite value.
   1452   ///
   1453   /// Toggle a given bit to its opposite value whose position is given
   1454   /// as "bitPosition".
   1455   void flipBit(unsigned bitPosition);
   1456 
   1457   /// Negate this APInt in place.
   1458   void negate() {
   1459     flipAllBits();
   1460     ++(*this);
   1461   }
   1462 
   1463   /// Insert the bits from a smaller APInt starting at bitPosition.
   1464   void insertBits(const APInt &SubBits, unsigned bitPosition);
   1465 
   1466   /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
   1467   APInt extractBits(unsigned numBits, unsigned bitPosition) const;
   1468 
   1469   /// @}
   1470   /// \name Value Characterization Functions
   1471   /// @{
   1472 
   1473   /// \brief Return the number of bits in the APInt.
   1474   unsigned getBitWidth() const { return BitWidth; }
   1475 
   1476   /// \brief Get the number of words.
   1477   ///
   1478   /// Here one word's bitwidth equals to that of uint64_t.
   1479   ///
   1480   /// \returns the number of words to hold the integer value of this APInt.
   1481   unsigned getNumWords() const { return getNumWords(BitWidth); }
   1482 
   1483   /// \brief Get the number of words.
   1484   ///
   1485   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
   1486   ///
   1487   /// \returns the number of words to hold the integer value with a given bit
   1488   /// width.
   1489   static unsigned getNumWords(unsigned BitWidth) {
   1490     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
   1491   }
   1492 
   1493   /// \brief Compute the number of active bits in the value
   1494   ///
   1495   /// This function returns the number of active bits which is defined as the
   1496   /// bit width minus the number of leading zeros. This is used in several
   1497   /// computations to see how "wide" the value is.
   1498   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
   1499 
   1500   /// \brief Compute the number of active words in the value of this APInt.
   1501   ///
   1502   /// This is used in conjunction with getActiveData to extract the raw value of
   1503   /// the APInt.
   1504   unsigned getActiveWords() const {
   1505     unsigned numActiveBits = getActiveBits();
   1506     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
   1507   }
   1508 
   1509   /// \brief Get the minimum bit size for this signed APInt
   1510   ///
   1511   /// Computes the minimum bit width for this APInt while considering it to be a
   1512   /// signed (and probably negative) value. If the value is not negative, this
   1513   /// function returns the same value as getActiveBits()+1. Otherwise, it
   1514   /// returns the smallest bit width that will retain the negative value. For
   1515   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
   1516   /// for -1, this function will always return 1.
   1517   unsigned getMinSignedBits() const {
   1518     if (isNegative())
   1519       return BitWidth - countLeadingOnes() + 1;
   1520     return getActiveBits() + 1;
   1521   }
   1522 
   1523   /// \brief Get zero extended value
   1524   ///
   1525   /// This method attempts to return the value of this APInt as a zero extended
   1526   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
   1527   /// uint64_t. Otherwise an assertion will result.
   1528   uint64_t getZExtValue() const {
   1529     if (isSingleWord())
   1530       return U.VAL;
   1531     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
   1532     return U.pVal[0];
   1533   }
   1534 
   1535   /// \brief Get sign extended value
   1536   ///
   1537   /// This method attempts to return the value of this APInt as a sign extended
   1538   /// int64_t. The bit width must be <= 64 or the value must fit within an
   1539   /// int64_t. Otherwise an assertion will result.
   1540   int64_t getSExtValue() const {
   1541     if (isSingleWord())
   1542       return SignExtend64(U.VAL, BitWidth);
   1543     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
   1544     return int64_t(U.pVal[0]);
   1545   }
   1546 
   1547   /// \brief Get bits required for string value.
   1548   ///
   1549   /// This method determines how many bits are required to hold the APInt
   1550   /// equivalent of the string given by \p str.
   1551   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
   1552 
   1553   /// \brief The APInt version of the countLeadingZeros functions in
   1554   ///   MathExtras.h.
   1555   ///
   1556   /// It counts the number of zeros from the most significant bit to the first
   1557   /// one bit.
   1558   ///
   1559   /// \returns BitWidth if the value is zero, otherwise returns the number of
   1560   ///   zeros from the most significant bit to the first one bits.
