Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the SparseMultiSet class, which adds multiset behavior to
     11 // the SparseSet.
     12 //
     13 // A sparse multiset holds a small number of objects identified by integer keys
     14 // from a moderately sized universe. The sparse multiset uses more memory than
     15 // other containers in order to provide faster operations. Any key can map to
     16 // multiple values. A SparseMultiSetNode class is provided, which serves as a
     17 // convenient base class for the contents of a SparseMultiSet.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_ADT_SPARSEMULTISET_H
     22 #define LLVM_ADT_SPARSEMULTISET_H
     23 
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/SparseSet.h"
     27 #include <cassert>
     28 #include <cstdint>
     29 #include <cstdlib>
     30 #include <iterator>
     31 #include <limits>
     32 #include <utility>
     33 
     34 namespace llvm {
     35 
     36 /// Fast multiset implementation for objects that can be identified by small
     37 /// unsigned keys.
     38 ///
     39 /// SparseMultiSet allocates memory proportional to the size of the key
     40 /// universe, so it is not recommended for building composite data structures.
     41 /// It is useful for algorithms that require a single set with fast operations.
     42 ///
     43 /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
     44 /// fast clear() as fast as a vector.  The find(), insert(), and erase()
     45 /// operations are all constant time, and typically faster than a hash table.
     46 /// The iteration order doesn't depend on numerical key values, it only depends
     47 /// on the order of insert() and erase() operations.  Iteration order is the
     48 /// insertion order. Iteration is only provided over elements of equivalent
     49 /// keys, but iterators are bidirectional.
     50 ///
     51 /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
     52 /// offers constant-time clear() and size() operations as well as fast iteration
     53 /// independent on the size of the universe.
     54 ///
     55 /// SparseMultiSet contains a dense vector holding all the objects and a sparse
     56 /// array holding indexes into the dense vector.  Most of the memory is used by
     57 /// the sparse array which is the size of the key universe. The SparseT template
     58 /// parameter provides a space/speed tradeoff for sets holding many elements.
     59 ///
     60 /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
     61 /// sparse array uses 4 x Universe bytes.
     62 ///
     63 /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
     64 /// lines, but the sparse array is 4x smaller.  N is the number of elements in
     65 /// the set.
     66 ///
     67 /// For sets that may grow to thousands of elements, SparseT should be set to
     68 /// uint16_t or uint32_t.
     69 ///
     70 /// Multiset behavior is provided by providing doubly linked lists for values
     71 /// that are inlined in the dense vector. SparseMultiSet is a good choice when
     72 /// one desires a growable number of entries per key, as it will retain the
     73 /// SparseSet algorithmic properties despite being growable. Thus, it is often a
     74 /// better choice than a SparseSet of growable containers or a vector of
     75 /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
     76 /// the iterators don't point to the element erased), allowing for more
     77 /// intuitive and fast removal.
     78 ///
     79 /// @tparam ValueT      The type of objects in the set.
     80 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
     81 /// @tparam SparseT     An unsigned integer type. See above.
     82 ///
     83 template<typename ValueT,
     84          typename KeyFunctorT = identity<unsigned>,
     85          typename SparseT = uint8_t>
     86 class SparseMultiSet {
     87   static_assert(std::numeric_limits<SparseT>::is_integer &&
     88                 !std::numeric_limits<SparseT>::is_signed,
     89                 "SparseT must be an unsigned integer type");
     90 
     91   /// The actual data that's stored, as a doubly-linked list implemented via
     92   /// indices into the DenseVector.  The doubly linked list is implemented
     93   /// circular in Prev indices, and INVALID-terminated in Next indices. This
     94   /// provides efficient access to list tails. These nodes can also be
     95   /// tombstones, in which case they are actually nodes in a single-linked
     96   /// freelist of recyclable slots.
     97   struct SMSNode {
     98     static const unsigned INVALID = ~0U;
     99 
    100     ValueT Data;
    101     unsigned Prev;
    102     unsigned Next;
    103 
    104     SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {}
    105 
    106     /// List tails have invalid Nexts.
    107     bool isTail() const {
    108       return Next == INVALID;
    109     }
    110 
    111     /// Whether this node is a tombstone node, and thus is in our freelist.
    112     bool isTombstone() const {
    113       return Prev == INVALID;
    114     }
    115 
    116     /// Since the list is circular in Prev, all non-tombstone nodes have a valid
    117     /// Prev.
