Home | History | Annotate | Download | only in Orc
      1 //===------- RPCUTils.h - Utilities for building RPC APIs -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Utilities to support construction of simple RPC APIs.
     11 //
     12 // The RPC utilities aim for ease of use (minimal conceptual overhead) for C++
     13 // programmers, high performance, low memory overhead, and efficient use of the
     14 // communications channel.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #ifndef LLVM_EXECUTIONENGINE_ORC_RPCUTILS_H
     19 #define LLVM_EXECUTIONENGINE_ORC_RPCUTILS_H
     20 
     21 #include <map>
     22 #include <thread>
     23 #include <vector>
     24 
     25 #include "llvm/ADT/STLExtras.h"
     26 #include "llvm/ExecutionEngine/Orc/OrcError.h"
     27 #include "llvm/ExecutionEngine/Orc/RPCSerialization.h"
     28 
     29 #include <future>
     30 
     31 namespace llvm {
     32 namespace orc {
     33 namespace rpc {
     34 
     35 /// Base class of all fatal RPC errors (those that necessarily result in the
     36 /// termination of the RPC session).
     37 class RPCFatalError : public ErrorInfo<RPCFatalError> {
     38 public:
     39   static char ID;
     40 };
     41 
     42 /// RPCConnectionClosed is returned from RPC operations if the RPC connection
     43 /// has already been closed due to either an error or graceful disconnection.
     44 class ConnectionClosed : public ErrorInfo<ConnectionClosed> {
     45 public:
     46   static char ID;
     47   std::error_code convertToErrorCode() const override;
     48   void log(raw_ostream &OS) const override;
     49 };
     50 
     51 /// BadFunctionCall is returned from handleOne when the remote makes a call with
     52 /// an unrecognized function id.
     53 ///
     54 /// This error is fatal because Orc RPC needs to know how to parse a function
     55 /// call to know where the next call starts, and if it doesn't recognize the
     56 /// function id it cannot parse the call.
     57 template <typename FnIdT, typename SeqNoT>
     58 class BadFunctionCall
     59   : public ErrorInfo<BadFunctionCall<FnIdT, SeqNoT>, RPCFatalError> {
     60 public:
     61   static char ID;
     62 
     63   BadFunctionCall(FnIdT FnId, SeqNoT SeqNo)
     64       : FnId(std::move(FnId)), SeqNo(std::move(SeqNo)) {}
     65 
     66   std::error_code convertToErrorCode() const override {
     67     return orcError(OrcErrorCode::UnexpectedRPCCall);
     68   }
     69 
     70   void log(raw_ostream &OS) const override {
     71     OS << "Call to invalid RPC function id '" << FnId << "' with "
     72           "sequence number " << SeqNo;
     73   }
     74 
     75 private:
     76   FnIdT FnId;
     77   SeqNoT SeqNo;
     78 };
     79 
     80 template <typename FnIdT, typename SeqNoT>
     81 char BadFunctionCall<FnIdT, SeqNoT>::ID = 0;
     82 
     83 /// InvalidSequenceNumberForResponse is returned from handleOne when a response
     84 /// call arrives with a sequence number that doesn't correspond to any in-flight
     85 /// function call.
     86 ///
     87 /// This error is fatal because Orc RPC needs to know how to parse the rest of
     88 /// the response call to know where the next call starts, and if it doesn't have
     89 /// a result parser for this sequence number it can't do that.
     90 template <typename SeqNoT>
     91 class InvalidSequenceNumberForResponse
     92     : public ErrorInfo<InvalidSequenceNumberForResponse<SeqNoT>, RPCFatalError> {
     93 public:
     94   static char ID;
     95 
     96   InvalidSequenceNumberForResponse(SeqNoT SeqNo)
     97       : SeqNo(std::move(SeqNo)) {}
     98 
     99   std::error_code convertToErrorCode() const override {
    100     return orcError(OrcErrorCode::UnexpectedRPCCall);
    101   };
    102 
    103   void log(raw_ostream &OS) const override {
    104     OS << "Response has unknown sequence number " << SeqNo;
    105   }
    106 private:
    107   SeqNoT SeqNo;
    108 };
    109 
    110 template <typename SeqNoT>
    111 char InvalidSequenceNumberForResponse<SeqNoT>::ID = 0;
    112 
    113 /// This non-fatal error will be passed to asynchronous result handlers in place
    114 /// of a result if the connection goes down before a result returns, or if the
    115 /// function to be called cannot be negotiated with the remote.
    116 class ResponseAbandoned : public ErrorInfo<ResponseAbandoned> {
    117 public:
    118   static char ID;
    119 
    120   std::error_code convertToErrorCode() const override;
    121   void log(raw_ostream &OS) const override;
    122 };
    123 
    124 /// This error is returned if the remote does not have a handler installed for
    125 /// the given RPC function.
    126 class CouldNotNegotiate : public ErrorInfo<CouldNotNegotiate> {
    127 public:
    128   static char ID;
    129 
    130   CouldNotNegotiate(std::string Signature);
    131   std::error_code convertToErrorCode() const override;
    132   void log(raw_ostream &OS) const override;
    133   const std::string &getSignature() const { return Signature; }
    134 private:
    135   std::string Signature;
    136 };
    137 
    138 template <typename DerivedFunc, typename FnT> class Function;
    139 
    140 // RPC Function class.
    141 // DerivedFunc should be a user defined class with a static 'getName()' method
    142 // returning a const char* representing the function's name.
    143 template <typename DerivedFunc, typename RetT, typename... ArgTs>
    144 class Function<DerivedFunc, RetT(ArgTs...)> {
    145 public:
    146   /// User defined function type.
    147   using Type = RetT(ArgTs...);
    148 
    149   /// Return type.
    150   using ReturnType = RetT;
    151 
    152   /// Returns the full function prototype as a string.
    153   static const char *getPrototype() {
    154     std::lock_guard<std::mutex> Lock(NameMutex);
    155     if (Name.empty())
    156       raw_string_ostream(Name)
    157           << RPCTypeName<RetT>::getName() << " " << DerivedFunc::getName()
    158           << "(" << llvm::orc::rpc::RPCTypeNameSequence<ArgTs...>() << ")";
    159     return Name.data();
    160   }
    161 
    162 private:
    163   static std::mutex NameMutex;
    164   static std::string Name;
    165 };
    166 
    167 template <typename DerivedFunc, typename RetT, typename... ArgTs>
    168 std::mutex Function<DerivedFunc, RetT(ArgTs...)>::NameMutex;
    169 
    170 template <typename DerivedFunc, typename RetT, typename... ArgTs>
    171 std::string Function<DerivedFunc, RetT(ArgTs...)>::Name;
    172 
    173 /// Allocates RPC function ids during autonegotiation.
    174 /// Specializations of this class must provide four members:
    175 ///
    176 /// static T getInvalidId():
    177 ///   Should return a reserved id that will be used to represent missing
    178 /// functions during autonegotiation.
    179 ///
    180 /// static T getResponseId():
    181 ///   Should return a reserved id that will be used to send function responses
    182 /// (return values).
    183 ///
    184 /// static T getNegotiateId():
    185 ///   Should return a reserved id for the negotiate function, which will be used
    186 /// to negotiate ids for user defined functions.
    187 ///
    188 /// template <typename Func> T allocate():
    189 ///   Allocate a unique id for function Func.
    190 template <typename T, typename = void> class RPCFunctionIdAllocator;
    191 
    192 /// This specialization of RPCFunctionIdAllocator provides a default
    193 /// implementation for integral types.
    194 template <typename T>
    195 class RPCFunctionIdAllocator<
    196     T, typename std::enable_if<std::is_integral<T>::value>::type> {
    197 public:
    198   static T getInvalidId() { return T(0); }
    199   static T getResponseId() { return T(1); }
    200   static T getNegotiateId() { return T(2); }
    201 
    202   template <typename Func> T allocate() { return NextId++; }
    203 
    204 private:
    205   T NextId = 3;
    206 };
    207 
    208 namespace detail {
    209 
    210 // FIXME: Remove MSVCPError/MSVCPExpected once MSVC's future implementation
    211 //        supports classes without default constructors.
    212 #ifdef _MSC_VER
    213 
    214 namespace msvc_hacks {
    215 
    216 // Work around MSVC's future implementation's use of default constructors:
    217 // A default constructed value in the promise will be overwritten when the
    218 // real error is set - so the default constructed Error has to be checked
    219 // already.
    220 class MSVCPError : public Error {
    221 public:
    222   MSVCPError() { (void)!!*this; }
    223 
    224   MSVCPError(MSVCPError &&Other) : Error(std::move(Other)) {}
    225 
    226   MSVCPError &operator=(MSVCPError Other) {
    227     Error::operator=(std::move(Other));
    228     return *this;
    229   }
    230 
    231   MSVCPError(Error Err) : Error(std::move(Err)) {}
    232 };
    233 
    234 // Work around MSVC's future implementation, similar to MSVCPError.