   1561   unsigned countLeadingZeros() const {
   1562     if (isSingleWord()) {
   1563       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
   1564       return llvm::countLeadingZeros(U.VAL) - unusedBits;
   1565     }
   1566     return countLeadingZerosSlowCase();
   1567   }
   1568 
   1569   /// \brief Count the number of leading one bits.
   1570   ///
   1571   /// This function is an APInt version of the countLeadingOnes
   1572   /// functions in MathExtras.h. It counts the number of ones from the most
   1573   /// significant bit to the first zero bit.
   1574   ///
   1575   /// \returns 0 if the high order bit is not set, otherwise returns the number
   1576   /// of 1 bits from the most significant to the least
   1577   unsigned countLeadingOnes() const LLVM_READONLY;
   1578 
   1579   /// Computes the number of leading bits of this APInt that are equal to its
   1580   /// sign bit.
   1581   unsigned getNumSignBits() const {
   1582     return isNegative() ? countLeadingOnes() : countLeadingZeros();
   1583   }
   1584 
   1585   /// \brief Count the number of trailing zero bits.
   1586   ///
   1587   /// This function is an APInt version of the countTrailingZeros
   1588   /// functions in MathExtras.h. It counts the number of zeros from the least
   1589   /// significant bit to the first set bit.
   1590   ///
   1591   /// \returns BitWidth if the value is zero, otherwise returns the number of
   1592   /// zeros from the least significant bit to the first one bit.
   1593   unsigned countTrailingZeros() const LLVM_READONLY;
   1594 
   1595   /// \brief Count the number of trailing one bits.
   1596   ///
   1597   /// This function is an APInt version of the countTrailingOnes
   1598   /// functions in MathExtras.h. It counts the number of ones from the least
   1599   /// significant bit to the first zero bit.
   1600   ///
   1601   /// \returns BitWidth if the value is all ones, otherwise returns the number
   1602   /// of ones from the least significant bit to the first zero bit.
   1603   unsigned countTrailingOnes() const {
   1604     if (isSingleWord())
   1605       return llvm::countTrailingOnes(U.VAL);
   1606     return countTrailingOnesSlowCase();
   1607   }
   1608 
   1609   /// \brief Count the number of bits set.
   1610   ///
   1611   /// This function is an APInt version of the countPopulation functions
   1612   /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
   1613   ///
   1614   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
   1615   unsigned countPopulation() const {
   1616     if (isSingleWord())
   1617       return llvm::countPopulation(U.VAL);
   1618     return countPopulationSlowCase();
   1619   }
   1620 
   1621   /// @}
   1622   /// \name Conversion Functions
   1623   /// @{
   1624   void print(raw_ostream &OS, bool isSigned) const;
   1625 
   1626   /// Converts an APInt to a string and append it to Str.  Str is commonly a
   1627   /// SmallString.
   1628   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
   1629                 bool formatAsCLiteral = false) const;
   1630 
   1631   /// Considers the APInt to be unsigned and converts it into a string in the
   1632   /// radix given. The radix can be 2, 8, 10 16, or 36.
   1633   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1634     toString(Str, Radix, false, false);
   1635   }
   1636 
   1637   /// Considers the APInt to be signed and converts it into a string in the
   1638   /// radix given. The radix can be 2, 8, 10, 16, or 36.
   1639   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1640     toString(Str, Radix, true, false);
   1641   }
   1642 
   1643   /// \brief Return the APInt as a std::string.
   1644   ///
   1645   /// Note that this is an inefficient method.  It is better to pass in a
   1646   /// SmallVector/SmallString to the methods above to avoid thrashing the heap
   1647   /// for the string.
   1648   std::string toString(unsigned Radix, bool Signed) const;
   1649 
   1650   /// \returns a byte-swapped representation of this APInt Value.
   1651   APInt byteSwap() const;
   1652 
   1653   /// \returns the value with the bit representation reversed of this APInt
   1654   /// Value.
   1655   APInt reverseBits() const;
   1656 
   1657   /// \brief Converts this APInt to a double value.
   1658   double roundToDouble(bool isSigned) const;
   1659 
   1660   /// \brief Converts this unsigned APInt to a double value.
   1661   double roundToDouble() const { return roundToDouble(false); }
   1662 
   1663   /// \brief Converts this signed APInt to a double value.
