Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the generic AliasAnalysis interface, which is used as the
     11 // common interface used by all clients of alias analysis information, and
     12 // implemented by all alias analysis implementations.  Mod/Ref information is
     13 // also captured by this interface.
     14 //
     15 // Implementations of this interface must implement the various virtual methods,
     16 // which automatically provides functionality for the entire suite of client
     17 // APIs.
     18 //
     19 // This API identifies memory regions with the MemoryLocation class. The pointer
     20 // component specifies the base memory address of the region. The Size specifies
     21 // the maximum size (in address units) of the memory region, or
     22 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
     23 // identifies the "type" of the memory reference; see the
     24 // TypeBasedAliasAnalysis class for details.
     25 //
     26 // Some non-obvious details include:
     27 //  - Pointers that point to two completely different objects in memory never
     28 //    alias, regardless of the value of the Size component.
     29 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
     30 //    is two pointers to constant memory. Even if they are equal, constant
     31 //    memory is never stored to, so there will never be any dependencies.
     32 //    In this and other situations, the pointers may be both NoAlias and
     33 //    MustAlias at the same time. The current API can only return one result,
     34 //    though this is rarely a problem in practice.
     35 //
     36 //===----------------------------------------------------------------------===//
     37 
     38 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
     39 #define LLVM_ANALYSIS_ALIASANALYSIS_H
     40 
     41 #include "llvm/Analysis/MemoryLocation.h"
     42 #include "llvm/Analysis/TargetLibraryInfo.h"
     43 #include "llvm/IR/CallSite.h"
     44 #include "llvm/IR/Metadata.h"
     45 #include "llvm/IR/PassManager.h"
     46 
     47 namespace llvm {
     48 class BasicAAResult;
     49 class LoadInst;
     50 class StoreInst;
     51 class VAArgInst;
     52 class DataLayout;
     53 class Pass;
     54 class AnalysisUsage;
     55 class MemTransferInst;
     56 class MemIntrinsic;
     57 class DominatorTree;
     58 class OrderedBasicBlock;
     59 
     60 /// The possible results of an alias query.
     61 ///
     62 /// These results are always computed between two MemoryLocation objects as
     63 /// a query to some alias analysis.
     64 ///
     65 /// Note that these are unscoped enumerations because we would like to support
     66 /// implicitly testing a result for the existence of any possible aliasing with
     67 /// a conversion to bool, but an "enum class" doesn't support this. The
     68 /// canonical names from the literature are suffixed and unique anyways, and so
     69 /// they serve as global constants in LLVM for these results.
     70 ///
     71 /// See docs/AliasAnalysis.html for more information on the specific meanings
     72 /// of these values.
     73 enum AliasResult {
     74   /// The two locations do not alias at all.
     75   ///
     76   /// This value is arranged to convert to false, while all other values
     77   /// convert to true. This allows a boolean context to convert the result to
     78   /// a binary flag indicating whether there is the possibility of aliasing.
     79   NoAlias = 0,
     80   /// The two locations may or may not alias. This is the least precise result.
     81   MayAlias,
     82   /// The two locations alias, but only due to a partial overlap.
     83   PartialAlias,
     84   /// The two locations precisely alias each other.
     85   MustAlias,
     86 };
     87 
     88 /// Flags indicating whether a memory access modifies or references memory.
     89 ///
     90 /// This is no access at all, a modification, a reference, or both
     91 /// a modification and a reference. These are specifically structured such that
     92 /// they form a two bit matrix and bit-tests for 'mod' or 'ref' work with any
     93 /// of the possible values.
     94 enum ModRefInfo {
     95   /// The access neither references nor modifies the value stored in memory.
     96   MRI_NoModRef = 0,
     97   /// The access references the value stored in memory.
     98   MRI_Ref = 1,
     99   /// The access modifies the value stored in memory.
    100   MRI_Mod = 2,
    101   /// The access both references and modifies the value stored in memory.
    102   MRI_ModRef = MRI_Ref | MRI_Mod
    103 };
    104 
    105 /// The locations at which a function might access memory.
    106 ///
    107 /// These are primarily used in conjunction with the \c AccessKind bits to
    108 /// describe both the nature of access and the locations of access for a
    109 /// function call.
    110 enum FunctionModRefLocation {
    111   /// Base case is no access to memory.
    112   FMRL_Nowhere = 0,
    113   /// Access to memory via argument pointers.
    114   FMRL_ArgumentPointees = 4,
    115   /// Memory that is inaccessible via LLVM IR.
    116   FMRL_InaccessibleMem = 8,
    117   /// Access to any memory.
    118   FMRL_Anywhere = 16 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
    119 };
    120 
    121 /// Summary of how a function affects memory in the program.
    122 ///
    123 /// Loads from constant globals are not considered memory accesses for this
    124 /// interface. Also, functions may freely modify stack space local to their
    125 /// invocation without having to report it through these interfaces.