    235 template <typename T> class MSVCPExpected : public Expected<T> {
    236 public:
    237   MSVCPExpected()
    238       : Expected<T>(make_error<StringError>("", inconvertibleErrorCode())) {
    239     consumeError(this->takeError());
    240   }
    241 
    242   MSVCPExpected(MSVCPExpected &&Other) : Expected<T>(std::move(Other)) {}
    243 
    244   MSVCPExpected &operator=(MSVCPExpected &&Other) {
    245     Expected<T>::operator=(std::move(Other));
    246     return *this;
    247   }
    248 
    249   MSVCPExpected(Error Err) : Expected<T>(std::move(Err)) {}
    250 
    251   template <typename OtherT>
    252   MSVCPExpected(
    253       OtherT &&Val,
    254       typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
    255           nullptr)
    256       : Expected<T>(std::move(Val)) {}
    257 
    258   template <class OtherT>
    259   MSVCPExpected(
    260       Expected<OtherT> &&Other,
    261       typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
    262           nullptr)
    263       : Expected<T>(std::move(Other)) {}
    264 
    265   template <class OtherT>
    266   explicit MSVCPExpected(
    267       Expected<OtherT> &&Other,
    268       typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
    269           nullptr)
    270       : Expected<T>(std::move(Other)) {}
    271 };
    272 
    273 } // end namespace msvc_hacks
    274 
    275 #endif // _MSC_VER
    276 
    277 /// Provides a typedef for a tuple containing the decayed argument types.
    278 template <typename T> class FunctionArgsTuple;
    279 
    280 template <typename RetT, typename... ArgTs>
    281 class FunctionArgsTuple<RetT(ArgTs...)> {
    282 public:
    283   using Type = std::tuple<typename std::decay<
    284       typename std::remove_reference<ArgTs>::type>::type...>;
    285 };
    286 
    287 // ResultTraits provides typedefs and utilities specific to the return type
    288 // of functions.
    289 template <typename RetT> class ResultTraits {
    290 public:
    291   // The return type wrapped in llvm::Expected.
    292   using ErrorReturnType = Expected<RetT>;
    293 
    294 #ifdef _MSC_VER
    295   // The ErrorReturnType wrapped in a std::promise.
    296   using ReturnPromiseType = std::promise<msvc_hacks::MSVCPExpected<RetT>>;
    297 
    298   // The ErrorReturnType wrapped in a std::future.
    299   using ReturnFutureType = std::future<msvc_hacks::MSVCPExpected<RetT>>;
    300 #else
    301   // The ErrorReturnType wrapped in a std::promise.
    302   using ReturnPromiseType = std::promise<ErrorReturnType>;
    303 
    304   // The ErrorReturnType wrapped in a std::future.
    305   using ReturnFutureType = std::future<ErrorReturnType>;
    306 #endif
    307 
    308   // Create a 'blank' value of the ErrorReturnType, ready and safe to
    309   // overwrite.
    310   static ErrorReturnType createBlankErrorReturnValue() {
    311     return ErrorReturnType(RetT());
    312   }
    313 
    314   // Consume an abandoned ErrorReturnType.
    315   static void consumeAbandoned(ErrorReturnType RetOrErr) {
    316     consumeError(RetOrErr.takeError());
    317   }
    318 };
    319 
    320 // ResultTraits specialization for void functions.
    321 template <> class ResultTraits<void> {
    322 public:
    323   // For void functions, ErrorReturnType is llvm::Error.
    324   using ErrorReturnType = Error;
    325 
    326 #ifdef _MSC_VER
    327   // The ErrorReturnType wrapped in a std::promise.
    328   using ReturnPromiseType = std::promise<msvc_hacks::MSVCPError>;
    329 
    330   // The ErrorReturnType wrapped in a std::future.
    331   using ReturnFutureType = std::future<msvc_hacks::MSVCPError>;
    332 #else
    333   // The ErrorReturnType wrapped in a std::promise.
    334   using ReturnPromiseType = std::promise<ErrorReturnType>;
    335 
    336   // The ErrorReturnType wrapped in a std::future.
    337   using ReturnFutureType = std::future<ErrorReturnType>;
    338 #endif
    339 
    340   // Create a 'blank' value of the ErrorReturnType, ready and safe to
    341   // overwrite.
    342   static ErrorReturnType createBlankErrorReturnValue() {
    343     return ErrorReturnType::success();
    344   }
    345 
    346   // Consume an abandoned ErrorReturnType.
    347   static void consumeAbandoned(ErrorReturnType Err) {
    348     consumeError(std::move(Err));
    349   }
    350 };
    351 
    352 // ResultTraits<Error> is equivalent to ResultTraits<void>. This allows
    353 // handlers for void RPC functions to return either void (in which case they
    354 // implicitly succeed) or Error (in which case their error return is
    355 // propagated). See usage in HandlerTraits::runHandlerHelper.
    356 template <> class ResultTraits<Error> : public ResultTraits<void> {};
    357 
    358 // ResultTraits<Expected<T>> is equivalent to ResultTraits<T>. This allows
    359 // handlers for RPC functions returning a T to return either a T (in which
    360 // case they implicitly succeed) or Expected<T> (in which case their error
    361 // return is propagated). See usage in HandlerTraits::runHandlerHelper.
    362 template <typename RetT>
    363 class ResultTraits<Expected<RetT>> : public ResultTraits<RetT> {};
    364 
    365 // Determines whether an RPC function's defined error return type supports
    366 // error return value.
    367 template <typename T>
    368 class SupportsErrorReturn {
    369 public:
    370   static const bool value = false;
    371 };
    372 
    373 template <>
    374 class SupportsErrorReturn<Error> {
    375 public:
    376   static const bool value = true;
    377 };
    378 
    379 template <typename T>
    380 class SupportsErrorReturn<Expected<T>> {
    381 public:
    382   static const bool value = true;
    383 };
    384 
    385 // RespondHelper packages return values based on whether or not the declared
    386 // RPC function return type supports error returns.
    387 template <bool FuncSupportsErrorReturn>
    388 class RespondHelper;
    389 
    390 // RespondHelper specialization for functions that support error returns.
    391 template <>
    392 class RespondHelper<true> {
    393 public:
    394 
    395   // Send Expected<T>.
    396   template <typename WireRetT, typename HandlerRetT, typename ChannelT,
    397             typename FunctionIdT, typename SequenceNumberT>
    398   static Error sendResult(ChannelT &C, const FunctionIdT &ResponseId,
    399                           SequenceNumberT SeqNo,
    400                           Expected<HandlerRetT> ResultOrErr) {
    401     if (!ResultOrErr && ResultOrErr.template errorIsA<RPCFatalError>())
    402       return ResultOrErr.takeError();
    403 
    404     // Open the response message.
    405     if (auto Err = C.startSendMessage(ResponseId, SeqNo))
    406       return Err;
    407 
    408     // Serialize the result.
    409     if (auto Err =
    410         SerializationTraits<ChannelT, WireRetT,
    411                             Expected<HandlerRetT>>::serialize(
    412                                                      C, std::move(ResultOrErr)))
    413       return Err;
    414 
    415     // Close the response message.
    416     return C.endSendMessage();
    417   }
    418 
    419   template <typename ChannelT, typename FunctionIdT, typename SequenceNumberT>
    420   static Error sendResult(ChannelT &C, const FunctionIdT &ResponseId,
    421                           SequenceNumberT SeqNo, Error Err) {
    422     if (Err && Err.isA<RPCFatalError>())
    423       return Err;
    424     if (auto Err2 = C.startSendMessage(ResponseId, SeqNo))
    425       return Err2;
    426     if (auto Err2 = serializeSeq(C, std::move(Err)))
    427       return Err2;
    428     return C.endSendMessage();
    429   }
    430 
    431 };
    432 
    433 // RespondHelper specialization for functions that do not support error returns.
    434 template <>
    435 class RespondHelper<false> {
    436 public:
    437 
    438   template <typename WireRetT, typename HandlerRetT, typename ChannelT,
    439             typename FunctionIdT, typename SequenceNumberT>
    440   static Error sendResult(ChannelT &C, const FunctionIdT &ResponseId,
    441                           SequenceNumberT SeqNo,
    442                           Expected<HandlerRetT> ResultOrErr) {
    443     if (auto Err = ResultOrErr.takeError())
    444       return Err;
    445 
    446     // Open the response message.
    447     if (auto Err = C.startSendMessage(ResponseId, SeqNo))
    448       return Err;
    449 
    450     // Serialize the result.
    451     if (auto Err =
    452         SerializationTraits<ChannelT, WireRetT, HandlerRetT>::serialize(
    453                                                                C, *ResultOrErr))
    454       return Err;
    455 
    456     // Close the response message.
    457     return C.endSendMessage();
    458   }
    459 
    460   template <typename ChannelT, typename FunctionIdT, typename SequenceNumberT>
    461   static Error sendResult(ChannelT &C, const FunctionIdT &ResponseId,
    462                           SequenceNumberT SeqNo, Error Err) {
    463     if (Err)
    464       return Err;
    465     if (auto Err2 = C.startSendMessage(ResponseId, SeqNo))
    466       return Err2;
    467     return C.endSendMessage();
    468   }
    469 
    470 };
    471 
    472 
    473 // Send a response of the given wire return type (WireRetT) over the
    474 // channel, with the given sequence number.