    118     bool isValid() const { return Prev != INVALID; }
    119   };
    120 
    121   using KeyT = typename KeyFunctorT::argument_type;
    122   using DenseT = SmallVector<SMSNode, 8>;
    123   DenseT Dense;
    124   SparseT *Sparse = nullptr;
    125   unsigned Universe = 0;
    126   KeyFunctorT KeyIndexOf;
    127   SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
    128 
    129   /// We have a built-in recycler for reusing tombstone slots. This recycler
    130   /// puts a singly-linked free list into tombstone slots, allowing us quick
    131   /// erasure, iterator preservation, and dense size.
    132   unsigned FreelistIdx = SMSNode::INVALID;
    133   unsigned NumFree = 0;
    134 
    135   unsigned sparseIndex(const ValueT &Val) const {
    136     assert(ValIndexOf(Val) < Universe &&
    137            "Invalid key in set. Did object mutate?");
    138     return ValIndexOf(Val);
    139   }
    140   unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
    141 
    142   /// Whether the given entry is the head of the list. List heads's previous
    143   /// pointers are to the tail of the list, allowing for efficient access to the
    144   /// list tail. D must be a valid entry node.
    145   bool isHead(const SMSNode &D) const {
    146     assert(D.isValid() && "Invalid node for head");
    147     return Dense[D.Prev].isTail();
    148   }
    149 
    150   /// Whether the given entry is a singleton entry, i.e. the only entry with
    151   /// that key.
    152   bool isSingleton(const SMSNode &N) const {
    153     assert(N.isValid() && "Invalid node for singleton");
    154     // Is N its own predecessor?
    155     return &Dense[N.Prev] == &N;
    156   }
    157 
    158   /// Add in the given SMSNode. Uses a free entry in our freelist if
    159   /// available. Returns the index of the added node.
    160   unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
    161     if (NumFree == 0) {
    162       Dense.push_back(SMSNode(V, Prev, Next));
    163       return Dense.size() - 1;
    164     }
    165 
    166     // Peel off a free slot
    167     unsigned Idx = FreelistIdx;
    168     unsigned NextFree = Dense[Idx].Next;
    169     assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
    170 
    171     Dense[Idx] = SMSNode(V, Prev, Next);
    172     FreelistIdx = NextFree;
    173     --NumFree;
    174     return Idx;
    175   }
    176 
    177   /// Make the current index a new tombstone. Pushes it onto the freelist.
    178   void makeTombstone(unsigned Idx) {
    179     Dense[Idx].Prev = SMSNode::INVALID;
    180     Dense[Idx].Next = FreelistIdx;
    181     FreelistIdx = Idx;
    182     ++NumFree;
    183   }
    184 
    185 public:
    186   using value_type = ValueT;
    187   using reference = ValueT &;
    188   using const_reference = const ValueT &;
    189   using pointer = ValueT *;
    190   using const_pointer = const ValueT *;
    191   using size_type = unsigned;
    192 
    193   SparseMultiSet() = default;
    194   SparseMultiSet(const SparseMultiSet &) = delete;
    195   SparseMultiSet &operator=(const SparseMultiSet &) = delete;
    196   ~SparseMultiSet() { free(Sparse); }
    197 
    198   /// Set the universe size which determines the largest key the set can hold.
    199   /// The universe must be sized before any elements can be added.
    200   ///
    201   /// @param U Universe size. All object keys must be less than U.
    202   ///
    203   void setUniverse(unsigned U) {
    204     // It's not hard to resize the universe on a non-empty set, but it doesn't
    205     // seem like a likely use case, so we can add that code when we need it.
    206     assert(empty() && "Can only resize universe on an empty map");
    207     // Hysteresis prevents needless reallocations.
    208     if (U >= Universe/4 && U <= Universe)
    209       return;
    210     free(Sparse);
    211     // The Sparse array doesn't actually need to be initialized, so malloc
    212     // would be enough here, but that will cause tools like valgrind to
    213     // complain about branching on uninitialized data.
    214     Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
    215     Universe = U;
    216   }
    217 
    218   /// Our iterators are iterators over the collection of objects that share a
    219   /// key.
    220   template<typename SMSPtrTy>
    221   class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
    222                                              ValueT> {
    223     friend class SparseMultiSet;
    224 
    225     SMSPtrTy SMS;
    226     unsigned Idx;
    227     unsigned SparseIdx;
    228 
    229     iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
    230       : SMS(P), Idx(I), SparseIdx(SI) {}
    231 
    232     /// Whether our iterator has fallen outside our dense vector.