    126 enum FunctionModRefBehavior {
    127   /// This function does not perform any non-local loads or stores to memory.
    128   ///
    129   /// This property corresponds to the GCC 'const' attribute.
    130   /// This property corresponds to the LLVM IR 'readnone' attribute.
    131   /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
    132   FMRB_DoesNotAccessMemory = FMRL_Nowhere | MRI_NoModRef,
    133 
    134   /// The only memory references in this function (if it has any) are
    135   /// non-volatile loads from objects pointed to by its pointer-typed
    136   /// arguments, with arbitrary offsets.
    137   ///
    138   /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
    139   FMRB_OnlyReadsArgumentPointees = FMRL_ArgumentPointees | MRI_Ref,
    140 
    141   /// The only memory references in this function (if it has any) are
    142   /// non-volatile loads and stores from objects pointed to by its
    143   /// pointer-typed arguments, with arbitrary offsets.
    144   ///
    145   /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
    146   FMRB_OnlyAccessesArgumentPointees = FMRL_ArgumentPointees | MRI_ModRef,
    147 
    148   /// The only memory references in this function (if it has any) are
    149   /// references of memory that is otherwise inaccessible via LLVM IR.
    150   ///
    151   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
    152   FMRB_OnlyAccessesInaccessibleMem = FMRL_InaccessibleMem | MRI_ModRef,
    153 
    154   /// The function may perform non-volatile loads and stores of objects
    155   /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
    156   /// it may also perform loads and stores of memory that is otherwise
    157   /// inaccessible via LLVM IR.
    158   ///
    159   /// This property corresponds to the LLVM IR
    160   /// inaccessiblemem_or_argmemonly attribute.
    161   FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
    162                                           FMRL_ArgumentPointees | MRI_ModRef,
    163 
    164   /// This function does not perform any non-local stores or volatile loads,
    165   /// but may read from any memory location.
    166   ///
    167   /// This property corresponds to the GCC 'pure' attribute.
    168   /// This property corresponds to the LLVM IR 'readonly' attribute.
    169   /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
    170   FMRB_OnlyReadsMemory = FMRL_Anywhere | MRI_Ref,
    171 
    172   // This function does not read from memory anywhere, but may write to any
    173   // memory location.
    174   //
    175   // This property corresponds to the LLVM IR 'writeonly' attribute.
    176   // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
    177   FMRB_DoesNotReadMemory = FMRL_Anywhere | MRI_Mod,
    178 
    179   /// This indicates that the function could not be classified into one of the
    180   /// behaviors above.
    181   FMRB_UnknownModRefBehavior = FMRL_Anywhere | MRI_ModRef
    182 };
    183 
    184 class AAResults {
    185 public:
    186   // Make these results default constructable and movable. We have to spell
    187   // these out because MSVC won't synthesize them.
    188   AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
    189   AAResults(AAResults &&Arg);
    190   ~AAResults();
    191 
    192   /// Register a specific AA result.
    193   template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
    194     // FIXME: We should use a much lighter weight system than the usual
    195     // polymorphic pattern because we don't own AAResult. It should
    196     // ideally involve two pointers and no separate allocation.
    197     AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
    198   }
    199 
    200   /// Register a function analysis ID that the results aggregation depends on.
    201   ///
    202   /// This is used in the new pass manager to implement the invalidation logic
    203   /// where we must invalidate the results aggregation if any of our component
    204   /// analyses become invalid.
    205   void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
    206 
    207   /// Handle invalidation events in the new pass manager.
    208   ///
    209   /// The aggregation is invalidated if any of the underlying analyses is
    210   /// invalidated.
    211   bool invalidate(Function &F, const PreservedAnalyses &PA,
    212                   FunctionAnalysisManager::Invalidator &Inv);
    213 
    214   //===--------------------------------------------------------------------===//
    215   /// \name Alias Queries
    216   /// @{
    217 
    218   /// The main low level interface to the alias analysis implementation.
    219   /// Returns an AliasResult indicating whether the two pointers are aliased to
    220   /// each other. This is the interface that must be implemented by specific
    221   /// alias analysis implementations.
    222   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
    223 
    224   /// A convenience wrapper around the primary \c alias interface.
    225   AliasResult alias(const Value *V1, uint64_t V1Size, const Value *V2,
    226                     uint64_t V2Size) {
    227     return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
    228   }
    229 
    230   /// A convenience wrapper around the primary \c alias interface.
    231   AliasResult alias(const Value *V1, const Value *V2) {
    232     return alias(V1, MemoryLocation::UnknownSize, V2,
    233                  MemoryLocation::UnknownSize);
    234   }
    235 
    236   /// A trivial helper function to check to see if the specified pointers are
    237   /// no-alias.
    238   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
    239     return alias(LocA, LocB) == NoAlias;
    240   }
    241 
    242   /// A convenience wrapper around the \c isNoAlias helper interface.