    475 template <typename WireRetT, typename HandlerRetT, typename ChannelT,
    476           typename FunctionIdT, typename SequenceNumberT>
    477 Error respond(ChannelT &C, const FunctionIdT &ResponseId,
    478               SequenceNumberT SeqNo, Expected<HandlerRetT> ResultOrErr) {
    479   return RespondHelper<SupportsErrorReturn<WireRetT>::value>::
    480     template sendResult<WireRetT>(C, ResponseId, SeqNo, std::move(ResultOrErr));
    481 }
    482 
    483 // Send an empty response message on the given channel to indicate that
    484 // the handler ran.
    485 template <typename WireRetT, typename ChannelT, typename FunctionIdT,
    486           typename SequenceNumberT>
    487 Error respond(ChannelT &C, const FunctionIdT &ResponseId, SequenceNumberT SeqNo,
    488               Error Err) {
    489   return RespondHelper<SupportsErrorReturn<WireRetT>::value>::
    490     sendResult(C, ResponseId, SeqNo, std::move(Err));
    491 }
    492 
    493 // Converts a given type to the equivalent error return type.
    494 template <typename T> class WrappedHandlerReturn {
    495 public:
    496   using Type = Expected<T>;
    497 };
    498 
    499 template <typename T> class WrappedHandlerReturn<Expected<T>> {
    500 public:
    501   using Type = Expected<T>;
    502 };
    503 
    504 template <> class WrappedHandlerReturn<void> {
    505 public:
    506   using Type = Error;
    507 };
    508 
    509 template <> class WrappedHandlerReturn<Error> {
    510 public:
    511   using Type = Error;
    512 };
    513 
    514 template <> class WrappedHandlerReturn<ErrorSuccess> {
    515 public:
    516   using Type = Error;
    517 };
    518 
    519 // Traits class that strips the response function from the list of handler
    520 // arguments.
    521 template <typename FnT> class AsyncHandlerTraits;
    522 
    523 template <typename ResultT, typename... ArgTs>
    524 class AsyncHandlerTraits<Error(std::function<Error(Expected<ResultT>)>, ArgTs...)> {
    525 public:
    526   using Type = Error(ArgTs...);
    527   using ResultType = Expected<ResultT>;
    528 };
    529 
    530 template <typename... ArgTs>
    531 class AsyncHandlerTraits<Error(std::function<Error(Error)>, ArgTs...)> {
    532 public:
    533   using Type = Error(ArgTs...);
    534   using ResultType = Error;
    535 };
    536 
    537 template <typename ResponseHandlerT, typename... ArgTs>
    538 class AsyncHandlerTraits<Error(ResponseHandlerT, ArgTs...)> :
    539     public AsyncHandlerTraits<Error(typename std::decay<ResponseHandlerT>::type,
    540                                     ArgTs...)> {};
    541 
    542 // This template class provides utilities related to RPC function handlers.
    543 // The base case applies to non-function types (the template class is
    544 // specialized for function types) and inherits from the appropriate
    545 // speciilization for the given non-function type's call operator.
    546 template <typename HandlerT>
    547 class HandlerTraits : public HandlerTraits<decltype(
    548                           &std::remove_reference<HandlerT>::type::operator())> {
    549 };
    550 
    551 // Traits for handlers with a given function type.
    552 template <typename RetT, typename... ArgTs>
    553 class HandlerTraits<RetT(ArgTs...)> {
    554 public:
    555   // Function type of the handler.
    556   using Type = RetT(ArgTs...);
    557 
    558   // Return type of the handler.
    559   using ReturnType = RetT;
    560 
    561   // Call the given handler with the given arguments.
    562   template <typename HandlerT, typename... TArgTs>
    563   static typename WrappedHandlerReturn<RetT>::Type
    564   unpackAndRun(HandlerT &Handler, std::tuple<TArgTs...> &Args) {
    565     return unpackAndRunHelper(Handler, Args,
    566                               llvm::index_sequence_for<TArgTs...>());
    567   }
    568 
    569   // Call the given handler with the given arguments.
    570   template <typename HandlerT, typename ResponderT, typename... TArgTs>
    571   static Error unpackAndRunAsync(HandlerT &Handler, ResponderT &Responder,
    572                                  std::tuple<TArgTs...> &Args) {
    573     return unpackAndRunAsyncHelper(Handler, Responder, Args,
    574                                    llvm::index_sequence_for<TArgTs...>());
    575   }
    576 
    577   // Call the given handler with the given arguments.
    578   template <typename HandlerT>
    579   static typename std::enable_if<
    580       std::is_void<typename HandlerTraits<HandlerT>::ReturnType>::value,
    581       Error>::type
    582   run(HandlerT &Handler, ArgTs &&... Args) {
    583     Handler(std::move(Args)...);
    584     return Error::success();
    585   }
    586 
    587   template <typename HandlerT, typename... TArgTs>
    588   static typename std::enable_if<
    589       !std::is_void<typename HandlerTraits<HandlerT>::ReturnType>::value,
    590       typename HandlerTraits<HandlerT>::ReturnType>::type
    591   run(HandlerT &Handler, TArgTs... Args) {
    592     return Handler(std::move(Args)...);
    593   }
    594 
    595   // Serialize arguments to the channel.
    596   template <typename ChannelT, typename... CArgTs>
    597   static Error serializeArgs(ChannelT &C, const CArgTs... CArgs) {
    598     return SequenceSerialization<ChannelT, ArgTs...>::serialize(C, CArgs...);
    599   }
    600 
    601   // Deserialize arguments from the channel.
    602   template <typename ChannelT, typename... CArgTs>
    603   static Error deserializeArgs(ChannelT &C, std::tuple<CArgTs...> &Args) {
    604     return deserializeArgsHelper(C, Args,
    605                                  llvm::index_sequence_for<CArgTs...>());
    606   }
    607 
    608 private:
    609   template <typename ChannelT, typename... CArgTs, size_t... Indexes>
    610   static Error deserializeArgsHelper(ChannelT &C, std::tuple<CArgTs...> &Args,
    611                                      llvm::index_sequence<Indexes...> _) {
    612     return SequenceSerialization<ChannelT, ArgTs...>::deserialize(
    613         C, std::get<Indexes>(Args)...);
    614   }
    615 
    616   template <typename HandlerT, typename ArgTuple, size_t... Indexes>
    617   static typename WrappedHandlerReturn<
    618       typename HandlerTraits<HandlerT>::ReturnType>::Type
    619   unpackAndRunHelper(HandlerT &Handler, ArgTuple &Args,
    620                      llvm::index_sequence<Indexes...>) {
    621     return run(Handler, std::move(std::get<Indexes>(Args))...);
    622   }
    623 
    624 
    625   template <typename HandlerT, typename ResponderT, typename ArgTuple,
    626             size_t... Indexes>
    627   static typename WrappedHandlerReturn<
    628       typename HandlerTraits<HandlerT>::ReturnType>::Type
    629   unpackAndRunAsyncHelper(HandlerT &Handler, ResponderT &Responder,
    630                           ArgTuple &Args,
    631                           llvm::index_sequence<Indexes...>) {
    632     return run(Handler, Responder, std::move(std::get<Indexes>(Args))...);
    633   }
    634 };
    635 
    636 // Handler traits for free functions.
    637 template <typename RetT, typename... ArgTs>
    638 class HandlerTraits<RetT(*)(ArgTs...)>
    639   : public HandlerTraits<RetT(ArgTs...)> {};
    640 
    641 // Handler traits for class methods (especially call operators for lambdas).
    642 template <typename Class, typename RetT, typename... ArgTs>
    643 class HandlerTraits<RetT (Class::*)(ArgTs...)>
    644     : public HandlerTraits<RetT(ArgTs...)> {};
    645 
    646 // Handler traits for const class methods (especially call operators for
    647 // lambdas).
    648 template <typename Class, typename RetT, typename... ArgTs>
    649 class HandlerTraits<RetT (Class::*)(ArgTs...) const>
    650     : public HandlerTraits<RetT(ArgTs...)> {};
    651 
    652 // Utility to peel the Expected wrapper off a response handler error type.
    653 template <typename HandlerT> class ResponseHandlerArg;
    654 
    655 template <typename ArgT> class ResponseHandlerArg<Error(Expected<ArgT>)> {
    656 public:
    657   using ArgType = Expected<ArgT>;
    658   using UnwrappedArgType = ArgT;
    659 };
    660 
    661 template <typename ArgT>
    662 class ResponseHandlerArg<ErrorSuccess(Expected<ArgT>)> {
    663 public:
    664   using ArgType = Expected<ArgT>;
    665   using UnwrappedArgType = ArgT;
    666 };
    667 
    668 template <> class ResponseHandlerArg<Error(Error)> {
    669 public:
    670   using ArgType = Error;
    671 };
    672 
    673 template <> class ResponseHandlerArg<ErrorSuccess(Error)> {
    674 public:
    675   using ArgType = Error;
    676 };
    677 
    678 // ResponseHandler represents a handler for a not-yet-received function call
    679 // result.
