1 //===- TargetItinerary.td - Target Itinierary Description --*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the target-independent scheduling interfaces 11 // which should be implemented by each target that uses instruction 12 // itineraries for scheduling. Itineraries are details reservation 13 // tables for each instruction class. They are most appropriate for 14 // in-order machine with complicated scheduling or bundling constraints. 15 // 16 //===----------------------------------------------------------------------===// 17 18 //===----------------------------------------------------------------------===// 19 // Processor functional unit - These values represent the function units 20 // available across all chip sets for the target. Eg., IntUnit, FPUnit, ... 21 // These may be independent values for each chip set or may be shared across 22 // all chip sets of the target. Each functional unit is treated as a resource 23 // during scheduling and has an affect instruction order based on availability 24 // during a time interval. 25 // 26 class FuncUnit; 27 28 //===----------------------------------------------------------------------===// 29 // Pipeline bypass / forwarding - These values specifies the symbolic names of 30 // pipeline bypasses which can be used to forward results of instructions 31 // that are forwarded to uses. 32 class Bypass; 33 def NoBypass : Bypass; 34 35 class ReservationKind<bits<1> val> { 36 int Value = val; 37 } 38 39 def Required : ReservationKind<0>; 40 def Reserved : ReservationKind<1>; 41 42 //===----------------------------------------------------------------------===// 43 // Instruction stage - These values represent a non-pipelined step in 44 // the execution of an instruction. Cycles represents the number of 45 // discrete time slots needed to complete the stage. Units represent 46 // the choice of functional units that can be used to complete the 47 // stage. Eg. IntUnit1, IntUnit2. NextCycles indicates how many 48 // cycles should elapse from the start of this stage to the start of 49 // the next stage in the itinerary. For example: 50 // 51 // A stage is specified in one of two ways: 52 // 53 // InstrStage<1, [FU_x, FU_y]> - TimeInc defaults to Cycles 54 // InstrStage<1, [FU_x, FU_y], 0> - TimeInc explicit 55 // 56 57 class InstrStage<int cycles, list<FuncUnit> units, 58 int timeinc = -1, 59 ReservationKind kind = Required> { 60 int Cycles = cycles; // length of stage in machine cycles 61 list<FuncUnit> Units = units; // choice of functional units 62 int TimeInc = timeinc; // cycles till start of next stage 63 int Kind = kind.Value; // kind of FU reservation 64 } 65 66 //===----------------------------------------------------------------------===// 67 // Instruction itinerary - An itinerary represents a sequential series of steps 68 // required to complete an instruction. Itineraries are represented as lists of 69 // instruction stages. 70 // 71 72 //===----------------------------------------------------------------------===// 73 // Instruction itinerary classes - These values represent 'named' instruction 74 // itinerary. Using named itineraries simplifies managing groups of 75 // instructions across chip sets. An instruction uses the same itinerary class 76 // across all chip sets. Thus a new chip set can be added without modifying 77 // instruction information. 78 // 79 class InstrItinClass; 80 def NoItinerary : InstrItinClass; 81 82 //===----------------------------------------------------------------------===// 83 // Instruction itinerary data - These values provide a runtime map of an 84 // instruction itinerary class (name) to its itinerary data. 85 // 86 // NumMicroOps represents the number of micro-operations that each instruction 87 // in the class are decoded to. If the number is zero, then it means the 88 // instruction can decode into variable number of micro-ops and it must be 89 // determined dynamically. This directly relates to the itineraries 90 // global IssueWidth property, which constrains the number of microops 91 // that can issue per cycle. 92 // 93 // OperandCycles are optional "cycle counts". They specify the cycle after 94 // instruction issue the values which correspond to specific operand indices 95 // are defined or read. Bypasses are optional "pipeline forwarding paths", if 96 // a def by an instruction is available on a specific bypass and the use can 97 // read from the same bypass, then the operand use latency is reduced by one. 98 // 99 // InstrItinData<IIC_iLoad_i , [InstrStage<1, [A9_Pipe1]>, 100 // InstrStage<1, [A9_AGU]>], 101 // [3, 1], [A9_LdBypass]>, 102 // InstrItinData<IIC_iMVNr , [InstrStage<1, [A9_Pipe0, A9_Pipe1]>], 103 // [1, 1], [NoBypass, A9_LdBypass]>, 104 // 105 // In this example, the instruction of IIC_iLoadi reads its input on cycle 1 106 // (after issue) and the result of the load is available on cycle 3. The result 107 // is available via forwarding path A9_LdBypass. If it's used by the first 108 // source operand of instructions of IIC_iMVNr class, then the operand latency 109 // is reduced by 1. 110 class InstrItinData<InstrItinClass Class, list<InstrStage> stages, 111 list<int> operandcycles = [], 112 list<Bypass> bypasses = [], int uops = 1> { 113 InstrItinClass TheClass = Class; 114 int NumMicroOps = uops; 115 list<InstrStage> Stages = stages; 116 list<int> OperandCycles = operandcycles; 117 list<Bypass> Bypasses = bypasses; 118 } 119 120 //===----------------------------------------------------------------------===// 121 // Processor itineraries - These values represent the set of all itinerary 122 // classes for a given chip set. 123 // 124 // Set property values to -1 to use the default. 125 // See InstrItineraryProps for comments and defaults. 126 class ProcessorItineraries<list<FuncUnit> fu, list<Bypass> bp, 127 list<InstrItinData> iid> { 128 list<FuncUnit> FU = fu; 129 list<Bypass> BP = bp; 130 list<InstrItinData> IID = iid; 131 } 132 133 // NoItineraries - A marker that can be used by processors without schedule 134 // info. Subtargets using NoItineraries can bypass the scheduler's 135 // expensive HazardRecognizer because no reservation table is needed. 136 def NoItineraries : ProcessorItineraries<[], [], []>; 137 138 //===----------------------------------------------------------------------===// 139 // Combo Function Unit data - This is a map of combo function unit names to 140 // the list of functional units that are included in the combination. 141 // 142 class ComboFuncData<FuncUnit ComboFunc, list<FuncUnit> funclist> { 143 FuncUnit TheComboFunc = ComboFunc; 144 list<FuncUnit> FuncList = funclist; 145 } 146 147 //===----------------------------------------------------------------------===// 148 // Combo Function Units - This is a list of all combo function unit data. 149 class ComboFuncUnits<list<ComboFuncData> cfd> { 150 list<ComboFuncData> CFD = cfd; 151 } 152 153