Home | History | Annotate | Download | only in Target
      1 //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the target-independent interfaces which should be
     11 // implemented by each target which is using a TableGen based code generator.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 // Include all information about LLVM intrinsics.
     16 include "llvm/IR/Intrinsics.td"
     17 
     18 //===----------------------------------------------------------------------===//
     19 // Register file description - These classes are used to fill in the target
     20 // description classes.
     21 
     22 class RegisterClass; // Forward def
     23 
     24 // SubRegIndex - Use instances of SubRegIndex to identify subregisters.
     25 class SubRegIndex<int size, int offset = 0> {
     26   string Namespace = "";
     27 
     28   // Size - Size (in bits) of the sub-registers represented by this index.
     29   int Size = size;
     30 
     31   // Offset - Offset of the first bit that is part of this sub-register index.
     32   // Set it to -1 if the same index is used to represent sub-registers that can
     33   // be at different offsets (for example when using an index to access an
     34   // element in a register tuple).
     35   int Offset = offset;
     36 
     37   // ComposedOf - A list of two SubRegIndex instances, [A, B].
     38   // This indicates that this SubRegIndex is the result of composing A and B.
     39   // See ComposedSubRegIndex.
     40   list<SubRegIndex> ComposedOf = [];
     41 
     42   // CoveringSubRegIndices - A list of two or more sub-register indexes that
     43   // cover this sub-register.
     44   //
     45   // This field should normally be left blank as TableGen can infer it.
     46   //
     47   // TableGen automatically detects sub-registers that straddle the registers
     48   // in the SubRegs field of a Register definition. For example:
     49   //
     50   //   Q0    = dsub_0 -> D0, dsub_1 -> D1
     51   //   Q1    = dsub_0 -> D2, dsub_1 -> D3
     52   //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
     53   //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
     54   //
     55   // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
     56   // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
     57   // CoveringSubRegIndices = [dsub_1, dsub_2].
     58   list<SubRegIndex> CoveringSubRegIndices = [];
     59 }
     60 
     61 // ComposedSubRegIndex - A sub-register that is the result of composing A and B.
     62 // Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
     63 class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
     64   : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
     65                         !if(!eq(B.Offset, -1), -1,
     66                             !add(A.Offset, B.Offset)))> {
     67   // See SubRegIndex.
     68   let ComposedOf = [A, B];
     69 }
     70 
     71 // RegAltNameIndex - The alternate name set to use for register operands of
     72 // this register class when printing.
     73 class RegAltNameIndex {
     74   string Namespace = "";
     75 }
     76 def NoRegAltName : RegAltNameIndex;
     77 
     78 // Register - You should define one instance of this class for each register
     79 // in the target machine.  String n will become the "name" of the register.
     80 class Register<string n, list<string> altNames = []> {
     81   string Namespace = "";
     82   string AsmName = n;
     83   list<string> AltNames = altNames;
     84 
     85   // Aliases - A list of registers that this register overlaps with.  A read or
     86   // modification of this register can potentially read or modify the aliased
     87   // registers.
     88   list<Register> Aliases = [];
     89 
     90   // SubRegs - A list of registers that are parts of this register. Note these
     91   // are "immediate" sub-registers and the registers within the list do not
     92   // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
     93   // not [AX, AH, AL].
     94   list<Register> SubRegs = [];
     95 
     96   // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
     97   // to address it. Sub-sub-register indices are automatically inherited from
     98   // SubRegs.
     99   list<SubRegIndex> SubRegIndices = [];
    100 
    101   // RegAltNameIndices - The alternate name indices which are valid for this
    102   // register.
    103   list<RegAltNameIndex> RegAltNameIndices = [];
    104 
    105   // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
    106   // These values can be determined by locating the <target>.h file in the
    107   // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
    108   // order of these names correspond to the enumeration used by gcc.  A value of
    109   // -1 indicates that the gcc number is undefined and -2 that register number
    110   // is invalid for this mode/flavour.
    111   list<int> DwarfNumbers = [];
    112 
    113   // CostPerUse - Additional cost of instructions using this register compared
    114   // to other registers in its class. The register allocator will try to
    115   // minimize the number of instructions using a register with a CostPerUse.
    116   // This is used by the x86-64 and ARM Thumb targets where some registers
    117   // require larger instruction encodings.
    118   int CostPerUse = 0;
    119 
    120   // CoveredBySubRegs - When this bit is set, the value of this register is
    121   // completely determined by the value of its sub-registers.  For example, the
    122   // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
    123   // covered by its sub-register AX.