    680 template <typename ChannelT> class ResponseHandler {
    681 public:
    682   virtual ~ResponseHandler() {}
    683 
    684   // Reads the function result off the wire and acts on it. The meaning of
    685   // "act" will depend on how this method is implemented in any given
    686   // ResponseHandler subclass but could, for example, mean running a
    687   // user-specified handler or setting a promise value.
    688   virtual Error handleResponse(ChannelT &C) = 0;
    689 
    690   // Abandons this outstanding result.
    691   virtual void abandon() = 0;
    692 
    693   // Create an error instance representing an abandoned response.
    694   static Error createAbandonedResponseError() {
    695     return make_error<ResponseAbandoned>();
    696   }
    697 };
    698 
    699 // ResponseHandler subclass for RPC functions with non-void returns.
    700 template <typename ChannelT, typename FuncRetT, typename HandlerT>
    701 class ResponseHandlerImpl : public ResponseHandler<ChannelT> {
    702 public:
    703   ResponseHandlerImpl(HandlerT Handler) : Handler(std::move(Handler)) {}
    704 
    705   // Handle the result by deserializing it from the channel then passing it
    706   // to the user defined handler.
    707   Error handleResponse(ChannelT &C) override {
    708     using UnwrappedArgType = typename ResponseHandlerArg<
    709         typename HandlerTraits<HandlerT>::Type>::UnwrappedArgType;
    710     UnwrappedArgType Result;
    711     if (auto Err =
    712             SerializationTraits<ChannelT, FuncRetT,
    713                                 UnwrappedArgType>::deserialize(C, Result))
    714       return Err;
    715     if (auto Err = C.endReceiveMessage())
    716       return Err;
    717     return Handler(std::move(Result));
    718   }
    719 
    720   // Abandon this response by calling the handler with an 'abandoned response'
    721   // error.
    722   void abandon() override {
    723     if (auto Err = Handler(this->createAbandonedResponseError())) {
    724       // Handlers should not fail when passed an abandoned response error.
    725       report_fatal_error(std::move(Err));
    726     }
    727   }
    728 
    729 private:
    730   HandlerT Handler;
    731 };
    732 
    733 // ResponseHandler subclass for RPC functions with void returns.
    734 template <typename ChannelT, typename HandlerT>
    735 class ResponseHandlerImpl<ChannelT, void, HandlerT>
    736     : public ResponseHandler<ChannelT> {
    737 public:
    738   ResponseHandlerImpl(HandlerT Handler) : Handler(std::move(Handler)) {}
    739 
    740   // Handle the result (no actual value, just a notification that the function
    741   // has completed on the remote end) by calling the user-defined handler with
    742   // Error::success().
    743   Error handleResponse(ChannelT &C) override {
    744     if (auto Err = C.endReceiveMessage())
    745       return Err;
    746     return Handler(Error::success());
    747   }
    748 
    749   // Abandon this response by calling the handler with an 'abandoned response'
    750   // error.
    751   void abandon() override {
    752     if (auto Err = Handler(this->createAbandonedResponseError())) {
    753       // Handlers should not fail when passed an abandoned response error.
    754       report_fatal_error(std::move(Err));
    755     }
    756   }
    757 
    758 private:
    759   HandlerT Handler;
    760 };
    761 
    762 template <typename ChannelT, typename FuncRetT, typename HandlerT>
    763 class ResponseHandlerImpl<ChannelT, Expected<FuncRetT>, HandlerT>
    764     : public ResponseHandler<ChannelT> {
    765 public:
    766   ResponseHandlerImpl(HandlerT Handler) : Handler(std::move(Handler)) {}
    767 
    768   // Handle the result by deserializing it from the channel then passing it
    769   // to the user defined handler.
    770   Error handleResponse(ChannelT &C) override {
    771     using HandlerArgType = typename ResponseHandlerArg<
    772         typename HandlerTraits<HandlerT>::Type>::ArgType;
    773     HandlerArgType Result((typename HandlerArgType::value_type()));
    774 
    775     if (auto Err =
    776             SerializationTraits<ChannelT, Expected<FuncRetT>,
    777                                 HandlerArgType>::deserialize(C, Result))
    778       return Err;
    779     if (auto Err = C.endReceiveMessage())
    780       return Err;
    781     return Handler(std::move(Result));
    782   }
    783 
    784   // Abandon this response by calling the handler with an 'abandoned response'
    785   // error.
    786   void abandon() override {
    787     if (auto Err = Handler(this->createAbandonedResponseError())) {
    788       // Handlers should not fail when passed an abandoned response error.
    789       report_fatal_error(std::move(Err));
    790     }
    791   }
    792 
    793 private:
    794   HandlerT Handler;
    795 };
    796 
    797 template <typename ChannelT, typename HandlerT>
    798 class ResponseHandlerImpl<ChannelT, Error, HandlerT>
    799     : public ResponseHandler<ChannelT> {
    800 public:
    801   ResponseHandlerImpl(HandlerT Handler) : Handler(std::move(Handler)) {}
    802 
    803   // Handle the result by deserializing it from the channel then passing it
    804   // to the user defined handler.
    805   Error handleResponse(ChannelT &C) override {
    806     Error Result = Error::success();
    807     if (auto Err =
    808             SerializationTraits<ChannelT, Error, Error>::deserialize(C, Result))
    809       return Err;
    810     if (auto Err = C.endReceiveMessage())
    811       return Err;
    812     return Handler(std::move(Result));
    813   }
    814 
    815   // Abandon this response by calling the handler with an 'abandoned response'
    816   // error.
    817   void abandon() override {
    818     if (auto Err = Handler(this->createAbandonedResponseError())) {
    819       // Handlers should not fail when passed an abandoned response error.
    820       report_fatal_error(std::move(Err));
    821     }
    822   }
    823 
    824 private:
    825   HandlerT Handler;
    826 };
    827 
    828 // Create a ResponseHandler from a given user handler.
    829 template <typename ChannelT, typename FuncRetT, typename HandlerT>
    830 std::unique_ptr<ResponseHandler<ChannelT>> createResponseHandler(HandlerT H) {
    831   return llvm::make_unique<ResponseHandlerImpl<ChannelT, FuncRetT, HandlerT>>(
    832       std::move(H));
    833 }
    834 
    835 // Helper for wrapping member functions up as functors. This is useful for
    836 // installing methods as result handlers.
    837 template <typename ClassT, typename RetT, typename... ArgTs>
    838 class MemberFnWrapper {
    839 public:
    840   using MethodT = RetT (ClassT::*)(ArgTs...);
    841   MemberFnWrapper(ClassT &Instance, MethodT Method)
    842       : Instance(Instance), Method(Method) {}
    843   RetT operator()(ArgTs &&... Args) {
    844     return (Instance.*Method)(std::move(Args)...);
    845   }
    846 
    847 private:
    848   ClassT &Instance;
    849   MethodT Method;
    850 };
    851 
    852 // Helper that provides a Functor for deserializing arguments.
    853 template <typename... ArgTs> class ReadArgs {
    854 public:
    855   Error operator()() { return Error::success(); }
    856 };
    857 
    858 template <typename ArgT, typename... ArgTs>
    859 class ReadArgs<ArgT, ArgTs...> : public ReadArgs<ArgTs...> {
    860 public:
    861   ReadArgs(ArgT &Arg, ArgTs &... Args)
    862       : ReadArgs<ArgTs...>(Args...), Arg(Arg) {}
    863 
    864   Error operator()(ArgT &ArgVal, ArgTs &... ArgVals) {
    865     this->Arg = std::move(ArgVal);
    866     return ReadArgs<ArgTs...>::operator()(ArgVals...);
    867   }
    868 
    869 private:
    870   ArgT &Arg;
    871 };
    872 
    873 // Manage sequence numbers.
    874 template <typename SequenceNumberT> class SequenceNumberManager {
    875 public:
    876   // Reset, making all sequence numbers available.
    877   void reset() {
    878     std::lock_guard<std::mutex> Lock(SeqNoLock);
    879     NextSequenceNumber = 0;
    880     FreeSequenceNumbers.clear();
    881   }
    882 
    883   // Get the next available sequence number. Will re-use numbers that have
    884   // been released.
    885   SequenceNumberT getSequenceNumber() {
    886     std::lock_guard<std::mutex> Lock(SeqNoLock);
    887     if (FreeSequenceNumbers.empty())
    888       return NextSequenceNumber++;
    889     auto SequenceNumber = FreeSequenceNumbers.back();
    890     FreeSequenceNumbers.pop_back();
    891     return SequenceNumber;
    892   }
    893 
    894   // Release a sequence number, making it available for re-use.
    895   void releaseSequenceNumber(SequenceNumberT SequenceNumber) {
    896     std::lock_guard<std::mutex> Lock(SeqNoLock);
    897     FreeSequenceNumbers.push_back(SequenceNumber);
    898   }
    899 
    900 private:
    901   std::mutex SeqNoLock;
    902   SequenceNumberT NextSequenceNumber = 0;
    903   std::vector<SequenceNumberT> FreeSequenceNumbers;
    904 };
    905 
    906 // Checks that predicate P holds for each corresponding pair of type arguments
    907 // from T1 and T2 tuple.