    243   bool isNoAlias(const Value *V1, uint64_t V1Size, const Value *V2,
    244                  uint64_t V2Size) {
    245     return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
    246   }
    247 
    248   /// A convenience wrapper around the \c isNoAlias helper interface.
    249   bool isNoAlias(const Value *V1, const Value *V2) {
    250     return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
    251   }
    252 
    253   /// A trivial helper function to check to see if the specified pointers are
    254   /// must-alias.
    255   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
    256     return alias(LocA, LocB) == MustAlias;
    257   }
    258 
    259   /// A convenience wrapper around the \c isMustAlias helper interface.
    260   bool isMustAlias(const Value *V1, const Value *V2) {
    261     return alias(V1, 1, V2, 1) == MustAlias;
    262   }
    263 
    264   /// Checks whether the given location points to constant memory, or if
    265   /// \p OrLocal is true whether it points to a local alloca.
    266   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
    267 
    268   /// A convenience wrapper around the primary \c pointsToConstantMemory
    269   /// interface.
    270   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
    271     return pointsToConstantMemory(MemoryLocation(P), OrLocal);
    272   }
    273 
    274   /// @}
    275   //===--------------------------------------------------------------------===//
    276   /// \name Simple mod/ref information
    277   /// @{
    278 
    279   /// Get the ModRef info associated with a pointer argument of a callsite. The
    280   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
    281   /// that these bits do not necessarily account for the overall behavior of
    282   /// the function, but rather only provide additional per-argument
    283   /// information.
    284   ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx);
    285 
    286   /// Return the behavior of the given call site.
    287   FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS);
    288 
    289   /// Return the behavior when calling the given function.
    290   FunctionModRefBehavior getModRefBehavior(const Function *F);
    291 
    292   /// Checks if the specified call is known to never read or write memory.
    293   ///
    294   /// Note that if the call only reads from known-constant memory, it is also
    295   /// legal to return true. Also, calls that unwind the stack are legal for
    296   /// this predicate.
    297   ///
    298   /// Many optimizations (such as CSE and LICM) can be performed on such calls
    299   /// without worrying about aliasing properties, and many calls have this
    300   /// property (e.g. calls to 'sin' and 'cos').
    301   ///
    302   /// This property corresponds to the GCC 'const' attribute.
    303   bool doesNotAccessMemory(ImmutableCallSite CS) {
    304     return getModRefBehavior(CS) == FMRB_DoesNotAccessMemory;
    305   }
    306 
    307   /// Checks if the specified function is known to never read or write memory.
    308   ///
    309   /// Note that if the function only reads from known-constant memory, it is
    310   /// also legal to return true. Also, function that unwind the stack are legal
    311   /// for this predicate.
    312   ///
    313   /// Many optimizations (such as CSE and LICM) can be performed on such calls
    314   /// to such functions without worrying about aliasing properties, and many
    315   /// functions have this property (e.g. 'sin' and 'cos').
    316   ///
    317   /// This property corresponds to the GCC 'const' attribute.
    318   bool doesNotAccessMemory(const Function *F) {
    319     return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
    320   }
    321 
    322   /// Checks if the specified call is known to only read from non-volatile
    323   /// memory (or not access memory at all).
    324   ///
    325   /// Calls that unwind the stack are legal for this predicate.
    326   ///
    327   /// This property allows many common optimizations to be performed in the
    328   /// absence of interfering store instructions, such as CSE of strlen calls.
    329   ///
    330   /// This property corresponds to the GCC 'pure' attribute.
    331   bool onlyReadsMemory(ImmutableCallSite CS) {
    332     return onlyReadsMemory(getModRefBehavior(CS));
    333   }
    334 
    335   /// Checks if the specified function is known to only read from non-volatile
    336   /// memory (or not access memory at all).
    337   ///
    338   /// Functions that unwind the stack are legal for this predicate.
    339   ///
    340   /// This property allows many common optimizations to be performed in the
    341   /// absence of interfering store instructions, such as CSE of strlen calls.
    342   ///
    343   /// This property corresponds to the GCC 'pure' attribute.
    344   bool onlyReadsMemory(const Function *F) {
    345     return onlyReadsMemory(getModRefBehavior(F));
    346   }
    347 
    348   /// Checks if functions with the specified behavior are known to only read
    349   /// from non-volatile memory (or not access memory at all).
    350   static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
    351     return !(MRB & MRI_Mod);
    352   }
    353 
    354   /// Checks if functions with the specified behavior are known to only write
    355   /// memory (or not access memory at all).
    356   static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
    357     return !(MRB & MRI_Ref);
    358   }
    359 
    360   /// Checks if functions with the specified behavior are known to read and
    361   /// write at most from objects pointed to by their pointer-typed arguments
    362   /// (with arbitrary offsets).
    363   static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
    364     return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
    365   }
    366 
    367   /// Checks if functions with the specified behavior are known to potentially
    368   /// read or write from objects pointed to be their pointer-typed arguments
    369   /// (with arbitrary offsets).
