Home | History | Annotate | Download | only in PBQP
      1 //===- ReductionRules.h - Reduction Rules -----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Reduction Rules.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
     15 #define LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
     16 
     17 #include "Graph.h"
     18 #include "Math.h"
     19 #include "Solution.h"
     20 #include <cassert>
     21 #include <limits>
     22 
     23 namespace llvm {
     24 namespace PBQP {
     25 
     26   /// \brief Reduce a node of degree one.
     27   ///
     28   /// Propagate costs from the given node, which must be of degree one, to its
     29   /// neighbor. Notify the problem domain.
     30   template <typename GraphT>
     31   void applyR1(GraphT &G, typename GraphT::NodeId NId) {
     32     using NodeId = typename GraphT::NodeId;
     33     using EdgeId = typename GraphT::EdgeId;
     34     using Vector = typename GraphT::Vector;
     35     using Matrix = typename GraphT::Matrix;
     36     using RawVector = typename GraphT::RawVector;
     37 
     38     assert(G.getNodeDegree(NId) == 1 &&
     39            "R1 applied to node with degree != 1.");
     40 
     41     EdgeId EId = *G.adjEdgeIds(NId).begin();
     42     NodeId MId = G.getEdgeOtherNodeId(EId, NId);
     43 
     44     const Matrix &ECosts = G.getEdgeCosts(EId);
     45     const Vector &XCosts = G.getNodeCosts(NId);
     46     RawVector YCosts = G.getNodeCosts(MId);
     47 
     48     // Duplicate a little to avoid transposing matrices.
     49     if (NId == G.getEdgeNode1Id(EId)) {
     50       for (unsigned j = 0; j < YCosts.getLength(); ++j) {
     51         PBQPNum Min = ECosts[0][j] + XCosts[0];
     52         for (unsigned i = 1; i < XCosts.getLength(); ++i) {
     53           PBQPNum C = ECosts[i][j] + XCosts[i];
     54           if (C < Min)
     55             Min = C;
     56         }
     57         YCosts[j] += Min;
     58       }
     59     } else {
     60       for (unsigned i = 0; i < YCosts.getLength(); ++i) {
     61         PBQPNum Min = ECosts[i][0] + XCosts[0];
     62         for (unsigned j = 1; j < XCosts.getLength(); ++j) {
     63           PBQPNum C = ECosts[i][j] + XCosts[j];
     64           if (C < Min)
     65             Min = C;
     66         }
     67         YCosts[i] += Min;
     68       }
     69     }
     70     G.setNodeCosts(MId, YCosts);
     71     G.disconnectEdge(EId, MId);
     72   }
     73 
     74   template <typename GraphT>
     75   void applyR2(GraphT &G, typename GraphT::NodeId NId) {
     76     using NodeId = typename GraphT::NodeId;
     77     using EdgeId = typename GraphT::EdgeId;
     78     using Vector = typename GraphT::Vector;
     79     using Matrix = typename GraphT::Matrix;
     80     using RawMatrix = typename GraphT::RawMatrix;
     81 
     82     assert(G.getNodeDegree(NId) == 2 &&
     83            "R2 applied to node with degree != 2.");
     84 
     85     const Vector &XCosts = G.getNodeCosts(NId);
     86 
     87     typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin();
     88     EdgeId YXEId = *AEItr,
     89            ZXEId = *(++AEItr);
     90 
     91     NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId),
     92            ZNId = G.getEdgeOtherNodeId(ZXEId, NId);
     93 
     94     bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId),
     95          FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId);
     96 
     97     const Matrix *YXECosts = FlipEdge1 ?
     98       new Matrix(G.getEdgeCosts(YXEId).transpose()) :
     99       &G.getEdgeCosts(YXEId);
    100 
    101     const Matrix *ZXECosts = FlipEdge2 ?