    908 template <template <class, class> class P, typename T1Tuple, typename T2Tuple>
    909 class RPCArgTypeCheckHelper;
    910 
    911 template <template <class, class> class P>
    912 class RPCArgTypeCheckHelper<P, std::tuple<>, std::tuple<>> {
    913 public:
    914   static const bool value = true;
    915 };
    916 
    917 template <template <class, class> class P, typename T, typename... Ts,
    918           typename U, typename... Us>
    919 class RPCArgTypeCheckHelper<P, std::tuple<T, Ts...>, std::tuple<U, Us...>> {
    920 public:
    921   static const bool value =
    922       P<T, U>::value &&
    923       RPCArgTypeCheckHelper<P, std::tuple<Ts...>, std::tuple<Us...>>::value;
    924 };
    925 
    926 template <template <class, class> class P, typename T1Sig, typename T2Sig>
    927 class RPCArgTypeCheck {
    928 public:
    929   using T1Tuple = typename FunctionArgsTuple<T1Sig>::Type;
    930   using T2Tuple = typename FunctionArgsTuple<T2Sig>::Type;
    931 
    932   static_assert(std::tuple_size<T1Tuple>::value >=
    933                     std::tuple_size<T2Tuple>::value,
    934                 "Too many arguments to RPC call");
    935   static_assert(std::tuple_size<T1Tuple>::value <=
    936                     std::tuple_size<T2Tuple>::value,
    937                 "Too few arguments to RPC call");
    938 
    939   static const bool value = RPCArgTypeCheckHelper<P, T1Tuple, T2Tuple>::value;
    940 };
    941 
    942 template <typename ChannelT, typename WireT, typename ConcreteT>
    943 class CanSerialize {
    944 private:
    945   using S = SerializationTraits<ChannelT, WireT, ConcreteT>;
    946 
    947   template <typename T>
    948   static std::true_type
    949   check(typename std::enable_if<
    950         std::is_same<decltype(T::serialize(std::declval<ChannelT &>(),
    951                                            std::declval<const ConcreteT &>())),
    952                      Error>::value,
    953         void *>::type);
    954 
    955   template <typename> static std::false_type check(...);
    956 
    957 public:
    958   static const bool value = decltype(check<S>(0))::value;
    959 };
    960 
    961 template <typename ChannelT, typename WireT, typename ConcreteT>
    962 class CanDeserialize {
    963 private:
    964   using S = SerializationTraits<ChannelT, WireT, ConcreteT>;
    965 
    966   template <typename T>
    967   static std::true_type
    968   check(typename std::enable_if<
    969         std::is_same<decltype(T::deserialize(std::declval<ChannelT &>(),
    970                                              std::declval<ConcreteT &>())),
    971                      Error>::value,
    972         void *>::type);
    973 
    974   template <typename> static std::false_type check(...);
    975 
    976 public:
    977   static const bool value = decltype(check<S>(0))::value;
    978 };
    979 
    980 /// Contains primitive utilities for defining, calling and handling calls to
    981 /// remote procedures. ChannelT is a bidirectional stream conforming to the
    982 /// RPCChannel interface (see RPCChannel.h), FunctionIdT is a procedure
    983 /// identifier type that must be serializable on ChannelT, and SequenceNumberT
    984 /// is an integral type that will be used to number in-flight function calls.
    985 ///
    986 /// These utilities support the construction of very primitive RPC utilities.
    987 /// Their intent is to ensure correct serialization and deserialization of
    988 /// procedure arguments, and to keep the client and server's view of the API in
    989 /// sync.
    990 template <typename ImplT, typename ChannelT, typename FunctionIdT,
    991           typename SequenceNumberT>
    992 class RPCEndpointBase {
    993 protected:
    994   class OrcRPCInvalid : public Function<OrcRPCInvalid, void()> {
    995   public:
    996     static const char *getName() { return "__orc_rpc$invalid"; }
    997   };
    998 
    999   class OrcRPCResponse : public Function<OrcRPCResponse, void()> {
   1000   public:
   1001     static const char *getName() { return "__orc_rpc$response"; }
   1002   };
   1003 
   1004   class OrcRPCNegotiate
   1005       : public Function<OrcRPCNegotiate, FunctionIdT(std::string)> {
   1006   public:
   1007     static const char *getName() { return "__orc_rpc$negotiate"; }
   1008   };
   1009 
   1010   // Helper predicate for testing for the presence of SerializeTraits
   1011   // serializers.
   1012   template <typename WireT, typename ConcreteT>
   1013   class CanSerializeCheck : detail::CanSerialize<ChannelT, WireT, ConcreteT> {
   1014   public:
   1015     using detail::CanSerialize<ChannelT, WireT, ConcreteT>::value;
   1016 
   1017     static_assert(value, "Missing serializer for argument (Can't serialize the "
   1018                          "first template type argument of CanSerializeCheck "
   1019                          "from the second)");
   1020   };
   1021 
   1022   // Helper predicate for testing for the presence of SerializeTraits
   1023   // deserializers.
   1024   template <typename WireT, typename ConcreteT>
   1025   class CanDeserializeCheck
   1026       : detail::CanDeserialize<ChannelT, WireT, ConcreteT> {
   1027   public:
   1028     using detail::CanDeserialize<ChannelT, WireT, ConcreteT>::value;
   1029 
   1030     static_assert(value, "Missing deserializer for argument (Can't deserialize "
   1031                          "the second template type argument of "
   1032                          "CanDeserializeCheck from the first)");
   1033   };
   1034 
   1035 public:
   1036   /// Construct an RPC instance on a channel.
   1037   RPCEndpointBase(ChannelT &C, bool LazyAutoNegotiation)
   1038       : C(C), LazyAutoNegotiation(LazyAutoNegotiation) {
   1039     // Hold ResponseId in a special variable, since we expect Response to be
   1040     // called relatively frequently, and want to avoid the map lookup.
   1041     ResponseId = FnIdAllocator.getResponseId();
   1042     RemoteFunctionIds[OrcRPCResponse::getPrototype()] = ResponseId;
   1043 
   1044     // Register the negotiate function id and handler.
   1045     auto NegotiateId = FnIdAllocator.getNegotiateId();
   1046     RemoteFunctionIds[OrcRPCNegotiate::getPrototype()] = NegotiateId;
   1047     Handlers[NegotiateId] = wrapHandler<OrcRPCNegotiate>(
   1048         [this](const std::string &Name) { return handleNegotiate(Name); });
   1049   }
   1050 
   1051 
   1052   /// Negotiate a function id for Func with the other end of the channel.
   1053   template <typename Func> Error negotiateFunction(bool Retry = false) {
   1054     return getRemoteFunctionId<Func>(true, Retry).takeError();
   1055   }
   1056 
   1057   /// Append a call Func, does not call send on the channel.
   1058   /// The first argument specifies a user-defined handler to be run when the
   1059   /// function returns. The handler should take an Expected<Func::ReturnType>,
   1060   /// or an Error (if Func::ReturnType is void). The handler will be called
   1061   /// with an error if the return value is abandoned due to a channel error.
   1062   template <typename Func, typename HandlerT, typename... ArgTs>
   1063   Error appendCallAsync(HandlerT Handler, const ArgTs &... Args) {
   1064 
   1065     static_assert(
   1066         detail::RPCArgTypeCheck<CanSerializeCheck, typename Func::Type,
   1067                                 void(ArgTs...)>::value,
   1068         "");
   1069 
   1070     // Look up the function ID.
   1071     FunctionIdT FnId;
   1072     if (auto FnIdOrErr = getRemoteFunctionId<Func>(LazyAutoNegotiation, false))
   1073       FnId = *FnIdOrErr;
   1074     else {
   1075       // Negotiation failed. Notify the handler then return the negotiate-failed
   1076       // error.
   1077       cantFail(Handler(make_error<ResponseAbandoned>()));
   1078       return FnIdOrErr.takeError();
   1079     }
   1080 
   1081     SequenceNumberT SeqNo; // initialized in locked scope below.
   1082     {
   1083       // Lock the pending responses map and sequence number manager.
   1084       std::lock_guard<std::mutex> Lock(ResponsesMutex);
   1085 
   1086       // Allocate a sequence number.
   1087       SeqNo = SequenceNumberMgr.getSequenceNumber();
   1088       assert(!PendingResponses.count(SeqNo) &&
   1089              "Sequence number already allocated");
   1090 
   1091       // Install the user handler.
   1092       PendingResponses[SeqNo] =
   1093         detail::createResponseHandler<ChannelT, typename Func::ReturnType>(
   1094             std::move(Handler));
   1095     }
   1096 
   1097     // Open the function call message.
   1098     if (auto Err = C.startSendMessage(FnId, SeqNo)) {
   1099       abandonPendingResponses();
   1100       return Err;
   1101     }
   1102 
   1103     // Serialize the call arguments.
   1104     if (auto Err = detail::HandlerTraits<typename Func::Type>::serializeArgs(
   1105             C, Args...)) {
   1106       abandonPendingResponses();
   1107       return Err;
   1108     }
   1109 
   1110     // Close the function call messagee.