    370   static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
    371     return (MRB & MRI_ModRef) && (MRB & FMRL_ArgumentPointees);
    372   }
    373 
    374   /// Checks if functions with the specified behavior are known to read and
    375   /// write at most from memory that is inaccessible from LLVM IR.
    376   static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
    377     return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
    378   }
    379 
    380   /// Checks if functions with the specified behavior are known to potentially
    381   /// read or write from memory that is inaccessible from LLVM IR.
    382   static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
    383     return (MRB & MRI_ModRef) && (MRB & FMRL_InaccessibleMem);
    384   }
    385 
    386   /// Checks if functions with the specified behavior are known to read and
    387   /// write at most from memory that is inaccessible from LLVM IR or objects
    388   /// pointed to by their pointer-typed arguments (with arbitrary offsets).
    389   static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
    390     return !(MRB & FMRL_Anywhere &
    391              ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
    392   }
    393 
    394   /// getModRefInfo (for call sites) - Return information about whether
    395   /// a particular call site modifies or reads the specified memory location.
    396   ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc);
    397 
    398   /// getModRefInfo (for call sites) - A convenience wrapper.
    399   ModRefInfo getModRefInfo(ImmutableCallSite CS, const Value *P,
    400                            uint64_t Size) {
    401     return getModRefInfo(CS, MemoryLocation(P, Size));
    402   }
    403 
    404   /// getModRefInfo (for calls) - Return information about whether
    405   /// a particular call modifies or reads the specified memory location.
    406   ModRefInfo getModRefInfo(const CallInst *C, const MemoryLocation &Loc) {
    407     return getModRefInfo(ImmutableCallSite(C), Loc);
    408   }
    409 
    410   /// getModRefInfo (for calls) - A convenience wrapper.
    411   ModRefInfo getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
    412     return getModRefInfo(C, MemoryLocation(P, Size));
    413   }
    414 
    415   /// getModRefInfo (for invokes) - Return information about whether
    416   /// a particular invoke modifies or reads the specified memory location.
    417   ModRefInfo getModRefInfo(const InvokeInst *I, const MemoryLocation &Loc) {
    418     return getModRefInfo(ImmutableCallSite(I), Loc);
    419   }
    420 
    421   /// getModRefInfo (for invokes) - A convenience wrapper.
    422   ModRefInfo getModRefInfo(const InvokeInst *I, const Value *P, uint64_t Size) {
    423     return getModRefInfo(I, MemoryLocation(P, Size));
    424   }
    425 
    426   /// getModRefInfo (for loads) - Return information about whether
    427   /// a particular load modifies or reads the specified memory location.
    428   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
    429 
    430   /// getModRefInfo (for loads) - A convenience wrapper.
    431   ModRefInfo getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
    432     return getModRefInfo(L, MemoryLocation(P, Size));
    433   }
    434 
    435   /// getModRefInfo (for stores) - Return information about whether
    436   /// a particular store modifies or reads the specified memory location.
    437   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
    438 
    439   /// getModRefInfo (for stores) - A convenience wrapper.
    440   ModRefInfo getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) {
    441     return getModRefInfo(S, MemoryLocation(P, Size));
    442   }
    443 
    444   /// getModRefInfo (for fences) - Return information about whether
    445   /// a particular store modifies or reads the specified memory location.
    446   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
    447 
    448   /// getModRefInfo (for fences) - A convenience wrapper.
    449   ModRefInfo getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size) {
    450     return getModRefInfo(S, MemoryLocation(P, Size));
    451   }
    452 
    453   /// getModRefInfo (for cmpxchges) - Return information about whether
    454   /// a particular cmpxchg modifies or reads the specified memory location.
    455   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
    456                            const MemoryLocation &Loc);
    457 
    458   /// getModRefInfo (for cmpxchges) - A convenience wrapper.
    459   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
    460                            unsigned Size) {
    461     return getModRefInfo(CX, MemoryLocation(P, Size));
    462   }
    463 
    464   /// getModRefInfo (for atomicrmws) - Return information about whether
    465   /// a particular atomicrmw modifies or reads the specified memory location.
    466   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
    467 
    468   /// getModRefInfo (for atomicrmws) - A convenience wrapper.
    469   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
    470                            unsigned Size) {
    471     return getModRefInfo(RMW, MemoryLocation(P, Size));
    472   }
    473 
    474   /// getModRefInfo (for va_args) - Return information about whether
    475   /// a particular va_arg modifies or reads the specified memory location.
    476   ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
    477 
    478   /// getModRefInfo (for va_args) - A convenience wrapper.
    479   ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P, uint64_t Size) {
    480     return getModRefInfo(I, MemoryLocation(P, Size));
    481   }
    482 
    483   /// getModRefInfo (for catchpads) - Return information about whether
    484   /// a particular catchpad modifies or reads the specified memory location.
