1 //===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #ifndef LLVM_ADT_ARRAYREF_H 11 #define LLVM_ADT_ARRAYREF_H 12 13 #include "llvm/ADT/Hashing.h" 14 #include "llvm/ADT/None.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/Support/Compiler.h" 18 #include <algorithm> 19 #include <array> 20 #include <cassert> 21 #include <cstddef> 22 #include <initializer_list> 23 #include <iterator> 24 #include <memory> 25 #include <type_traits> 26 #include <vector> 27 28 namespace llvm { 29 30 /// ArrayRef - Represent a constant reference to an array (0 or more elements 31 /// consecutively in memory), i.e. a start pointer and a length. It allows 32 /// various APIs to take consecutive elements easily and conveniently. 33 /// 34 /// This class does not own the underlying data, it is expected to be used in 35 /// situations where the data resides in some other buffer, whose lifetime 36 /// extends past that of the ArrayRef. For this reason, it is not in general 37 /// safe to store an ArrayRef. 38 /// 39 /// This is intended to be trivially copyable, so it should be passed by 40 /// value. 41 template<typename T> 42 class LLVM_NODISCARD ArrayRef { 43 public: 44 using iterator = const T *; 45 using const_iterator = const T *; 46 using size_type = size_t; 47 using reverse_iterator = std::reverse_iterator<iterator>; 48 49 private: 50 /// The start of the array, in an external buffer. 51 const T *Data = nullptr; 52 53 /// The number of elements. 54 size_type Length = 0; 55 56 public: 57 /// @name Constructors 58 /// @{ 59 60 /// Construct an empty ArrayRef. 61 /*implicit*/ ArrayRef() = default; 62 63 /// Construct an empty ArrayRef from None. 64 /*implicit*/ ArrayRef(NoneType) {} 65 66 /// Construct an ArrayRef from a single element. 67 /*implicit*/ ArrayRef(const T &OneElt) 68 : Data(&OneElt), Length(1) {} 69 70 /// Construct an ArrayRef from a pointer and length. 71 /*implicit*/ ArrayRef(const T *data, size_t length) 72 : Data(data), Length(length) {} 73 74 /// Construct an ArrayRef from a range. 75 ArrayRef(const T *begin, const T *end) 76 : Data(begin), Length(end - begin) {} 77 78 /// Construct an ArrayRef from a SmallVector. This is templated in order to 79 /// avoid instantiating SmallVectorTemplateCommon<T> whenever we 80 /// copy-construct an ArrayRef. 81 template<typename U> 82 /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec) 83 : Data(Vec.data()), Length(Vec.size()) { 84 } 85 86 /// Construct an ArrayRef from a std::vector. 87 template<typename A> 88 /*implicit*/ ArrayRef(const std::vector<T, A> &Vec) 89 : Data(Vec.data()), Length(Vec.size()) {} 90 91 /// Construct an ArrayRef from a std::array 92 template <size_t N> 93 /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr) 94 : Data(Arr.data()), Length(N) {} 95 96 /// Construct an ArrayRef from a C array. 97 template <size_t N> 98 /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} 99 100 /// Construct an ArrayRef from a std::initializer_list. 101 /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec) 102 : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()), 103 Length(Vec.size()) {} 104 105 /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to 106 /// ensure that only ArrayRefs of pointers can be converted. 107 template <typename U> 108 ArrayRef( 109 const ArrayRef<U *> &A, 110 typename std::enable_if< 111 std::is_convertible<U *const *, T const *>::value>::type * = nullptr) 112 : Data(A.data()), Length(A.size()) {} 113 114 /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is 115 /// templated in order to avoid instantiating SmallVectorTemplateCommon<T> 116 /// whenever we copy-construct an ArrayRef. 117 template<typename U, typename DummyT> 118 /*implicit*/ ArrayRef( 119 const SmallVectorTemplateCommon<U *, DummyT> &Vec, 120 typename std::enable_if< 121 std::is_convertible<U *const *, T const *>::value>::type * = nullptr) 122 : Data(Vec.data()), Length(Vec.size()) { 123 } 124 125 /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE 126 /// to ensure that only vectors of pointers can be converted. 127 template<typename U, typename A> 128 ArrayRef(const std::vector<U *, A> &Vec, 129 typename std::enable_if< 130 std::is_convertible<U *const *, T const *>::value>::type* = 0) 131 : Data(Vec.data()), Length(Vec.size()) {} 132 133 /// @} 134 /// @name Simple Operations 135 /// @{ 136 137 iterator begin() const { return Data; } 138 iterator end() const { return Data + Length; } 139 140 reverse_iterator rbegin() const { return reverse_iterator(end()); } 141 reverse_iterator rend() const { return reverse_iterator(begin()); } 142 143 /// empty - Check if the array is empty. 