   1111     if (auto Err = C.endSendMessage()) {
   1112       abandonPendingResponses();
   1113       return Err;
   1114     }
   1115 
   1116     return Error::success();
   1117   }
   1118 
   1119   Error sendAppendedCalls() { return C.send(); };
   1120 
   1121   template <typename Func, typename HandlerT, typename... ArgTs>
   1122   Error callAsync(HandlerT Handler, const ArgTs &... Args) {
   1123     if (auto Err = appendCallAsync<Func>(std::move(Handler), Args...))
   1124       return Err;
   1125     return C.send();
   1126   }
   1127 
   1128   /// Handle one incoming call.
   1129   Error handleOne() {
   1130     FunctionIdT FnId;
   1131     SequenceNumberT SeqNo;
   1132     if (auto Err = C.startReceiveMessage(FnId, SeqNo)) {
   1133       abandonPendingResponses();
   1134       return Err;
   1135     }
   1136     if (FnId == ResponseId)
   1137       return handleResponse(SeqNo);
   1138     auto I = Handlers.find(FnId);
   1139     if (I != Handlers.end())
   1140       return I->second(C, SeqNo);
   1141 
   1142     // else: No handler found. Report error to client?
   1143     return make_error<BadFunctionCall<FunctionIdT, SequenceNumberT>>(FnId,
   1144                                                                      SeqNo);
   1145   }
   1146 
   1147   /// Helper for handling setter procedures - this method returns a functor that
   1148   /// sets the variables referred to by Args... to values deserialized from the
   1149   /// channel.
   1150   /// E.g.
   1151   ///
   1152   ///   typedef Function<0, bool, int> Func1;
   1153   ///
   1154   ///   ...
   1155   ///   bool B;
   1156   ///   int I;
   1157   ///   if (auto Err = expect<Func1>(Channel, readArgs(B, I)))
   1158   ///     /* Handle Args */ ;
   1159   ///
   1160   template <typename... ArgTs>
   1161   static detail::ReadArgs<ArgTs...> readArgs(ArgTs &... Args) {
   1162     return detail::ReadArgs<ArgTs...>(Args...);
   1163   }
   1164 
   1165   /// Abandon all outstanding result handlers.
   1166   ///
   1167   /// This will call all currently registered result handlers to receive an
   1168   /// "abandoned" error as their argument. This is used internally by the RPC
   1169   /// in error situations, but can also be called directly by clients who are
   1170   /// disconnecting from the remote and don't or can't expect responses to their
   1171   /// outstanding calls. (Especially for outstanding blocking calls, calling
   1172   /// this function may be necessary to avoid dead threads).
   1173   void abandonPendingResponses() {
   1174     // Lock the pending responses map and sequence number manager.
   1175     std::lock_guard<std::mutex> Lock(ResponsesMutex);
   1176 
   1177     for (auto &KV : PendingResponses)
   1178       KV.second->abandon();
   1179     PendingResponses.clear();
   1180     SequenceNumberMgr.reset();
   1181   }
   1182 
   1183   /// Remove the handler for the given function.
   1184   /// A handler must currently be registered for this function.
   1185   template <typename Func>
   1186   void removeHandler() {
   1187     auto IdItr = LocalFunctionIds.find(Func::getPrototype());
   1188     assert(IdItr != LocalFunctionIds.end() &&
   1189            "Function does not have a registered handler");
   1190     auto HandlerItr = Handlers.find(IdItr->second);
   1191     assert(HandlerItr != Handlers.end() &&
   1192            "Function does not have a registered handler");
   1193     Handlers.erase(HandlerItr);
   1194   }
   1195 
   1196   /// Clear all handlers.
   1197   void clearHandlers() {
   1198     Handlers.clear();
   1199   }
   1200 
   1201 protected:
   1202 
   1203   FunctionIdT getInvalidFunctionId() const {
   1204     return FnIdAllocator.getInvalidId();
   1205   }
   1206 
   1207   /// Add the given handler to the handler map and make it available for
   1208   /// autonegotiation and execution.
   1209   template <typename Func, typename HandlerT>
   1210   void addHandlerImpl(HandlerT Handler) {
   1211 
   1212     static_assert(detail::RPCArgTypeCheck<
   1213                       CanDeserializeCheck, typename Func::Type,
   1214                       typename detail::HandlerTraits<HandlerT>::Type>::value,
   1215                   "");
   1216 
   1217     FunctionIdT NewFnId = FnIdAllocator.template allocate<Func>();
   1218     LocalFunctionIds[Func::getPrototype()] = NewFnId;
   1219     Handlers[NewFnId] = wrapHandler<Func>(std::move(Handler));
   1220   }
   1221 
   1222   template <typename Func, typename HandlerT>
   1223   void addAsyncHandlerImpl(HandlerT Handler) {
   1224 
   1225     static_assert(detail::RPCArgTypeCheck<
   1226                       CanDeserializeCheck, typename Func::Type,
   1227                       typename detail::AsyncHandlerTraits<
   1228                         typename detail::HandlerTraits<HandlerT>::Type
   1229                       >::Type>::value,
   1230                   "");
   1231 
   1232     FunctionIdT NewFnId = FnIdAllocator.template allocate<Func>();
   1233     LocalFunctionIds[Func::getPrototype()] = NewFnId;
   1234     Handlers[NewFnId] = wrapAsyncHandler<Func>(std::move(Handler));
   1235   }
   1236 
   1237   Error handleResponse(SequenceNumberT SeqNo) {
   1238     using Handler = typename decltype(PendingResponses)::mapped_type;
   1239     Handler PRHandler;
   1240 
   1241     {
   1242       // Lock the pending responses map and sequence number manager.
   1243       std::unique_lock<std::mutex> Lock(ResponsesMutex);
   1244       auto I = PendingResponses.find(SeqNo);
   1245 
   1246       if (I != PendingResponses.end()) {
   1247         PRHandler = std::move(I->second);
   1248         PendingResponses.erase(I);
   1249         SequenceNumberMgr.releaseSequenceNumber(SeqNo);
   1250       } else {
   1251         // Unlock the pending results map to prevent recursive lock.
   1252         Lock.unlock();
   1253         abandonPendingResponses();
   1254         return make_error<
   1255                  InvalidSequenceNumberForResponse<SequenceNumberT>>(SeqNo);
   1256       }
   1257     }
   1258 
   1259     assert(PRHandler &&
   1260            "If we didn't find a response handler we should have bailed out");
   1261 
   1262     if (auto Err = PRHandler->handleResponse(C)) {
   1263       abandonPendingResponses();
   1264       return Err;
   1265     }
   1266 
   1267     return Error::success();
   1268   }
   1269 
   1270   FunctionIdT handleNegotiate(const std::string &Name) {
   1271     auto I = LocalFunctionIds.find(Name);
   1272     if (I == LocalFunctionIds.end())
   1273       return getInvalidFunctionId();
   1274     return I->second;
   1275   }
   1276 
   1277   // Find the remote FunctionId for the given function.
   1278   template <typename Func>
   1279   Expected<FunctionIdT> getRemoteFunctionId(bool NegotiateIfNotInMap,
   1280                                             bool NegotiateIfInvalid) {
   1281     bool DoNegotiate;
   1282 
   1283     // Check if we already have a function id...
   1284     auto I = RemoteFunctionIds.find(Func::getPrototype());
   1285     if (I != RemoteFunctionIds.end()) {
   1286       // If it's valid there's nothing left to do.
   1287       if (I->second != getInvalidFunctionId())
   1288         return I->second;
   1289       DoNegotiate = NegotiateIfInvalid;
   1290     } else
   1291       DoNegotiate = NegotiateIfNotInMap;
   1292 
   1293     // We don't have a function id for Func yet, but we're allowed to try to
   1294     // negotiate one.
   1295     if (DoNegotiate) {
   1296       auto &Impl = static_cast<ImplT &>(*this);
   1297       if (auto RemoteIdOrErr =
   1298           Impl.template callB<OrcRPCNegotiate>(Func::getPrototype())) {
   1299         RemoteFunctionIds[Func::getPrototype()] = *RemoteIdOrErr;
   1300         if (*RemoteIdOrErr == getInvalidFunctionId())
   1301           return make_error<CouldNotNegotiate>(Func::getPrototype());
   1302         return *RemoteIdOrErr;
   1303       } else
   1304         return RemoteIdOrErr.takeError();
   1305     }
   1306 
   1307     // No key was available in the map and we weren't allowed to try to
   1308     // negotiate one, so return an unknown function error.
   1309     return make_error<CouldNotNegotiate>(Func::getPrototype());
   1310   }
   1311 
   1312   using WrappedHandlerFn = std::function<Error(ChannelT &, SequenceNumberT)>;
   1313 
   1314   // Wrap the given user handler in the necessary argument-deserialization code,
   1315   // result-serialization code, and call to the launch policy (if present).
   1316   template <typename Func, typename HandlerT>
   1317   WrappedHandlerFn wrapHandler(HandlerT Handler) {
   1318     return [this, Handler](ChannelT &Channel,
   1319                            SequenceNumberT SeqNo) mutable -> Error {
   1320       // Start by deserializing the arguments.