    124   bit CoveredBySubRegs = 0;
    125 
    126   // HWEncoding - The target specific hardware encoding for this register.
    127   bits<16> HWEncoding = 0;
    128 }
    129 
    130 // RegisterWithSubRegs - This can be used to define instances of Register which
    131 // need to specify sub-registers.
    132 // List "subregs" specifies which registers are sub-registers to this one. This
    133 // is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
    134 // This allows the code generator to be careful not to put two values with
    135 // overlapping live ranges into registers which alias.
    136 class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
    137   let SubRegs = subregs;
    138 }
    139 
    140 // DAGOperand - An empty base class that unifies RegisterClass's and other forms
    141 // of Operand's that are legal as type qualifiers in DAG patterns.  This should
    142 // only ever be used for defining multiclasses that are polymorphic over both
    143 // RegisterClass's and other Operand's.
    144 class DAGOperand {
    145   string OperandNamespace = "MCOI";
    146   string DecoderMethod = "";
    147 }
    148 
    149 // RegisterClass - Now that all of the registers are defined, and aliases
    150 // between registers are defined, specify which registers belong to which
    151 // register classes.  This also defines the default allocation order of
    152 // registers by register allocators.
    153 //
    154 class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
    155                     dag regList, RegAltNameIndex idx = NoRegAltName>
    156   : DAGOperand {
    157   string Namespace = namespace;
    158 
    159   // RegType - Specify the list ValueType of the registers in this register
    160   // class.  Note that all registers in a register class must have the same
    161   // ValueTypes.  This is a list because some targets permit storing different
    162   // types in same register, for example vector values with 128-bit total size,
    163   // but different count/size of items, like SSE on x86.
    164   //
    165   list<ValueType> RegTypes = regTypes;
    166 
    167   // Size - Specify the spill size in bits of the registers.  A default value of
    168   // zero lets tablgen pick an appropriate size.
    169   int Size = 0;
    170 
    171   // Alignment - Specify the alignment required of the registers when they are
    172   // stored or loaded to memory.
    173   //
    174   int Alignment = alignment;
    175 
    176   // CopyCost - This value is used to specify the cost of copying a value
    177   // between two registers in this register class. The default value is one
    178   // meaning it takes a single instruction to perform the copying. A negative
    179   // value means copying is extremely expensive or impossible.
    180   int CopyCost = 1;
    181 
    182   // MemberList - Specify which registers are in this class.  If the
    183   // allocation_order_* method are not specified, this also defines the order of
    184   // allocation used by the register allocator.
    185   //
    186   dag MemberList = regList;
    187 
    188   // AltNameIndex - The alternate register name to use when printing operands
    189   // of this register class. Every register in the register class must have
    190   // a valid alternate name for the given index.
    191   RegAltNameIndex altNameIndex = idx;
    192 
    193   // isAllocatable - Specify that the register class can be used for virtual
    194   // registers and register allocation.  Some register classes are only used to
    195   // model instruction operand constraints, and should have isAllocatable = 0.
    196   bit isAllocatable = 1;
    197 
    198   // AltOrders - List of alternative allocation orders. The default order is
    199   // MemberList itself, and that is good enough for most targets since the
    200   // register allocators automatically remove reserved registers and move
    201   // callee-saved registers to the end.
    202   list<dag> AltOrders = [];
    203 
    204   // AltOrderSelect - The body of a function that selects the allocation order
    205   // to use in a given machine function. The code will be inserted in a
    206   // function like this:
    207   //
    208   //   static inline unsigned f(const MachineFunction &MF) { ... }
    209   //
    210   // The function should return 0 to select the default order defined by
    211   // MemberList, 1 to select the first AltOrders entry and so on.
    212   code AltOrderSelect = [{}];
    213 
    214   // Specify allocation priority for register allocators using a greedy
    215   // heuristic. Classes with higher priority values are assigned first. This is
    216   // useful as it is sometimes beneficial to assign registers to highly
    217   // constrained classes first. The value has to be in the range [0,63].
    218   int AllocationPriority = 0;
    219 }
    220 
    221 // The memberList in a RegisterClass is a dag of set operations. TableGen
    222 // evaluates these set operations and expand them into register lists. These
    223 // are the most common operation, see test/TableGen/SetTheory.td for more
    224 // examples of what is possible:
    225 //
    226 // (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
    227 // register class, or a sub-expression. This is also the way to simply list
    228 // registers.
    229 //
    230 // (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
    231 //
    232 // (and GPR, CSR) - Set intersection. All registers from the first set that are
    233 // also in the second set.