   1664   double signedRoundToDouble() const { return roundToDouble(true); }
   1665 
   1666   /// \brief Converts APInt bits to a double
   1667   ///
   1668   /// The conversion does not do a translation from integer to double, it just
   1669   /// re-interprets the bits as a double. Note that it is valid to do this on
   1670   /// any bit width. Exactly 64 bits will be translated.
   1671   double bitsToDouble() const {
   1672     return BitsToDouble(getWord(0));
   1673   }
   1674 
   1675   /// \brief Converts APInt bits to a double
   1676   ///
   1677   /// The conversion does not do a translation from integer to float, it just
   1678   /// re-interprets the bits as a float. Note that it is valid to do this on
   1679   /// any bit width. Exactly 32 bits will be translated.
   1680   float bitsToFloat() const {
   1681     return BitsToFloat(getWord(0));
   1682   }
   1683 
   1684   /// \brief Converts a double to APInt bits.
   1685   ///
   1686   /// The conversion does not do a translation from double to integer, it just
   1687   /// re-interprets the bits of the double.
   1688   static APInt doubleToBits(double V) {
   1689     return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
   1690   }
   1691 
   1692   /// \brief Converts a float to APInt bits.
   1693   ///
   1694   /// The conversion does not do a translation from float to integer, it just
   1695   /// re-interprets the bits of the float.
   1696   static APInt floatToBits(float V) {
   1697     return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
   1698   }
   1699 
   1700   /// @}
   1701   /// \name Mathematics Operations
   1702   /// @{
   1703 
   1704   /// \returns the floor log base 2 of this APInt.
   1705   unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
   1706 
   1707   /// \returns the ceil log base 2 of this APInt.
   1708   unsigned ceilLogBase2() const {
   1709     APInt temp(*this);
   1710     --temp;
   1711     return BitWidth - temp.countLeadingZeros();
   1712   }
   1713 
   1714   /// \returns the nearest log base 2 of this APInt. Ties round up.
   1715   ///
   1716   /// NOTE: When we have a BitWidth of 1, we define:
   1717   ///
   1718   ///   log2(0) = UINT32_MAX
   1719   ///   log2(1) = 0
   1720   ///
   1721   /// to get around any mathematical concerns resulting from
   1722   /// referencing 2 in a space where 2 does no exist.
   1723   unsigned nearestLogBase2() const {
   1724     // Special case when we have a bitwidth of 1. If VAL is 1, then we
   1725     // get 0. If VAL is 0, we get WORD_MAX which gets truncated to
   1726     // UINT32_MAX.
   1727     if (BitWidth == 1)
   1728       return U.VAL - 1;
   1729 
   1730     // Handle the zero case.
   1731     if (isNullValue())
   1732       return UINT32_MAX;
   1733 
   1734     // The non-zero case is handled by computing:
   1735     //
   1736     //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
   1737     //
   1738     // where x[i] is referring to the value of the ith bit of x.
   1739     unsigned lg = logBase2();
   1740     return lg + unsigned((*this)[lg - 1]);
   1741   }
   1742 
   1743   /// \returns the log base 2 of this APInt if its an exact power of two, -1
   1744   /// otherwise
   1745   int32_t exactLogBase2() const {
   1746     if (!isPowerOf2())
   1747       return -1;
   1748     return logBase2();
   1749   }
   1750 
   1751   /// \brief Compute the square root
   1752   APInt sqrt() const;
   1753 
   1754   /// \brief Get the absolute value;
   1755   ///
   1756   /// If *this is < 0 then return -(*this), otherwise *this;
   1757   APInt abs() const {
   1758     if (isNegative())
   1759       return -(*this);
   1760     return *this;
   1761   }
   1762 
   1763   /// \returns the multiplicative inverse for a given modulo.
   1764   APInt multiplicativeInverse(const APInt &modulo) const;
   1765 
   1766   /// @}
   1767   /// \name Support for division by constant
   1768   /// @{
   1769 
   1770   /// Calculate the magic number for signed division by a constant.
   1771   struct ms;
   1772   ms magic() const;
   1773 
   1774   /// Calculate the magic number for unsigned division by a constant.
   1775   struct mu;
   1776   mu magicu(unsigned LeadingZeros = 0) const;
   1777 
   1778   /// @}
   1779   /// \name Building-block Operations for APInt and APFloat
   1780   /// @{
   1781 
   1782   // These building block operations operate on a representation of arbitrary
   1783   // precision, two's-complement, bignum integer values. They should be
   1784   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
   1785   // generally a pointer to the base of an array of integer parts, representing
   1786   // an unsigned bignum, and a count of how many parts there are.