   1321       using ArgsTuple =
   1322           typename detail::FunctionArgsTuple<
   1323             typename detail::HandlerTraits<HandlerT>::Type>::Type;
   1324       auto Args = std::make_shared<ArgsTuple>();
   1325 
   1326       if (auto Err =
   1327               detail::HandlerTraits<typename Func::Type>::deserializeArgs(
   1328                   Channel, *Args))
   1329         return Err;
   1330 
   1331       // GCC 4.7 and 4.8 incorrectly issue a -Wunused-but-set-variable warning
   1332       // for RPCArgs. Void cast RPCArgs to work around this for now.
   1333       // FIXME: Remove this workaround once we can assume a working GCC version.
   1334       (void)Args;
   1335 
   1336       // End receieve message, unlocking the channel for reading.
   1337       if (auto Err = Channel.endReceiveMessage())
   1338         return Err;
   1339 
   1340       using HTraits = detail::HandlerTraits<HandlerT>;
   1341       using FuncReturn = typename Func::ReturnType;
   1342       return detail::respond<FuncReturn>(Channel, ResponseId, SeqNo,
   1343                                          HTraits::unpackAndRun(Handler, *Args));
   1344     };
   1345   }
   1346 
   1347   // Wrap the given user handler in the necessary argument-deserialization code,
   1348   // result-serialization code, and call to the launch policy (if present).
   1349   template <typename Func, typename HandlerT>
   1350   WrappedHandlerFn wrapAsyncHandler(HandlerT Handler) {
   1351     return [this, Handler](ChannelT &Channel,
   1352                            SequenceNumberT SeqNo) mutable -> Error {
   1353       // Start by deserializing the arguments.
   1354       using AHTraits = detail::AsyncHandlerTraits<
   1355                          typename detail::HandlerTraits<HandlerT>::Type>;
   1356       using ArgsTuple =
   1357           typename detail::FunctionArgsTuple<typename AHTraits::Type>::Type;
   1358       auto Args = std::make_shared<ArgsTuple>();
   1359 
   1360       if (auto Err =
   1361               detail::HandlerTraits<typename Func::Type>::deserializeArgs(
   1362                   Channel, *Args))
   1363         return Err;
   1364 
   1365       // GCC 4.7 and 4.8 incorrectly issue a -Wunused-but-set-variable warning
   1366       // for RPCArgs. Void cast RPCArgs to work around this for now.
   1367       // FIXME: Remove this workaround once we can assume a working GCC version.
   1368       (void)Args;
   1369 
   1370       // End receieve message, unlocking the channel for reading.
   1371       if (auto Err = Channel.endReceiveMessage())
   1372         return Err;
   1373 
   1374       using HTraits = detail::HandlerTraits<HandlerT>;
   1375       using FuncReturn = typename Func::ReturnType;
   1376       auto Responder =
   1377         [this, SeqNo](typename AHTraits::ResultType RetVal) -> Error {
   1378           return detail::respond<FuncReturn>(C, ResponseId, SeqNo,
   1379                                              std::move(RetVal));
   1380         };
   1381 
   1382       return HTraits::unpackAndRunAsync(Handler, Responder, *Args);
   1383     };
   1384   }
   1385 
   1386   ChannelT &C;
   1387 
   1388   bool LazyAutoNegotiation;
   1389 
   1390   RPCFunctionIdAllocator<FunctionIdT> FnIdAllocator;
   1391 
   1392   FunctionIdT ResponseId;
   1393   std::map<std::string, FunctionIdT> LocalFunctionIds;
   1394   std::map<const char *, FunctionIdT> RemoteFunctionIds;
   1395 
   1396   std::map<FunctionIdT, WrappedHandlerFn> Handlers;
   1397 
   1398   std::mutex ResponsesMutex;
   1399   detail::SequenceNumberManager<SequenceNumberT> SequenceNumberMgr;
   1400   std::map<SequenceNumberT, std::unique_ptr<detail::ResponseHandler<ChannelT>>>
   1401       PendingResponses;
   1402 };
   1403 
   1404 } // end namespace detail
   1405 
   1406 template <typename ChannelT, typename FunctionIdT = uint32_t,
   1407           typename SequenceNumberT = uint32_t>
   1408 class MultiThreadedRPCEndpoint
   1409     : public detail::RPCEndpointBase<
   1410           MultiThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>,
   1411           ChannelT, FunctionIdT, SequenceNumberT> {
   1412 private:
   1413   using BaseClass =
   1414       detail::RPCEndpointBase<
   1415         MultiThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>,
   1416         ChannelT, FunctionIdT, SequenceNumberT>;
   1417 
   1418 public:
   1419   MultiThreadedRPCEndpoint(ChannelT &C, bool LazyAutoNegotiation)
   1420       : BaseClass(C, LazyAutoNegotiation) {}
   1421 
   1422   /// Add a handler for the given RPC function.
   1423   /// This installs the given handler functor for the given RPC Function, and
   1424   /// makes the RPC function available for negotiation/calling from the remote.
   1425   template <typename Func, typename HandlerT>
   1426   void addHandler(HandlerT Handler) {
   1427     return this->template addHandlerImpl<Func>(std::move(Handler));
   1428   }
   1429 
   1430   /// Add a class-method as a handler.
   1431   template <typename Func, typename ClassT, typename RetT, typename... ArgTs>
   1432   void addHandler(ClassT &Object, RetT (ClassT::*Method)(ArgTs...)) {
   1433     addHandler<Func>(
   1434       detail::MemberFnWrapper<ClassT, RetT, ArgTs...>(Object, Method));
   1435   }
   1436 
   1437   template <typename Func, typename HandlerT>
   1438   void addAsyncHandler(HandlerT Handler) {
   1439     return this->template addAsyncHandlerImpl<Func>(std::move(Handler));
   1440   }
   1441 
   1442   /// Add a class-method as a handler.
   1443   template <typename Func, typename ClassT, typename RetT, typename... ArgTs>
   1444   void addAsyncHandler(ClassT &Object, RetT (ClassT::*Method)(ArgTs...)) {
   1445     addAsyncHandler<Func>(
   1446       detail::MemberFnWrapper<ClassT, RetT, ArgTs...>(Object, Method));
   1447   }
   1448 
   1449   /// Return type for non-blocking call primitives.
   1450   template <typename Func>
   1451   using NonBlockingCallResult = typename detail::ResultTraits<
   1452       typename Func::ReturnType>::ReturnFutureType;
   1453 
   1454   /// Call Func on Channel C. Does not block, does not call send. Returns a pair
   1455   /// of a future result and the sequence number assigned to the result.
   1456   ///
   1457   /// This utility function is primarily used for single-threaded mode support,
   1458   /// where the sequence number can be used to wait for the corresponding
   1459   /// result. In multi-threaded mode the appendCallNB method, which does not
   1460   /// return the sequence numeber, should be preferred.
   1461   template <typename Func, typename... ArgTs>
   1462   Expected<NonBlockingCallResult<Func>> appendCallNB(const ArgTs &... Args) {
   1463     using RTraits = detail::ResultTraits<typename Func::ReturnType>;
   1464     using ErrorReturn = typename RTraits::ErrorReturnType;
   1465     using ErrorReturnPromise = typename RTraits::ReturnPromiseType;
   1466 
   1467     // FIXME: Stack allocate and move this into the handler once LLVM builds
   1468     //        with C++14.
   1469     auto Promise = std::make_shared<ErrorReturnPromise>();
   1470     auto FutureResult = Promise->get_future();
   1471 
   1472     if (auto Err = this->template appendCallAsync<Func>(
   1473             [Promise](ErrorReturn RetOrErr) {
   1474               Promise->set_value(std::move(RetOrErr));
   1475               return Error::success();
   1476             },
   1477             Args...)) {
   1478       RTraits::consumeAbandoned(FutureResult.get());
   1479       return std::move(Err);
   1480     }
   1481     return std::move(FutureResult);
   1482   }
   1483 
   1484   /// The same as appendCallNBWithSeq, except that it calls C.send() to
   1485   /// flush the channel after serializing the call.
   1486   template <typename Func, typename... ArgTs>
   1487   Expected<NonBlockingCallResult<Func>> callNB(const ArgTs &... Args) {
   1488     auto Result = appendCallNB<Func>(Args...);
   1489     if (!Result)
   1490       return Result;
   1491     if (auto Err = this->C.send()) {
   1492       this->abandonPendingResponses();
   1493       detail::ResultTraits<typename Func::ReturnType>::consumeAbandoned(
   1494           std::move(Result->get()));
   1495       return std::move(Err);
   1496     }
   1497     return Result;
   1498   }
   1499 
   1500   /// Call Func on Channel C. Blocks waiting for a result. Returns an Error
   1501   /// for void functions or an Expected<T> for functions returning a T.
   1502   ///
   1503   /// This function is for use in threaded code where another thread is
   1504   /// handling responses and incoming calls.
   1505   template <typename Func, typename... ArgTs,
   1506             typename AltRetT = typename Func::ReturnType>
   1507   typename detail::ResultTraits<AltRetT>::ErrorReturnType
   1508   callB(const ArgTs &... Args) {
   1509     if (auto FutureResOrErr = callNB<Func>(Args...))
   1510       return FutureResOrErr->get();
   1511     else
   1512       return FutureResOrErr.takeError();
   1513   }
   1514 
   1515   /// Handle incoming RPC calls.