    102       new Matrix(G.getEdgeCosts(ZXEId).transpose()) :
    103       &G.getEdgeCosts(ZXEId);
    104 
    105     unsigned XLen = XCosts.getLength(),
    106       YLen = YXECosts->getRows(),
    107       ZLen = ZXECosts->getRows();
    108 
    109     RawMatrix Delta(YLen, ZLen);
    110 
    111     for (unsigned i = 0; i < YLen; ++i) {
    112       for (unsigned j = 0; j < ZLen; ++j) {
    113         PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0];
    114         for (unsigned k = 1; k < XLen; ++k) {
    115           PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k];
    116           if (C < Min) {
    117             Min = C;
    118           }
    119         }
    120         Delta[i][j] = Min;
    121       }
    122     }
    123 
    124     if (FlipEdge1)
    125       delete YXECosts;
    126 
    127     if (FlipEdge2)
    128       delete ZXECosts;
    129 
    130     EdgeId YZEId = G.findEdge(YNId, ZNId);
    131 
    132     if (YZEId == G.invalidEdgeId()) {
    133       YZEId = G.addEdge(YNId, ZNId, Delta);
    134     } else {
    135       const Matrix &YZECosts = G.getEdgeCosts(YZEId);
    136       if (YNId == G.getEdgeNode1Id(YZEId)) {
    137         G.updateEdgeCosts(YZEId, Delta + YZECosts);
    138       } else {
    139         G.updateEdgeCosts(YZEId, Delta.transpose() + YZECosts);
    140       }
    141     }
    142 
    143     G.disconnectEdge(YXEId, YNId);
    144     G.disconnectEdge(ZXEId, ZNId);
    145 
    146     // TODO: Try to normalize newly added/modified edge.
    147   }
    148 
    149 #ifndef NDEBUG
    150   // Does this Cost vector have any register options ?
    151   template <typename VectorT>
    152   bool hasRegisterOptions(const VectorT &V) {
    153     unsigned VL = V.getLength();
    154 
    155     // An empty or spill only cost vector does not provide any register option.
    156     if (VL <= 1)
    157       return false;
    158 
    159     // If there are registers in the cost vector, but all of them have infinite
    160     // costs, then ... there is no available register.
    161     for (unsigned i = 1; i < VL; ++i)
    162       if (V[i] != std::numeric_limits<PBQP::PBQPNum>::infinity())
    163         return true;
    164 
    165     return false;
    166   }
    167 #endif
    168 
    169   // \brief Find a solution to a fully reduced graph by backpropagation.
    170   //
    171   // Given a graph and a reduction order, pop each node from the reduction
    172   // order and greedily compute a minimum solution based on the node costs, and
    173   // the dependent costs due to previously solved nodes.
    174   //
    175   // Note - This does not return the graph to its original (pre-reduction)
    176   //        state: the existing solvers destructively alter the node and edge
    177   //        costs. Given that, the backpropagate function doesn't attempt to
    178   //        replace the edges either, but leaves the graph in its reduced
    179   //        state.
    180   template <typename GraphT, typename StackT>
    181   Solution backpropagate(GraphT& G, StackT stack) {
    182     using NodeId = GraphBase::NodeId;
    183     using Matrix = typename GraphT::Matrix;
    184     using RawVector = typename GraphT::RawVector;
    185 
    186     Solution s;
    187 
    188     while (!stack.empty()) {
    189       NodeId NId = stack.back();
    190       stack.pop_back();
    191 
    192       RawVector v = G.getNodeCosts(NId);
    193 
    194 #ifndef NDEBUG
    195       // Although a conservatively allocatable node can be allocated to a register,
    196       // spilling it may provide a lower cost solution. Assert here that spilling
    197       // is done by choice, not because there were no register available.
    198       if (G.getNodeMetadata(NId).wasConservativelyAllocatable())
    199         assert(hasRegisterOptions(v) && "A conservatively allocatable node "
    200                                         "must have available register options");
    201 #endif
    202 
    203       for (auto EId : G.adjEdgeIds(NId)) {
    204         const Matrix& edgeCosts = G.getEdgeCosts(EId);
    205         if (NId == G.getEdgeNode1Id(EId)) {
    206           NodeId mId = G.getEdgeNode2Id(EId);
    207           v += edgeCosts.getColAsVector(s.getSelection(mId));
    208         } else {
    209           NodeId mId = G.getEdgeNode1Id(EId);
    210           v += edgeCosts.getRowAsVector(s.getSelection(mId));
    211         }
    212       }
    213 
    214       s.setSelection(NId, v.minIndex());
    215     }
    216 
    217     return s;
    218   }
    219 
    220 } // end namespace PBQP
    221 } // end namespace llvm
    222 
    223 #endif // LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
    224