   1787 
   1788   /// Sets the least significant part of a bignum to the input value, and zeroes
   1789   /// out higher parts.
   1790   static void tcSet(WordType *, WordType, unsigned);
   1791 
   1792   /// Assign one bignum to another.
   1793   static void tcAssign(WordType *, const WordType *, unsigned);
   1794 
   1795   /// Returns true if a bignum is zero, false otherwise.
   1796   static bool tcIsZero(const WordType *, unsigned);
   1797 
   1798   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
   1799   static int tcExtractBit(const WordType *, unsigned bit);
   1800 
   1801   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
   1802   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
   1803   /// significant bit of DST.  All high bits above srcBITS in DST are
   1804   /// zero-filled.
   1805   static void tcExtract(WordType *, unsigned dstCount,
   1806                         const WordType *, unsigned srcBits,
   1807                         unsigned srcLSB);
   1808 
   1809   /// Set the given bit of a bignum.  Zero-based.
   1810   static void tcSetBit(WordType *, unsigned bit);
   1811 
   1812   /// Clear the given bit of a bignum.  Zero-based.
   1813   static void tcClearBit(WordType *, unsigned bit);
   1814 
   1815   /// Returns the bit number of the least or most significant set bit of a
   1816   /// number.  If the input number has no bits set -1U is returned.
   1817   static unsigned tcLSB(const WordType *, unsigned n);
   1818   static unsigned tcMSB(const WordType *parts, unsigned n);
   1819 
   1820   /// Negate a bignum in-place.
   1821   static void tcNegate(WordType *, unsigned);
   1822 
   1823   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
   1824   static WordType tcAdd(WordType *, const WordType *,
   1825                         WordType carry, unsigned);
   1826   /// DST += RHS.  Returns the carry flag.
   1827   static WordType tcAddPart(WordType *, WordType, unsigned);
   1828 
   1829   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
   1830   static WordType tcSubtract(WordType *, const WordType *,
   1831                              WordType carry, unsigned);
   1832   /// DST -= RHS.  Returns the carry flag.
   1833   static WordType tcSubtractPart(WordType *, WordType, unsigned);
   1834 
   1835   /// DST += SRC * MULTIPLIER + PART   if add is true
   1836   /// DST  = SRC * MULTIPLIER + PART   if add is false
   1837   ///
   1838   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
   1839   /// start at the same point, i.e. DST == SRC.
   1840   ///
   1841   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
   1842   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
   1843   /// result, and if all of the omitted higher parts were zero return zero,
   1844   /// otherwise overflow occurred and return one.
   1845   static int tcMultiplyPart(WordType *dst, const WordType *src,
   1846                             WordType multiplier, WordType carry,
   1847                             unsigned srcParts, unsigned dstParts,
   1848                             bool add);
   1849 
   1850   /// DST = LHS * RHS, where DST has the same width as the operands and is
   1851   /// filled with the least significant parts of the result.  Returns one if
   1852   /// overflow occurred, otherwise zero.  DST must be disjoint from both
   1853   /// operands.
   1854   static int tcMultiply(WordType *, const WordType *, const WordType *,
   1855                         unsigned);
   1856 
   1857   /// DST = LHS * RHS, where DST has width the sum of the widths of the
   1858   /// operands. No overflow occurs. DST must be disjoint from both operands.
   1859   static void tcFullMultiply(WordType *, const WordType *,
   1860                              const WordType *, unsigned, unsigned);
   1861 
   1862   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
   1863   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
   1864   /// REMAINDER to the remainder, return zero.  i.e.
   1865   ///
   1866   ///  OLD_LHS = RHS * LHS + REMAINDER
   1867   ///
   1868   /// SCRATCH is a bignum of the same size as the operands and result for use by
   1869   /// the routine; its contents need not be initialized and are destroyed.  LHS,
   1870   /// REMAINDER and SCRATCH must be distinct.
   1871   static int tcDivide(WordType *lhs, const WordType *rhs,
   1872                       WordType *remainder, WordType *scratch,
   1873                       unsigned parts);
   1874 
   1875   /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
   1876   /// restrictions on Count.
   1877   static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
   1878 
   1879   /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
   1880   /// restrictions on Count.