    485   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
    486 
    487   /// getModRefInfo (for catchpads) - A convenience wrapper.
    488   ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
    489                            uint64_t Size) {
    490     return getModRefInfo(I, MemoryLocation(P, Size));
    491   }
    492 
    493   /// getModRefInfo (for catchrets) - Return information about whether
    494   /// a particular catchret modifies or reads the specified memory location.
    495   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
    496 
    497   /// getModRefInfo (for catchrets) - A convenience wrapper.
    498   ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
    499                            uint64_t Size) {
    500     return getModRefInfo(I, MemoryLocation(P, Size));
    501   }
    502 
    503   /// Check whether or not an instruction may read or write memory (without
    504   /// regard to a specific location).
    505   ///
    506   /// For function calls, this delegates to the alias-analysis specific
    507   /// call-site mod-ref behavior queries. Otherwise it delegates to the generic
    508   /// mod ref information query without a location.
    509   ModRefInfo getModRefInfo(const Instruction *I) {
    510     if (auto CS = ImmutableCallSite(I)) {
    511       auto MRB = getModRefBehavior(CS);
    512       if ((MRB & MRI_ModRef) == MRI_ModRef)
    513         return MRI_ModRef;
    514       if (MRB & MRI_Ref)
    515         return MRI_Ref;
    516       if (MRB & MRI_Mod)
    517         return MRI_Mod;
    518       return MRI_NoModRef;
    519     }
    520 
    521     return getModRefInfo(I, MemoryLocation());
    522   }
    523 
    524   /// Check whether or not an instruction may read or write the specified
    525   /// memory location.
    526   ///
    527   /// Note explicitly that getModRefInfo considers the effects of reading and
    528   /// writing the memory location, and not the effect of ordering relative to
    529   /// other instructions.  Thus, a volatile load is considered to be Ref,
    530   /// because it does not actually write memory, it just can't be reordered
    531   /// relative to other volatiles (or removed).  Atomic ordered loads/stores are
    532   /// considered ModRef ATM because conservatively, the visible effect appears
    533   /// as if memory was written, not just an ordering constraint.
    534   ///
    535   /// An instruction that doesn't read or write memory may be trivially LICM'd
    536   /// for example.
    537   ///
    538   /// This primarily delegates to specific helpers above.
    539   ModRefInfo getModRefInfo(const Instruction *I, const MemoryLocation &Loc) {
    540     switch (I->getOpcode()) {
    541     case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
    542     case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
    543     case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
    544     case Instruction::Fence:  return getModRefInfo((const FenceInst*)I, Loc);
    545     case Instruction::AtomicCmpXchg:
    546       return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
    547     case Instruction::AtomicRMW:
    548       return getModRefInfo((const AtomicRMWInst*)I, Loc);
    549     case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
    550     case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
    551     case Instruction::CatchPad:
    552       return getModRefInfo((const CatchPadInst *)I, Loc);
    553     case Instruction::CatchRet:
    554       return getModRefInfo((const CatchReturnInst *)I, Loc);
    555     default:
    556       return MRI_NoModRef;
    557     }
    558   }
    559 
    560   /// A convenience wrapper for constructing the memory location.
    561   ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
    562                            uint64_t Size) {
    563     return getModRefInfo(I, MemoryLocation(P, Size));
    564   }
    565 
    566   /// Return information about whether a call and an instruction may refer to
    567   /// the same memory locations.
    568   ModRefInfo getModRefInfo(Instruction *I, ImmutableCallSite Call);
    569 
    570   /// Return information about whether two call sites may refer to the same set
    571   /// of memory locations. See the AA documentation for details:
    572   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
    573   ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2);
    574 
    575   /// \brief Return information about whether a particular call site modifies
    576   /// or reads the specified memory location \p MemLoc before instruction \p I
    577   /// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
    578   /// instruction ordering queries inside the BasicBlock containing \p I.
    579   ModRefInfo callCapturesBefore(const Instruction *I,
    580                                 const MemoryLocation &MemLoc, DominatorTree *DT,
    581                                 OrderedBasicBlock *OBB = nullptr);
    582 
    583   /// \brief A convenience wrapper to synthesize a memory location.
    584   ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
    585                                 uint64_t Size, DominatorTree *DT,
    586                                 OrderedBasicBlock *OBB = nullptr) {
    587     return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
    588   }
    589 
    590   /// @}
    591   //===--------------------------------------------------------------------===//
    592   /// \name Higher level methods for querying mod/ref information.
    593   /// @{
    594 
    595   /// Check if it is possible for execution of the specified basic block to
    596   /// modify the location Loc.
    597   bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
    598 
    599   /// A convenience wrapper synthesizing a memory location.
    600   bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
    601                            uint64_t Size) {
    602     return canBasicBlockModify(BB, MemoryLocation(P, Size));
    603   }
    604 
    605   /// Check if it is possible for the execution of the specified instructions
    606   /// to mod\ref (according to the mode) the location Loc.