144 bool empty() const { return Length == 0; } 145 146 const T *data() const { return Data; } 147 148 /// size - Get the array size. 149 size_t size() const { return Length; } 150 151 /// front - Get the first element. 152 const T &front() const { 153 assert(!empty()); 154 return Data[0]; 155 } 156 157 /// back - Get the last element. 158 const T &back() const { 159 assert(!empty()); 160 return Data[Length-1]; 161 } 162 163 // copy - Allocate copy in Allocator and return ArrayRef<T> to it. 164 template <typename Allocator> ArrayRef<T> copy(Allocator &A) { 165 T *Buff = A.template Allocate<T>(Length); 166 std::uninitialized_copy(begin(), end(), Buff); 167 return ArrayRef<T>(Buff, Length); 168 } 169 170 /// equals - Check for element-wise equality. 171 bool equals(ArrayRef RHS) const { 172 if (Length != RHS.Length) 173 return false; 174 return std::equal(begin(), end(), RHS.begin()); 175 } 176 177 /// slice(n, m) - Chop off the first N elements of the array, and keep M 178 /// elements in the array. 179 ArrayRef<T> slice(size_t N, size_t M) const { 180 assert(N+M <= size() && "Invalid specifier"); 181 return ArrayRef<T>(data()+N, M); 182 } 183 184 /// slice(n) - Chop off the first N elements of the array. 185 ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); } 186 187 /// \brief Drop the first \p N elements of the array. 188 ArrayRef<T> drop_front(size_t N = 1) const { 189 assert(size() >= N && "Dropping more elements than exist"); 190 return slice(N, size() - N); 191 } 192 193 /// \brief Drop the last \p N elements of the array. 194 ArrayRef<T> drop_back(size_t N = 1) const { 195 assert(size() >= N && "Dropping more elements than exist"); 196 return slice(0, size() - N); 197 } 198 199 /// \brief Return a copy of *this with the first N elements satisfying the 200 /// given predicate removed. 201 template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const { 202 return ArrayRef<T>(find_if_not(*this, Pred), end()); 203 } 204 205 /// \brief Return a copy of *this with the first N elements not satisfying 206 /// the given predicate removed. 207 template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const { 208 return ArrayRef<T>(find_if(*this, Pred), end()); 209 } 210 211 /// \brief Return a copy of *this with only the first \p N elements. 212 ArrayRef<T> take_front(size_t N = 1) const { 213 if (N >= size()) 214 return *this; 215 return drop_back(size() - N); 216 } 217 218 /// \brief Return a copy of *this with only the last \p N elements. 219 ArrayRef<T> take_back(size_t N = 1) const { 220 if (N >= size()) 221 return *this; 222 return drop_front(size() - N); 223 } 224 225 /// \brief Return the first N elements of this Array that satisfy the given 226 /// predicate. 227 template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const { 228 return ArrayRef<T>(begin(), find_if_not(*this, Pred)); 229 } 230 231 /// \brief Return the first N elements of this Array that don't satisfy the 232 /// given predicate. 233 template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const { 234 return ArrayRef<T>(begin(), find_if(*this, Pred)); 235 } 236 237 /// @} 238 /// @name Operator Overloads 239 /// @{ 240 const T &operator[](size_t Index) const { 241 assert(Index < Length && "Invalid index!"); 242 return Data[Index]; 243 } 244 245 /// Disallow accidental assignment from a temporary. 246 /// 247 /// The declaration here is extra complicated so that "arrayRef = {}" 248 /// continues to select the move assignment operator. 249 template <typename U> 250 typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type & 251 operator=(U &&Temporary) = delete; 252 253 /// Disallow accidental assignment from a temporary. 254 /// 255 /// The declaration here is extra complicated so that "arrayRef = {}" 256 /// continues to select the move assignment operator. 