   1881   static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
   1882 
   1883   /// The obvious AND, OR and XOR and complement operations.
   1884   static void tcAnd(WordType *, const WordType *, unsigned);
   1885   static void tcOr(WordType *, const WordType *, unsigned);
   1886   static void tcXor(WordType *, const WordType *, unsigned);
   1887   static void tcComplement(WordType *, unsigned);
   1888 
   1889   /// Comparison (unsigned) of two bignums.
   1890   static int tcCompare(const WordType *, const WordType *, unsigned);
   1891 
   1892   /// Increment a bignum in-place.  Return the carry flag.
   1893   static WordType tcIncrement(WordType *dst, unsigned parts) {
   1894     return tcAddPart(dst, 1, parts);
   1895   }
   1896 
   1897   /// Decrement a bignum in-place.  Return the borrow flag.
   1898   static WordType tcDecrement(WordType *dst, unsigned parts) {
   1899     return tcSubtractPart(dst, 1, parts);
   1900   }
   1901 
   1902   /// Set the least significant BITS and clear the rest.
   1903   static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
   1904 
   1905   /// \brief debug method
   1906   void dump() const;
   1907 
   1908   /// @}
   1909 };
   1910 
   1911 /// Magic data for optimising signed division by a constant.
   1912 struct APInt::ms {
   1913   APInt m;    ///< magic number
   1914   unsigned s; ///< shift amount
   1915 };
   1916 
   1917 /// Magic data for optimising unsigned division by a constant.
   1918 struct APInt::mu {
   1919   APInt m;    ///< magic number
   1920   bool a;     ///< add indicator
   1921   unsigned s; ///< shift amount
   1922 };
   1923 
   1924 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
   1925 
   1926 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
   1927 
   1928 /// \brief Unary bitwise complement operator.
   1929 ///
   1930 /// \returns an APInt that is the bitwise complement of \p v.
   1931 inline APInt operator~(APInt v) {
   1932   v.flipAllBits();
   1933   return v;
   1934 }
   1935 
   1936 inline APInt operator&(APInt a, const APInt &b) {
   1937   a &= b;
   1938   return a;
   1939 }
   1940 
   1941 inline APInt operator&(const APInt &a, APInt &&b) {
   1942   b &= a;
   1943   return std::move(b);
   1944 }
   1945 
   1946 inline APInt operator&(APInt a, uint64_t RHS) {
   1947   a &= RHS;
   1948   return a;
   1949 }
   1950 
   1951 inline APInt operator&(uint64_t LHS, APInt b) {
   1952   b &= LHS;
   1953   return b;
   1954 }
   1955 
   1956 inline APInt operator|(APInt a, const APInt &b) {
   1957   a |= b;
   1958   return a;
   1959 }
   1960 
   1961 inline APInt operator|(const APInt &a, APInt &&b) {
   1962   b |= a;
   1963   return std::move(b);
   1964 }
   1965 
   1966 inline APInt operator|(APInt a, uint64_t RHS) {
   1967   a |= RHS;
   1968   return a;
   1969 }
   1970 
   1971 inline APInt operator|(uint64_t LHS, APInt b) {
   1972   b |= LHS;
   1973   return b;
   1974 }
   1975 
   1976 inline APInt operator^(APInt a, const APInt &b) {
   1977   a ^= b;
   1978   return a;
   1979 }
   1980 
   1981 inline APInt operator^(const APInt &a, APInt &&b) {
   1982   b ^= a;
   1983   return std::move(b);
   1984 }
   1985 
   1986 inline APInt operator^(APInt a, uint64_t RHS) {
   1987   a ^= RHS;
   1988   return a;
   1989 }
   1990 
   1991 inline APInt operator^(uint64_t LHS, APInt b) {
   1992   b ^= LHS;
   1993   return b;
   1994 }
   1995 
   1996 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
   1997   I.print(OS, true);
   1998   return OS;
   1999 }
   2000 
   2001 inline APInt operator-(APInt v) {
   2002   v.negate();
   2003   return v;
   2004 }
   2005 
   2006 inline APInt operator+(APInt a, const APInt &b) {
   2007   a += b;
   2008   return a;
   2009 }
   2010 
   2011 inline APInt operator+(const APInt &a, APInt &&b) {
   2012   b += a;
   2013   return std::move(b);
   2014 }
   2015 