    233     bool isEnd() const {
    234       if (Idx == SMSNode::INVALID)
    235         return true;
    236 
    237       assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
    238       return false;
    239     }
    240 
    241     /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
    242     bool isKeyed() const { return SparseIdx < SMS->Universe; }
    243 
    244     unsigned Prev() const { return SMS->Dense[Idx].Prev; }
    245     unsigned Next() const { return SMS->Dense[Idx].Next; }
    246 
    247     void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
    248     void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
    249 
    250   public:
    251     using super = std::iterator<std::bidirectional_iterator_tag, ValueT>;
    252     using value_type = typename super::value_type;
    253     using difference_type = typename super::difference_type;
    254     using pointer = typename super::pointer;
    255     using reference = typename super::reference;
    256 
    257     reference operator*() const {
    258       assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
    259              "Dereferencing iterator of invalid key or index");
    260 
    261       return SMS->Dense[Idx].Data;
    262     }
    263     pointer operator->() const { return &operator*(); }
    264 
    265     /// Comparison operators
    266     bool operator==(const iterator_base &RHS) const {
    267       // end compares equal
    268       if (SMS == RHS.SMS && Idx == RHS.Idx) {
    269         assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
    270                "Same dense entry, but different keys?");
    271         return true;
    272       }
    273 
    274       return false;
    275     }
    276 
    277     bool operator!=(const iterator_base &RHS) const {
    278       return !operator==(RHS);
    279     }
    280 
    281     /// Increment and decrement operators
    282     iterator_base &operator--() { // predecrement - Back up
    283       assert(isKeyed() && "Decrementing an invalid iterator");
    284       assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
    285              "Decrementing head of list");
    286 
    287       // If we're at the end, then issue a new find()
    288       if (isEnd())
    289         Idx = SMS->findIndex(SparseIdx).Prev();
    290       else
    291         Idx = Prev();
    292 
    293       return *this;
    294     }
    295     iterator_base &operator++() { // preincrement - Advance
    296       assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
    297       Idx = Next();
    298       return *this;
    299     }
    300     iterator_base operator--(int) { // postdecrement
    301       iterator_base I(*this);
    302       --*this;
    303       return I;
    304     }
    305     iterator_base operator++(int) { // postincrement
    306       iterator_base I(*this);
    307       ++*this;
    308       return I;
    309     }
    310   };
    311 
    312   using iterator = iterator_base<SparseMultiSet *>;
    313   using const_iterator = iterator_base<const SparseMultiSet *>;
    314 
    315   // Convenience types
    316   using RangePair = std::pair<iterator, iterator>;
    317 
    318   /// Returns an iterator past this container. Note that such an iterator cannot
    319   /// be decremented, but will compare equal to other end iterators.
    320   iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
    321   const_iterator end() const {
    322     return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
    323   }
    324 
    325   /// Returns true if the set is empty.
    326   ///
    327   /// This is not the same as BitVector::empty().
    328   ///
    329   bool empty() const { return size() == 0; }
    330 
    331   /// Returns the number of elements in the set.
    332   ///
    333   /// This is not the same as BitVector::size() which returns the size of the
    334   /// universe.
    335   ///
    336   size_type size() const {
    337     assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
    338     return Dense.size() - NumFree;
    339   }
    340 
    341   /// Clears the set.  This is a very fast constant time operation.
    342   ///
    343   void clear() {
    344     // Sparse does not need to be cleared, see find().
    345     Dense.clear();
    346     NumFree = 0;
    347     FreelistIdx = SMSNode::INVALID;
    348   }
    349 
    350   /// Find an element by its index.
    351   ///
    352   /// @param   Idx A valid index to find.
    353   /// @returns An iterator to the element identified by key, or end().
    354   ///
    355   iterator findIndex(unsigned Idx) {
    356     assert(Idx < Universe && "Key out of range");
    357     const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
    358     for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
    359       const unsigned FoundIdx = sparseIndex(Dense[i]);
    360       // Check that we're pointing at the correct entry and that it is the head
    361       // of a valid list.
    362       if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
    363         return iterator(this, i, Idx);
    364       // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
    365       if (!Stride)
    366         break;
    367     }
    368     return end();
    369   }
    370 
    371   /// Find an element by its key.
    372   ///
    373   /// @param   Key A valid key to find.
    374   /// @returns An iterator to the element identified by key, or end().
    375   ///
    376   iterator find(const KeyT &Key) {
    377     return findIndex(KeyIndexOf(Key));
    378   }
    379 
    380   const_iterator find(const KeyT &Key) const {
    381     iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
    382     return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
    383   }
    384 
    385   /// Returns the number of elements identified by Key. This will be linear in
    386   /// the number of elements of that key.
    387   size_type count(const KeyT &Key) const {
    388     unsigned Ret = 0;
    389     for (const_iterator It = find(Key); It != end(); ++It)
    390       ++Ret;
    391 
    392     return Ret;
    393   }
    394 
    395   /// Returns true if this set contains an element identified by Key.
    396   bool contains(const KeyT &Key) const {
    397     return find(Key) != end();
    398   }
    399 
    400   /// Return the head and tail of the subset's list, otherwise returns end().