    607   ///
    608   /// The instructions to consider are all of the instructions in the range of
    609   /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
    610   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
    611                                  const MemoryLocation &Loc,
    612                                  const ModRefInfo Mode);
    613 
    614   /// A convenience wrapper synthesizing a memory location.
    615   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
    616                                  const Value *Ptr, uint64_t Size,
    617                                  const ModRefInfo Mode) {
    618     return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
    619   }
    620 
    621 private:
    622   class Concept;
    623   template <typename T> class Model;
    624 
    625   template <typename T> friend class AAResultBase;
    626 
    627   const TargetLibraryInfo &TLI;
    628 
    629   std::vector<std::unique_ptr<Concept>> AAs;
    630 
    631   std::vector<AnalysisKey *> AADeps;
    632 };
    633 
    634 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
    635 /// pointer or reference.
    636 typedef AAResults AliasAnalysis;
    637 
    638 /// A private abstract base class describing the concept of an individual alias
    639 /// analysis implementation.
    640 ///
    641 /// This interface is implemented by any \c Model instantiation. It is also the
    642 /// interface which a type used to instantiate the model must provide.
    643 ///
    644 /// All of these methods model methods by the same name in the \c
    645 /// AAResults class. Only differences and specifics to how the
    646 /// implementations are called are documented here.
    647 class AAResults::Concept {
    648 public:
    649   virtual ~Concept() = 0;
    650 
    651   /// An update API used internally by the AAResults to provide
    652   /// a handle back to the top level aggregation.
    653   virtual void setAAResults(AAResults *NewAAR) = 0;
    654 
    655   //===--------------------------------------------------------------------===//
    656   /// \name Alias Queries
    657   /// @{
    658 
    659   /// The main low level interface to the alias analysis implementation.
    660   /// Returns an AliasResult indicating whether the two pointers are aliased to
    661   /// each other. This is the interface that must be implemented by specific
    662   /// alias analysis implementations.
    663   virtual AliasResult alias(const MemoryLocation &LocA,
    664                             const MemoryLocation &LocB) = 0;
    665 
    666   /// Checks whether the given location points to constant memory, or if
    667   /// \p OrLocal is true whether it points to a local alloca.
    668   virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
    669                                       bool OrLocal) = 0;
    670 
    671   /// @}
    672   //===--------------------------------------------------------------------===//
    673   /// \name Simple mod/ref information
    674   /// @{
    675 
    676   /// Get the ModRef info associated with a pointer argument of a callsite. The
    677   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
    678   /// that these bits do not necessarily account for the overall behavior of
    679   /// the function, but rather only provide additional per-argument
    680   /// information.
    681   virtual ModRefInfo getArgModRefInfo(ImmutableCallSite CS,
    682                                       unsigned ArgIdx) = 0;
    683 
    684   /// Return the behavior of the given call site.
    685   virtual FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) = 0;
    686 
    687   /// Return the behavior when calling the given function.
    688   virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
    689 
    690   /// getModRefInfo (for call sites) - Return information about whether
    691   /// a particular call site modifies or reads the specified memory location.
    692   virtual ModRefInfo getModRefInfo(ImmutableCallSite CS,
    693                                    const MemoryLocation &Loc) = 0;
    694 
    695   /// Return information about whether two call sites may refer to the same set
    696   /// of memory locations. See the AA documentation for details:
    697   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
    698   virtual ModRefInfo getModRefInfo(ImmutableCallSite CS1,
    699                                    ImmutableCallSite CS2) = 0;
    700 
    701   /// @}
    702 };
    703 
    704 /// A private class template which derives from \c Concept and wraps some other
    705 /// type.
    706 ///
    707 /// This models the concept by directly forwarding each interface point to the
    708 /// wrapped type which must implement a compatible interface. This provides
    709 /// a type erased binding.
    710 template <typename AAResultT> class AAResults::Model final : public Concept {
    711   AAResultT &Result;
    712 
    713 public:
    714   explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
    715     Result.setAAResults(&AAR);
    716   }
    717   ~Model() override {}
    718 
    719   void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
    720 
    721   AliasResult alias(const MemoryLocation &LocA,
    722                     const MemoryLocation &LocB) override {
    723     return Result.alias(LocA, LocB);
    724   }
    725 
    726   bool pointsToConstantMemory(const MemoryLocation &Loc,
    727                               bool OrLocal) override {
    728     return Result.pointsToConstantMemory(Loc, OrLocal);
    729   }
    730 
    731   ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) override {
    732     return Result.getArgModRefInfo(CS, ArgIdx);
    733   }
    734 
    735   FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
    736     return Result.getModRefBehavior(CS);
    737   }
    738 
    739   FunctionModRefBehavior getModRefBehavior(const Function *F) override {
    740     return Result.getModRefBehavior(F);
    741   }
    742 
    743   ModRefInfo getModRefInfo(ImmutableCallSite CS,
    744                            const MemoryLocation &Loc) override {
    745     return Result.getModRefInfo(CS, Loc);
    746   }
    747 
    748   ModRefInfo getModRefInfo(ImmutableCallSite CS1,
    749                            ImmutableCallSite CS2) override {
    750     return Result.getModRefInfo(CS1, CS2);
    751   }
    752 };
    753 
    754 /// A CRTP-driven "mixin" base class to help implement the function alias
    755 /// analysis results concept.