    234 //
    235 // (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
    236 // numbered registers.  Takes an optional 4th operand which is a stride to use
    237 // when generating the sequence.
    238 //
    239 // (shl GPR, 4) - Remove the first N elements.
    240 //
    241 // (trunc GPR, 4) - Truncate after the first N elements.
    242 //
    243 // (rotl GPR, 1) - Rotate N places to the left.
    244 //
    245 // (rotr GPR, 1) - Rotate N places to the right.
    246 //
    247 // (decimate GPR, 2) - Pick every N'th element, starting with the first.
    248 //
    249 // (interleave A, B, ...) - Interleave the elements from each argument list.
    250 //
    251 // All of these operators work on ordered sets, not lists. That means
    252 // duplicates are removed from sub-expressions.
    253 
    254 // Set operators. The rest is defined in TargetSelectionDAG.td.
    255 def sequence;
    256 def decimate;
    257 def interleave;
    258 
    259 // RegisterTuples - Automatically generate super-registers by forming tuples of
    260 // sub-registers. This is useful for modeling register sequence constraints
    261 // with pseudo-registers that are larger than the architectural registers.
    262 //
    263 // The sub-register lists are zipped together:
    264 //
    265 //   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
    266 //
    267 // Generates the same registers as:
    268 //
    269 //   let SubRegIndices = [sube, subo] in {
    270 //     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
    271 //     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
    272 //   }
    273 //
    274 // The generated pseudo-registers inherit super-classes and fields from their
    275 // first sub-register. Most fields from the Register class are inferred, and
    276 // the AsmName and Dwarf numbers are cleared.
    277 //
    278 // RegisterTuples instances can be used in other set operations to form
    279 // register classes and so on. This is the only way of using the generated
    280 // registers.
    281 class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
    282   // SubRegs - N lists of registers to be zipped up. Super-registers are
    283   // synthesized from the first element of each SubRegs list, the second
    284   // element and so on.
    285   list<dag> SubRegs = Regs;
    286 
    287   // SubRegIndices - N SubRegIndex instances. This provides the names of the
    288   // sub-registers in the synthesized super-registers.
    289   list<SubRegIndex> SubRegIndices = Indices;
    290 }
    291 
    292 
    293 //===----------------------------------------------------------------------===//
    294 // DwarfRegNum - This class provides a mapping of the llvm register enumeration
    295 // to the register numbering used by gcc and gdb.  These values are used by a
    296 // debug information writer to describe where values may be located during
    297 // execution.
    298 class DwarfRegNum<list<int> Numbers> {
    299   // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
    300   // These values can be determined by locating the <target>.h file in the
    301   // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
    302   // order of these names correspond to the enumeration used by gcc.  A value of
    303   // -1 indicates that the gcc number is undefined and -2 that register number
    304   // is invalid for this mode/flavour.
    305   list<int> DwarfNumbers = Numbers;
    306 }
    307 
    308 // DwarfRegAlias - This class declares that a given register uses the same dwarf
    309 // numbers as another one. This is useful for making it clear that the two
    310 // registers do have the same number. It also lets us build a mapping
    311 // from dwarf register number to llvm register.
    312 class DwarfRegAlias<Register reg> {
    313       Register DwarfAlias = reg;
    314 }
    315 
    316 //===----------------------------------------------------------------------===//
    317 // Pull in the common support for scheduling
    318 //
    319 include "llvm/Target/TargetSchedule.td"
    320 
    321 class Predicate; // Forward def
    322 
    323 //===----------------------------------------------------------------------===//
    324 // Instruction set description - These classes correspond to the C++ classes in
    325 // the Target/TargetInstrInfo.h file.
    326 //
    327 class Instruction {
    328   string Namespace = "";
    329 
    330   dag OutOperandList;       // An dag containing the MI def operand list.
    331   dag InOperandList;        // An dag containing the MI use operand list.
    332   string AsmString = "";    // The .s format to print the instruction with.
    333 
    334   // Pattern - Set to the DAG pattern for this instruction, if we know of one,
    335   // otherwise, uninitialized.
    336   list<dag> Pattern;
    337 
    338   // The follow state will eventually be inferred automatically from the
    339   // instruction pattern.
    340 
    341   list<Register> Uses = []; // Default to using no non-operand registers
    342   list<Register> Defs = []; // Default to modifying no non-operand registers
    343 
    344   // Predicates - List of predicates which will be turned into isel matching
    345   // code.
    346   list<Predicate> Predicates = [];
    347 
    348   // Size - Size of encoded instruction, or zero if the size cannot be determined
    349   // from the opcode.