    401   iterator getHead(const KeyT &Key) { return find(Key); }
    402   iterator getTail(const KeyT &Key) {
    403     iterator I = find(Key);
    404     if (I != end())
    405       I = iterator(this, I.Prev(), KeyIndexOf(Key));
    406     return I;
    407   }
    408 
    409   /// The bounds of the range of items sharing Key K. First member is the head
    410   /// of the list, and the second member is a decrementable end iterator for
    411   /// that key.
    412   RangePair equal_range(const KeyT &K) {
    413     iterator B = find(K);
    414     iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
    415     return make_pair(B, E);
    416   }
    417 
    418   /// Insert a new element at the tail of the subset list. Returns an iterator
    419   /// to the newly added entry.
    420   iterator insert(const ValueT &Val) {
    421     unsigned Idx = sparseIndex(Val);
    422     iterator I = findIndex(Idx);
    423 
    424     unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
    425 
    426     if (I == end()) {
    427       // Make a singleton list
    428       Sparse[Idx] = NodeIdx;
    429       Dense[NodeIdx].Prev = NodeIdx;
    430       return iterator(this, NodeIdx, Idx);
    431     }
    432 
    433     // Stick it at the end.
    434     unsigned HeadIdx = I.Idx;
    435     unsigned TailIdx = I.Prev();
    436     Dense[TailIdx].Next = NodeIdx;
    437     Dense[HeadIdx].Prev = NodeIdx;
    438     Dense[NodeIdx].Prev = TailIdx;
    439 
    440     return iterator(this, NodeIdx, Idx);
    441   }
    442 
    443   /// Erases an existing element identified by a valid iterator.
    444   ///
    445   /// This invalidates iterators pointing at the same entry, but erase() returns
    446   /// an iterator pointing to the next element in the subset's list. This makes
    447   /// it possible to erase selected elements while iterating over the subset:
    448   ///
    449   ///   tie(I, E) = Set.equal_range(Key);
    450   ///   while (I != E)
    451   ///     if (test(*I))
    452   ///       I = Set.erase(I);
    453   ///     else
    454   ///       ++I;
    455   ///
    456   /// Note that if the last element in the subset list is erased, this will
    457   /// return an end iterator which can be decremented to get the new tail (if it
    458   /// exists):
    459   ///
    460   ///  tie(B, I) = Set.equal_range(Key);
    461   ///  for (bool isBegin = B == I; !isBegin; /* empty */) {
    462   ///    isBegin = (--I) == B;
    463   ///    if (test(I))
    464   ///      break;
    465   ///    I = erase(I);
    466   ///  }
    467   iterator erase(iterator I) {
    468     assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
    469            "erasing invalid/end/tombstone iterator");
    470 
    471     // First, unlink the node from its list. Then swap the node out with the
    472     // dense vector's last entry
    473     iterator NextI = unlink(Dense[I.Idx]);
    474 
    475     // Put in a tombstone.
    476     makeTombstone(I.Idx);
    477 
    478     return NextI;
    479   }
    480 
    481   /// Erase all elements with the given key. This invalidates all
    482   /// iterators of that key.
    483   void eraseAll(const KeyT &K) {
    484     for (iterator I = find(K); I != end(); /* empty */)
    485       I = erase(I);
    486   }
    487 
    488 private:
    489   /// Unlink the node from its list. Returns the next node in the list.
    490   iterator unlink(const SMSNode &N) {
    491     if (isSingleton(N)) {
    492       // Singleton is already unlinked
    493       assert(N.Next == SMSNode::INVALID && "Singleton has next?");
    494       return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
    495     }
    496 
    497     if (isHead(N)) {
    498       // If we're the head, then update the sparse array and our next.
    499       Sparse[sparseIndex(N)] = N.Next;
    500       Dense[N.Next].Prev = N.Prev;
    501       return iterator(this, N.Next, ValIndexOf(N.Data));
    502     }
    503 
    504     if (N.isTail()) {
    505       // If we're the tail, then update our head and our previous.
    506       findIndex(sparseIndex(N)).setPrev(N.Prev);
    507       Dense[N.Prev].Next = N.Next;
    508 
    509       // Give back an end iterator that can be decremented
    510       iterator I(this, N.Prev, ValIndexOf(N.Data));
    511       return ++I;
    512     }
    513 
    514     // Otherwise, just drop us
    515     Dense[N.Next].Prev = N.Prev;
    516     Dense[N.Prev].Next = N.Next;
    517     return iterator(this, N.Next, ValIndexOf(N.Data));
    518   }
    519 };
    520 
    521 } // end namespace llvm
    522 
    523 #endif // LLVM_ADT_SPARSEMULTISET_H
    524