    756 ///
    757 /// Because of the nature of many alias analysis implementations, they often
    758 /// only implement a subset of the interface. This base class will attempt to
    759 /// implement the remaining portions of the interface in terms of simpler forms
    760 /// of the interface where possible, and otherwise provide conservatively
    761 /// correct fallback implementations.
    762 ///
    763 /// Implementors of an alias analysis should derive from this CRTP, and then
    764 /// override specific methods that they wish to customize. There is no need to
    765 /// use virtual anywhere, the CRTP base class does static dispatch to the
    766 /// derived type passed into it.
    767 template <typename DerivedT> class AAResultBase {
    768   // Expose some parts of the interface only to the AAResults::Model
    769   // for wrapping. Specifically, this allows the model to call our
    770   // setAAResults method without exposing it as a fully public API.
    771   friend class AAResults::Model<DerivedT>;
    772 
    773   /// A pointer to the AAResults object that this AAResult is
    774   /// aggregated within. May be null if not aggregated.
    775   AAResults *AAR;
    776 
    777   /// Helper to dispatch calls back through the derived type.
    778   DerivedT &derived() { return static_cast<DerivedT &>(*this); }
    779 
    780   /// A setter for the AAResults pointer, which is used to satisfy the
    781   /// AAResults::Model contract.
    782   void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
    783 
    784 protected:
    785   /// This proxy class models a common pattern where we delegate to either the
    786   /// top-level \c AAResults aggregation if one is registered, or to the
    787   /// current result if none are registered.
    788   class AAResultsProxy {
    789     AAResults *AAR;
    790     DerivedT &CurrentResult;
    791 
    792   public:
    793     AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
    794         : AAR(AAR), CurrentResult(CurrentResult) {}
    795 
    796     AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
    797       return AAR ? AAR->alias(LocA, LocB) : CurrentResult.alias(LocA, LocB);
    798     }
    799 
    800     bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
    801       return AAR ? AAR->pointsToConstantMemory(Loc, OrLocal)
    802                  : CurrentResult.pointsToConstantMemory(Loc, OrLocal);
    803     }
    804 
    805     ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
    806       return AAR ? AAR->getArgModRefInfo(CS, ArgIdx) : CurrentResult.getArgModRefInfo(CS, ArgIdx);
    807     }
    808 
    809     FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
    810       return AAR ? AAR->getModRefBehavior(CS) : CurrentResult.getModRefBehavior(CS);
    811     }
    812 
    813     FunctionModRefBehavior getModRefBehavior(const Function *F) {
    814       return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
    815     }
    816 
    817     ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
    818       return AAR ? AAR->getModRefInfo(CS, Loc)
    819                  : CurrentResult.getModRefInfo(CS, Loc);
    820     }
    821 
    822     ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
    823       return AAR ? AAR->getModRefInfo(CS1, CS2) : CurrentResult.getModRefInfo(CS1, CS2);
    824     }
    825   };
    826 
    827   explicit AAResultBase() {}
    828 
    829   // Provide all the copy and move constructors so that derived types aren't
    830   // constrained.
    831   AAResultBase(const AAResultBase &Arg) {}
    832   AAResultBase(AAResultBase &&Arg) {}
    833 
    834   /// Get a proxy for the best AA result set to query at this time.
    835   ///
    836   /// When this result is part of a larger aggregation, this will proxy to that
    837   /// aggregation. When this result is used in isolation, it will just delegate
    838   /// back to the derived class's implementation.
    839   ///
    840   /// Note that callers of this need to take considerable care to not cause
    841   /// performance problems when they use this routine, in the case of a large
    842   /// number of alias analyses being aggregated, it can be expensive to walk
    843   /// back across the chain.
    844   AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
    845 
    846 public:
    847   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
    848     return MayAlias;
    849   }
    850 
    851   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
    852     return false;
    853   }
    854 
    855   ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
    856     return MRI_ModRef;
    857   }
    858 
    859   FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
    860     return FMRB_UnknownModRefBehavior;
    861   }
    862 
    863   FunctionModRefBehavior getModRefBehavior(const Function *F) {
    864     return FMRB_UnknownModRefBehavior;
    865   }
    866 
    867   ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
    868     return MRI_ModRef;
    869   }
    870 
    871   ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
    872     return MRI_ModRef;
    873   }
    874 };
    875 
    876 
    877 /// Return true if this pointer is returned by a noalias function.