    350   int Size = 0;
    351 
    352   // DecoderNamespace - The "namespace" in which this instruction exists, on
    353   // targets like ARM which multiple ISA namespaces exist.
    354   string DecoderNamespace = "";
    355 
    356   // Code size, for instruction selection.
    357   // FIXME: What does this actually mean?
    358   int CodeSize = 0;
    359 
    360   // Added complexity passed onto matching pattern.
    361   int AddedComplexity  = 0;
    362 
    363   // These bits capture information about the high-level semantics of the
    364   // instruction.
    365   bit isReturn     = 0;     // Is this instruction a return instruction?
    366   bit isBranch     = 0;     // Is this instruction a branch instruction?
    367   bit isIndirectBranch = 0; // Is this instruction an indirect branch?
    368   bit isCompare    = 0;     // Is this instruction a comparison instruction?
    369   bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
    370   bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
    371   bit isSelect     = 0;     // Is this instruction a select instruction?
    372   bit isBarrier    = 0;     // Can control flow fall through this instruction?
    373   bit isCall       = 0;     // Is this instruction a call instruction?
    374   bit isAdd        = 0;     // Is this instruction an add instruction?
    375   bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
    376   bit mayLoad      = ?;     // Is it possible for this inst to read memory?
    377   bit mayStore     = ?;     // Is it possible for this inst to write memory?
    378   bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
    379   bit isCommutable = 0;     // Is this 3 operand instruction commutable?
    380   bit isTerminator = 0;     // Is this part of the terminator for a basic block?
    381   bit isReMaterializable = 0; // Is this instruction re-materializable?
    382   bit isPredicable = 0;     // Is this instruction predicable?
    383   bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
    384   bit usesCustomInserter = 0; // Pseudo instr needing special help.
    385   bit hasPostISelHook = 0;  // To be *adjusted* after isel by target hook.
    386   bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
    387   bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
    388   bit isConvergent = 0;     // Is this instruction convergent?
    389   bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
    390   bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
    391   bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
    392   bit isRegSequence = 0;    // Is this instruction a kind of reg sequence?
    393                             // If so, make sure to override
    394                             // TargetInstrInfo::getRegSequenceLikeInputs.
    395   bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
    396                             // If so, won't have encoding information for
    397                             // the [MC]CodeEmitter stuff.
    398   bit isExtractSubreg = 0;  // Is this instruction a kind of extract subreg?
    399                              // If so, make sure to override
    400                              // TargetInstrInfo::getExtractSubregLikeInputs.
    401   bit isInsertSubreg = 0;   // Is this instruction a kind of insert subreg?
    402                             // If so, make sure to override
    403                             // TargetInstrInfo::getInsertSubregLikeInputs.
    404 
    405   // Does the instruction have side effects that are not captured by any
    406   // operands of the instruction or other flags?
    407   bit hasSideEffects = ?;
    408 
    409   // Is this instruction a "real" instruction (with a distinct machine
    410   // encoding), or is it a pseudo instruction used for codegen modeling
    411   // purposes.
    412   // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
    413   // instructions can (and often do) still have encoding information
    414   // associated with them. Once we've migrated all of them over to true
    415   // pseudo-instructions that are lowered to real instructions prior to
    416   // the printer/emitter, we can remove this attribute and just use isPseudo.
    417   //
    418   // The intended use is:
    419   // isPseudo: Does not have encoding information and should be expanded,
    420   //   at the latest, during lowering to MCInst.
    421   //
    422   // isCodeGenOnly: Does have encoding information and can go through to the
    423   //   CodeEmitter unchanged, but duplicates a canonical instruction
    424   //   definition's encoding and should be ignored when constructing the
    425   //   assembler match tables.
    426   bit isCodeGenOnly = 0;
    427 
    428   // Is this instruction a pseudo instruction for use by the assembler parser.
    429   bit isAsmParserOnly = 0;
    430 
    431   // This instruction is not expected to be queried for scheduling latencies
    432   // and therefore needs no scheduling information even for a complete
    433   // scheduling model.
    434   bit hasNoSchedulingInfo = 0;
    435 
    436   InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
    437 
    438   // Scheduling information from TargetSchedule.td.
    439   list<SchedReadWrite> SchedRW;
    440 
    441   string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
    442 
    443   /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
    444   /// be encoded into the output machineinstr.