   1516   Error handlerLoop() {
   1517     while (true)
   1518       if (auto Err = this->handleOne())
   1519         return Err;
   1520     return Error::success();
   1521   }
   1522 };
   1523 
   1524 template <typename ChannelT, typename FunctionIdT = uint32_t,
   1525           typename SequenceNumberT = uint32_t>
   1526 class SingleThreadedRPCEndpoint
   1527     : public detail::RPCEndpointBase<
   1528           SingleThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>,
   1529           ChannelT, FunctionIdT, SequenceNumberT> {
   1530 private:
   1531   using BaseClass =
   1532       detail::RPCEndpointBase<
   1533         SingleThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>,
   1534         ChannelT, FunctionIdT, SequenceNumberT>;
   1535 
   1536 public:
   1537   SingleThreadedRPCEndpoint(ChannelT &C, bool LazyAutoNegotiation)
   1538       : BaseClass(C, LazyAutoNegotiation) {}
   1539 
   1540   template <typename Func, typename HandlerT>
   1541   void addHandler(HandlerT Handler) {
   1542     return this->template addHandlerImpl<Func>(std::move(Handler));
   1543   }
   1544 
   1545   template <typename Func, typename ClassT, typename RetT, typename... ArgTs>
   1546   void addHandler(ClassT &Object, RetT (ClassT::*Method)(ArgTs...)) {
   1547     addHandler<Func>(
   1548         detail::MemberFnWrapper<ClassT, RetT, ArgTs...>(Object, Method));
   1549   }
   1550 
   1551   template <typename Func, typename HandlerT>
   1552   void addAsyncHandler(HandlerT Handler) {
   1553     return this->template addAsyncHandlerImpl<Func>(std::move(Handler));
   1554   }
   1555 
   1556   /// Add a class-method as a handler.
   1557   template <typename Func, typename ClassT, typename RetT, typename... ArgTs>
   1558   void addAsyncHandler(ClassT &Object, RetT (ClassT::*Method)(ArgTs...)) {
   1559     addAsyncHandler<Func>(
   1560       detail::MemberFnWrapper<ClassT, RetT, ArgTs...>(Object, Method));
   1561   }
   1562 
   1563   template <typename Func, typename... ArgTs,
   1564             typename AltRetT = typename Func::ReturnType>
   1565   typename detail::ResultTraits<AltRetT>::ErrorReturnType
   1566   callB(const ArgTs &... Args) {
   1567     bool ReceivedResponse = false;
   1568     using ResultType = typename detail::ResultTraits<AltRetT>::ErrorReturnType;
   1569     auto Result = detail::ResultTraits<AltRetT>::createBlankErrorReturnValue();
   1570 
   1571     // We have to 'Check' result (which we know is in a success state at this
   1572     // point) so that it can be overwritten in the async handler.
   1573     (void)!!Result;
   1574 
   1575     if (auto Err = this->template appendCallAsync<Func>(
   1576             [&](ResultType R) {
   1577               Result = std::move(R);
   1578               ReceivedResponse = true;
   1579               return Error::success();
   1580             },
   1581             Args...)) {
   1582       detail::ResultTraits<typename Func::ReturnType>::consumeAbandoned(
   1583           std::move(Result));
   1584       return std::move(Err);
   1585     }
   1586 
   1587     while (!ReceivedResponse) {
   1588       if (auto Err = this->handleOne()) {
   1589         detail::ResultTraits<typename Func::ReturnType>::consumeAbandoned(
   1590             std::move(Result));
   1591         return std::move(Err);
   1592       }
   1593     }
   1594 
   1595     return Result;
   1596   }
   1597 };
   1598 
   1599 /// Asynchronous dispatch for a function on an RPC endpoint.
   1600 template <typename RPCClass, typename Func>
   1601 class RPCAsyncDispatch {
   1602 public:
   1603   RPCAsyncDispatch(RPCClass &Endpoint) : Endpoint(Endpoint) {}
   1604 
   1605   template <typename HandlerT, typename... ArgTs>
   1606   Error operator()(HandlerT Handler, const ArgTs &... Args) const {
   1607     return Endpoint.template appendCallAsync<Func>(std::move(Handler), Args...);
   1608   }
   1609 
   1610 private:
   1611   RPCClass &Endpoint;
   1612 };
   1613 
   1614 /// Construct an asynchronous dispatcher from an RPC endpoint and a Func.
   1615 template <typename Func, typename RPCEndpointT>
   1616 RPCAsyncDispatch<RPCEndpointT, Func> rpcAsyncDispatch(RPCEndpointT &Endpoint) {
   1617   return RPCAsyncDispatch<RPCEndpointT, Func>(Endpoint);
   1618 }
   1619 
   1620 /// \brief Allows a set of asynchrounous calls to be dispatched, and then
   1621 ///        waited on as a group.
   1622 class ParallelCallGroup {
   1623 public:
   1624 
   1625   ParallelCallGroup() = default;
   1626   ParallelCallGroup(const ParallelCallGroup &) = delete;
   1627   ParallelCallGroup &operator=(const ParallelCallGroup &) = delete;
   1628 
   1629   /// \brief Make as asynchronous call.
   1630   template <typename AsyncDispatcher, typename HandlerT, typename... ArgTs>
   1631   Error call(const AsyncDispatcher &AsyncDispatch, HandlerT Handler,
   1632              const ArgTs &... Args) {
   1633     // Increment the count of outstanding calls. This has to happen before
   1634     // we invoke the call, as the handler may (depending on scheduling)
   1635     // be run immediately on another thread, and we don't want the decrement
   1636     // in the wrapped handler below to run before the increment.
   1637     {
   1638       std::unique_lock<std::mutex> Lock(M);
   1639       ++NumOutstandingCalls;
   1640     }
   1641 
   1642     // Wrap the user handler in a lambda that will decrement the
   1643     // outstanding calls count, then poke the condition variable.
   1644     using ArgType = typename detail::ResponseHandlerArg<
   1645         typename detail::HandlerTraits<HandlerT>::Type>::ArgType;
   1646     // FIXME: Move handler into wrapped handler once we have C++14.
   1647     auto WrappedHandler = [this, Handler](ArgType Arg) {
   1648       auto Err = Handler(std::move(Arg));
   1649       std::unique_lock<std::mutex> Lock(M);
   1650       --NumOutstandingCalls;
   1651       CV.notify_all();
   1652       return Err;
   1653     };
   1654 
   1655     return AsyncDispatch(std::move(WrappedHandler), Args...);
   1656   }
   1657 
   1658   /// \brief Blocks until all calls have been completed and their return value
   1659   ///        handlers run.
   1660   void wait() {
   1661     std::unique_lock<std::mutex> Lock(M);
   1662     while (NumOutstandingCalls > 0)
   1663       CV.wait(Lock);
   1664   }
   1665 
   1666 private:
   1667   std::mutex M;
   1668   std::condition_variable CV;
   1669   uint32_t NumOutstandingCalls = 0;
   1670 };
   1671 
   1672 /// @brief Convenience class for grouping RPC Functions into APIs that can be
   1673 ///        negotiated as a block.
   1674 ///
   1675 template <typename... Funcs>
   1676 class APICalls {
   1677 public:
   1678 
   1679   /// @brief Test whether this API contains Function F.
   1680   template <typename F>
   1681   class Contains {
   1682   public:
   1683     static const bool value = false;
   1684   };
   1685 
   1686   /// @brief Negotiate all functions in this API.
   1687   template <typename RPCEndpoint>
   1688   static Error negotiate(RPCEndpoint &R) {
   1689     return Error::success();
   1690   }
   1691 };
   1692 
   1693 template <typename Func, typename... Funcs>
   1694 class APICalls<Func, Funcs...> {
   1695 public:
   1696 
   1697   template <typename F>
   1698   class Contains {
   1699   public:
   1700     static const bool value = std::is_same<F, Func>::value |
   1701                               APICalls<Funcs...>::template Contains<F>::value;
   1702   };
   1703 
   1704   template <typename RPCEndpoint>
   1705   static Error negotiate(RPCEndpoint &R) {
   1706     if (auto Err = R.template negotiateFunction<Func>())
   1707       return Err;
   1708     return APICalls<Funcs...>::negotiate(R);
   1709   }
   1710 
   1711 };
   1712 
   1713 template <typename... InnerFuncs, typename... Funcs>
   1714 class APICalls<APICalls<InnerFuncs...>, Funcs...> {
   1715 public:
   1716 
   1717   template <typename F>
   1718   class Contains {
   1719   public:
   1720     static const bool value =
   1721       APICalls<InnerFuncs...>::template Contains<F>::value |
   1722       APICalls<Funcs...>::template Contains<F>::value;
   1723   };
   1724 
   1725   template <typename RPCEndpoint>
   1726   static Error negotiate(RPCEndpoint &R) {
   1727     if (auto Err = APICalls<InnerFuncs...>::negotiate(R))
   1728       return Err;
   1729     return APICalls<Funcs...>::negotiate(R);
   1730   }
   1731 
   1732 };
   1733 
   1734 } // end namespace rpc
   1735 } // end namespace orc
   1736 } // end namespace llvm
   1737 
   1738 #endif
   1739