   2016 inline APInt operator+(APInt a, uint64_t RHS) {
   2017   a += RHS;
   2018   return a;
   2019 }
   2020 
   2021 inline APInt operator+(uint64_t LHS, APInt b) {
   2022   b += LHS;
   2023   return b;
   2024 }
   2025 
   2026 inline APInt operator-(APInt a, const APInt &b) {
   2027   a -= b;
   2028   return a;
   2029 }
   2030 
   2031 inline APInt operator-(const APInt &a, APInt &&b) {
   2032   b.negate();
   2033   b += a;
   2034   return std::move(b);
   2035 }
   2036 
   2037 inline APInt operator-(APInt a, uint64_t RHS) {
   2038   a -= RHS;
   2039   return a;
   2040 }
   2041 
   2042 inline APInt operator-(uint64_t LHS, APInt b) {
   2043   b.negate();
   2044   b += LHS;
   2045   return b;
   2046 }
   2047 
   2048 inline APInt operator*(APInt a, uint64_t RHS) {
   2049   a *= RHS;
   2050   return a;
   2051 }
   2052 
   2053 inline APInt operator*(uint64_t LHS, APInt b) {
   2054   b *= LHS;
   2055   return b;
   2056 }
   2057 
   2058 
   2059 namespace APIntOps {
   2060 
   2061 /// \brief Determine the smaller of two APInts considered to be signed.
   2062 inline const APInt &smin(const APInt &A, const APInt &B) {
   2063   return A.slt(B) ? A : B;
   2064 }
   2065 
   2066 /// \brief Determine the larger of two APInts considered to be signed.
   2067 inline const APInt &smax(const APInt &A, const APInt &B) {
   2068   return A.sgt(B) ? A : B;
   2069 }
   2070 
   2071 /// \brief Determine the smaller of two APInts considered to be signed.
   2072 inline const APInt &umin(const APInt &A, const APInt &B) {
   2073   return A.ult(B) ? A : B;
   2074 }
   2075 
   2076 /// \brief Determine the larger of two APInts considered to be unsigned.
   2077 inline const APInt &umax(const APInt &A, const APInt &B) {
   2078   return A.ugt(B) ? A : B;
   2079 }
   2080 
   2081 /// \brief Compute GCD of two unsigned APInt values.
   2082 ///
   2083 /// This function returns the greatest common divisor of the two APInt values
   2084 /// using Stein's algorithm.
   2085 ///
   2086 /// \returns the greatest common divisor of A and B.
   2087 APInt GreatestCommonDivisor(APInt A, APInt B);
   2088 
   2089 /// \brief Converts the given APInt to a double value.
   2090 ///
   2091 /// Treats the APInt as an unsigned value for conversion purposes.
   2092 inline double RoundAPIntToDouble(const APInt &APIVal) {
   2093   return APIVal.roundToDouble();
   2094 }
   2095 
   2096 /// \brief Converts the given APInt to a double value.
   2097 ///
   2098 /// Treats the APInt as a signed value for conversion purposes.
   2099 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
   2100   return APIVal.signedRoundToDouble();
   2101 }
   2102 
   2103 /// \brief Converts the given APInt to a float vlalue.
   2104 inline float RoundAPIntToFloat(const APInt &APIVal) {
   2105   return float(RoundAPIntToDouble(APIVal));
   2106 }
   2107 
   2108 /// \brief Converts the given APInt to a float value.
   2109 ///
   2110 /// Treast the APInt as a signed value for conversion purposes.
   2111 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
   2112   return float(APIVal.signedRoundToDouble());
   2113 }
   2114 
   2115 /// \brief Converts the given double value into a APInt.
   2116 ///
   2117 /// This function convert a double value to an APInt value.
   2118 APInt RoundDoubleToAPInt(double Double, unsigned width);
   2119 
   2120 /// \brief Converts a float value into a APInt.
   2121 ///
   2122 /// Converts a float value into an APInt value.
   2123 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
   2124   return RoundDoubleToAPInt(double(Float), width);
   2125 }
   2126 
   2127 } // End of APIntOps namespace
   2128 
   2129 // See friend declaration above. This additional declaration is required in
   2130 // order to compile LLVM with IBM xlC compiler.
   2131 hash_code hash_value(const APInt &Arg);
   2132 } // End of llvm namespace
   2133 
   2134 #endif
   2135