257 template <typename U> 258 typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type & 259 operator=(std::initializer_list<U>) = delete; 260 261 /// @} 262 /// @name Expensive Operations 263 /// @{ 264 std::vector<T> vec() const { 265 return std::vector<T>(Data, Data+Length); 266 } 267 268 /// @} 269 /// @name Conversion operators 270 /// @{ 271 operator std::vector<T>() const { 272 return std::vector<T>(Data, Data+Length); 273 } 274 275 /// @} 276 }; 277 278 /// MutableArrayRef - Represent a mutable reference to an array (0 or more 279 /// elements consecutively in memory), i.e. a start pointer and a length. It 280 /// allows various APIs to take and modify consecutive elements easily and 281 /// conveniently. 282 /// 283 /// This class does not own the underlying data, it is expected to be used in 284 /// situations where the data resides in some other buffer, whose lifetime 285 /// extends past that of the MutableArrayRef. For this reason, it is not in 286 /// general safe to store a MutableArrayRef. 287 /// 288 /// This is intended to be trivially copyable, so it should be passed by 289 /// value. 290 template<typename T> 291 class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> { 292 public: 293 using iterator = T *; 294 using reverse_iterator = std::reverse_iterator<iterator>; 295 296 /// Construct an empty MutableArrayRef. 297 /*implicit*/ MutableArrayRef() : ArrayRef<T>() {} 298 299 /// Construct an empty MutableArrayRef from None. 300 /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {} 301 302 /// Construct an MutableArrayRef from a single element. 303 /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {} 304 305 /// Construct an MutableArrayRef from a pointer and length. 306 /*implicit*/ MutableArrayRef(T *data, size_t length) 307 : ArrayRef<T>(data, length) {} 308 309 /// Construct an MutableArrayRef from a range. 310 MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {} 311 312 /// Construct an MutableArrayRef from a SmallVector. 313 /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec) 314 : ArrayRef<T>(Vec) {} 315 316 /// Construct a MutableArrayRef from a std::vector. 317 /*implicit*/ MutableArrayRef(std::vector<T> &Vec) 318 : ArrayRef<T>(Vec) {} 319 320 /// Construct an ArrayRef from a std::array 321 template <size_t N> 322 /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr) 323 : ArrayRef<T>(Arr) {} 324 325 /// Construct an MutableArrayRef from a C array. 326 template <size_t N> 327 /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {} 328 329 T *data() const { return const_cast<T*>(ArrayRef<T>::data()); } 330 331 iterator begin() const { return data(); } 332 iterator end() const { return data() + this->size(); } 333 334 reverse_iterator rbegin() const { return reverse_iterator(end()); } 335 reverse_iterator rend() const { return reverse_iterator(begin()); } 336 337 /// front - Get the first element. 338 T &front() const { 339 assert(!this->empty()); 340 return data()[0]; 341 } 342 343 /// back - Get the last element. 344 T &back() const { 345 assert(!this->empty()); 346 return data()[this->size()-1]; 347 } 348 349 /// slice(n, m) - Chop off the first N elements of the array, and keep M 350 /// elements in the array. 351 MutableArrayRef<T> slice(size_t N, size_t M) const { 352 assert(N + M <= this->size() && "Invalid specifier"); 353 return MutableArrayRef<T>(this->data() + N, M); 354 } 355 356 /// slice(n) - Chop off the first N elements of the array. 357 MutableArrayRef<T> slice(size_t N) const { 358 return slice(N, this->size() - N); 359 } 360 361 /// \brief Drop the first \p N elements of the array. 362 MutableArrayRef<T> drop_front(size_t N = 1) const { 363 assert(this->size() >= N && "Dropping more elements than exist"); 364 return slice(N, this->size() - N); 365 } 366 367 MutableArrayRef<T> drop_back(size_t N = 1) const { 368 assert(this->size() >= N && "Dropping more elements than exist"); 369 return slice(0, this->size() - N); 370 } 371 372 /// \brief Return a copy of *this with the first N elements satisfying the 373 /// given predicate removed. 374 template <class PredicateT> 375 MutableArrayRef<T> drop_while(PredicateT Pred) const { 376 return MutableArrayRef<T>(find_if_not(*this, Pred), end()); 377 } 378 379 /// \brief Return a copy of *this with the first N elements not satisfying 380 /// the given predicate removed. 381 template <class PredicateT> 382 MutableArrayRef<T> drop_until(PredicateT Pred) const { 383 return MutableArrayRef<T>(find_if(*this, Pred), end()); 384 } 385 386 /// \brief Return a copy of *this with only the first \p N elements. 387 MutableArrayRef<T> take_front(size_t N = 1) const { 388 if (N >= this->size()) 389 return *this; 390 return drop_back(this->size() - N); 391 } 392 393 /// \brief Return a copy of *this with only the last \p N elements. 