    878 bool isNoAliasCall(const Value *V);
    879 
    880 /// Return true if this is an argument with the noalias attribute.
    881 bool isNoAliasArgument(const Value *V);
    882 
    883 /// Return true if this pointer refers to a distinct and identifiable object.
    884 /// This returns true for:
    885 ///    Global Variables and Functions (but not Global Aliases)
    886 ///    Allocas
    887 ///    ByVal and NoAlias Arguments
    888 ///    NoAlias returns (e.g. calls to malloc)
    889 ///
    890 bool isIdentifiedObject(const Value *V);
    891 
    892 /// Return true if V is umabigously identified at the function-level.
    893 /// Different IdentifiedFunctionLocals can't alias.
    894 /// Further, an IdentifiedFunctionLocal can not alias with any function
    895 /// arguments other than itself, which is not necessarily true for
    896 /// IdentifiedObjects.
    897 bool isIdentifiedFunctionLocal(const Value *V);
    898 
    899 /// A manager for alias analyses.
    900 ///
    901 /// This class can have analyses registered with it and when run, it will run
    902 /// all of them and aggregate their results into single AA results interface
    903 /// that dispatches across all of the alias analysis results available.
    904 ///
    905 /// Note that the order in which analyses are registered is very significant.
    906 /// That is the order in which the results will be aggregated and queried.
    907 ///
    908 /// This manager effectively wraps the AnalysisManager for registering alias
    909 /// analyses. When you register your alias analysis with this manager, it will
    910 /// ensure the analysis itself is registered with its AnalysisManager.
    911 class AAManager : public AnalysisInfoMixin<AAManager> {
    912 public:
    913   typedef AAResults Result;
    914 
    915   /// Register a specific AA result.
    916   template <typename AnalysisT> void registerFunctionAnalysis() {
    917     ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
    918   }
    919 
    920   /// Register a specific AA result.
    921   template <typename AnalysisT> void registerModuleAnalysis() {
    922     ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
    923   }
    924 
    925   Result run(Function &F, FunctionAnalysisManager &AM) {
    926     Result R(AM.getResult<TargetLibraryAnalysis>(F));
    927     for (auto &Getter : ResultGetters)
    928       (*Getter)(F, AM, R);
    929     return R;
    930   }
    931 
    932 private:
    933   friend AnalysisInfoMixin<AAManager>;
    934   static AnalysisKey Key;
    935 
    936   SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
    937                        AAResults &AAResults),
    938               4> ResultGetters;
    939 
    940   template <typename AnalysisT>
    941   static void getFunctionAAResultImpl(Function &F,
    942                                       FunctionAnalysisManager &AM,
    943                                       AAResults &AAResults) {
    944     AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
    945     AAResults.addAADependencyID(AnalysisT::ID());
    946   }
    947 
    948   template <typename AnalysisT>
    949   static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
    950                                     AAResults &AAResults) {
    951     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
    952     auto &MAM = MAMProxy.getManager();
    953     if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent())) {
    954       AAResults.addAAResult(*R);
    955       MAMProxy
    956           .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
    957     }
    958   }
    959 };
    960 
    961 /// A wrapper pass to provide the legacy pass manager access to a suitably
    962 /// prepared AAResults object.
    963 class AAResultsWrapperPass : public FunctionPass {
    964   std::unique_ptr<AAResults> AAR;
    965 
    966 public:
    967   static char ID;
    968 
    969   AAResultsWrapperPass();
    970 
    971   AAResults &getAAResults() { return *AAR; }
    972   const AAResults &getAAResults() const { return *AAR; }
    973 
    974   bool runOnFunction(Function &F) override;
    975 
    976   void getAnalysisUsage(AnalysisUsage &AU) const override;
    977 };
    978 
    979 FunctionPass *createAAResultsWrapperPass();
    980 
    981 /// A wrapper pass around a callback which can be used to populate the
    982 /// AAResults in the AAResultsWrapperPass from an external AA.
    983 ///
    984 /// The callback provided here will be used each time we prepare an AAResults
    985 /// object, and will receive a reference to the function wrapper pass, the
    986 /// function, and the AAResults object to populate. This should be used when
    987 /// setting up a custom pass pipeline to inject a hook into the AA results.
    988 ImmutablePass *createExternalAAWrapperPass(
    989     std::function<void(Pass &, Function &, AAResults &)> Callback);
    990 
    991 /// A helper for the legacy pass manager to create a \c AAResults
    992 /// object populated to the best of our ability for a particular function when
    993 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
    994 ///
    995 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
    996 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
    997 /// getAnalysisUsage.
    998 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
    999 
   1000 /// A helper for the legacy pass manager to populate \p AU to add uses to make
   1001 /// sure the analyses required by \p createLegacyPMAAResults are available.
   1002 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
   1003 
   1004 } // End llvm namespace
   1005 
   1006 #endif
   1007