394 MutableArrayRef<T> take_back(size_t N = 1) const { 395 if (N >= this->size()) 396 return *this; 397 return drop_front(this->size() - N); 398 } 399 400 /// \brief Return the first N elements of this Array that satisfy the given 401 /// predicate. 402 template <class PredicateT> 403 MutableArrayRef<T> take_while(PredicateT Pred) const { 404 return MutableArrayRef<T>(begin(), find_if_not(*this, Pred)); 405 } 406 407 /// \brief Return the first N elements of this Array that don't satisfy the 408 /// given predicate. 409 template <class PredicateT> 410 MutableArrayRef<T> take_until(PredicateT Pred) const { 411 return MutableArrayRef<T>(begin(), find_if(*this, Pred)); 412 } 413 414 /// @} 415 /// @name Operator Overloads 416 /// @{ 417 T &operator[](size_t Index) const { 418 assert(Index < this->size() && "Invalid index!"); 419 return data()[Index]; 420 } 421 }; 422 423 /// This is a MutableArrayRef that owns its array. 424 template <typename T> class OwningArrayRef : public MutableArrayRef<T> { 425 public: 426 OwningArrayRef() = default; 427 OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {} 428 429 OwningArrayRef(ArrayRef<T> Data) 430 : MutableArrayRef<T>(new T[Data.size()], Data.size()) { 431 std::copy(Data.begin(), Data.end(), this->begin()); 432 } 433 434 OwningArrayRef(OwningArrayRef &&Other) { *this = Other; } 435 436 OwningArrayRef &operator=(OwningArrayRef &&Other) { 437 delete[] this->data(); 438 this->MutableArrayRef<T>::operator=(Other); 439 Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>()); 440 return *this; 441 } 442 443 ~OwningArrayRef() { delete[] this->data(); } 444 }; 445 446 /// @name ArrayRef Convenience constructors 447 /// @{ 448 449 /// Construct an ArrayRef from a single element. 450 template<typename T> 451 ArrayRef<T> makeArrayRef(const T &OneElt) { 452 return OneElt; 453 } 454 455 /// Construct an ArrayRef from a pointer and length. 456 template<typename T> 457 ArrayRef<T> makeArrayRef(const T *data, size_t length) { 458 return ArrayRef<T>(data, length); 459 } 460 461 /// Construct an ArrayRef from a range. 462 template<typename T> 463 ArrayRef<T> makeArrayRef(const T *begin, const T *end) { 464 return ArrayRef<T>(begin, end); 465 } 466 467 /// Construct an ArrayRef from a SmallVector. 468 template <typename T> 469 ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) { 470 return Vec; 471 } 472 473 /// Construct an ArrayRef from a SmallVector. 474 template <typename T, unsigned N> 475 ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) { 476 return Vec; 477 } 478 479 /// Construct an ArrayRef from a std::vector. 480 template<typename T> 481 ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) { 482 return Vec; 483 } 484 485 /// Construct an ArrayRef from an ArrayRef (no-op) (const) 486 template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) { 487 return Vec; 488 } 489 490 /// Construct an ArrayRef from an ArrayRef (no-op) 491 template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) { 492 return Vec; 493 } 494 495 /// Construct an ArrayRef from a C array. 496 template<typename T, size_t N> 497 ArrayRef<T> makeArrayRef(const T (&Arr)[N]) { 498 return ArrayRef<T>(Arr); 499 } 500 501 /// Construct a MutableArrayRef from a single element. 502 template<typename T> 503 MutableArrayRef<T> makeMutableArrayRef(T &OneElt) { 504 return OneElt; 505 } 506 507 /// Construct a MutableArrayRef from a pointer and length. 508 template<typename T> 509 MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) { 510 return MutableArrayRef<T>(data, length); 511 } 512 513 /// @} 514 /// @name ArrayRef Comparison Operators 515 /// @{ 516 517 template<typename T> 518 inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) { 519 return LHS.equals(RHS); 520 } 521 522 template<typename T> 523 inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) { 524 return !(LHS == RHS); 525 } 526 527 /// @} 528 529 // ArrayRefs can be treated like a POD type. 530 template <typename T> struct isPodLike; 531 template <typename T> struct isPodLike<ArrayRef<T>> { 532 static const bool value = true; 533 }; 534 535 template <typename T> hash_code hash_value(ArrayRef<T> S) { 536 return hash_combine_range(S.begin(), S.end()); 537 } 538 539 } // end namespace llvm 540 541 #endif // LLVM_ADT_ARRAYREF_H 542