    445   string DisableEncoding = "";
    446 
    447   string PostEncoderMethod = "";
    448   string DecoderMethod = "";
    449 
    450   // Is the instruction decoder method able to completely determine if the
    451   // given instruction is valid or not. If the TableGen definition of the
    452   // instruction specifies bitpattern A??B where A and B are static bits, the
    453   // hasCompleteDecoder flag says whether the decoder method fully handles the
    454   // ?? space, i.e. if it is a final arbiter for the instruction validity.
    455   // If not then the decoder attempts to continue decoding when the decoder
    456   // method fails.
    457   //
    458   // This allows to handle situations where the encoding is not fully
    459   // orthogonal. Example:
    460   // * InstA with bitpattern 0b0000????,
    461   // * InstB with bitpattern 0b000000?? but the associated decoder method
    462   //   DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
    463   //
    464   // The decoder tries to decode a bitpattern that matches both InstA and
    465   // InstB bitpatterns first as InstB (because it is the most specific
    466   // encoding). In the default case (hasCompleteDecoder = 1), when
    467   // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
    468   // hasCompleteDecoder = 0 in InstB, the decoder is informed that
    469   // DecodeInstB() is not able to determine if all possible values of ?? are
    470   // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
    471   // decode the bitpattern as InstA too.
    472   bit hasCompleteDecoder = 1;
    473 
    474   /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
    475   bits<64> TSFlags = 0;
    476 
    477   ///@name Assembler Parser Support
    478   ///@{
    479 
    480   string AsmMatchConverter = "";
    481 
    482   /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
    483   /// two-operand matcher inst-alias for a three operand instruction.
    484   /// For example, the arm instruction "add r3, r3, r5" can be written
    485   /// as "add r3, r5". The constraint is of the same form as a tied-operand
    486   /// constraint. For example, "$Rn = $Rd".
    487   string TwoOperandAliasConstraint = "";
    488 
    489   /// Assembler variant name to use for this instruction. If specified then
    490   /// instruction will be presented only in MatchTable for this variant. If
    491   /// not specified then assembler variants will be determined based on
    492   /// AsmString
    493   string AsmVariantName = "";
    494 
    495   ///@}
    496 
    497   /// UseNamedOperandTable - If set, the operand indices of this instruction
    498   /// can be queried via the getNamedOperandIdx() function which is generated
    499   /// by TableGen.
    500   bit UseNamedOperandTable = 0;
    501 }
    502 
    503 /// PseudoInstExpansion - Expansion information for a pseudo-instruction.
    504 /// Which instruction it expands to and how the operands map from the
    505 /// pseudo.
    506 class PseudoInstExpansion<dag Result> {
    507   dag ResultInst = Result;     // The instruction to generate.
    508   bit isPseudo = 1;
    509 }
    510 
    511 /// Predicates - These are extra conditionals which are turned into instruction
    512 /// selector matching code. Currently each predicate is just a string.
    513 class Predicate<string cond> {
    514   string CondString = cond;
    515 
    516   /// AssemblerMatcherPredicate - If this feature can be used by the assembler
    517   /// matcher, this is true.  Targets should set this by inheriting their
    518   /// feature from the AssemblerPredicate class in addition to Predicate.
    519   bit AssemblerMatcherPredicate = 0;
    520 
    521   /// AssemblerCondString - Name of the subtarget feature being tested used
    522   /// as alternative condition string used for assembler matcher.
    523   /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
    524   ///      "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
    525   /// It can also list multiple features separated by ",".
    526   /// e.g. "ModeThumb,FeatureThumb2" is translated to
    527   ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
    528   string AssemblerCondString = "";
    529 
    530   /// PredicateName - User-level name to use for the predicate. Mainly for use
    531   /// in diagnostics such as missing feature errors in the asm matcher.
    532   string PredicateName = "";
    533 
    534   /// Setting this to '1' indicates that the predicate must be recomputed on
    535   /// every function change. Most predicates can leave this at '0'.
    536   ///
    537   /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
    538   bit RecomputePerFunction = 0;
    539 }
    540 
    541 /// NoHonorSignDependentRounding - This predicate is true if support for
    542 /// sign-dependent-rounding is not enabled.
    543 def NoHonorSignDependentRounding
    544  : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
    545 
    546 class Requires<list<Predicate> preds> {
    547   list<Predicate> Predicates = preds;
    548 }
    549 
    550 /// ops definition - This is just a simple marker used to identify the operand
    551 /// list for an instruction. outs and ins are identical both syntactically and
    552 /// semantically; they are used to define def operands and use operands to
    553 /// improve readibility. This should be used like this:
    554 ///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
    555 def ops;
    556 def outs;
    557 def ins;
    558 
    559 /// variable_ops definition - Mark this instruction as taking a variable number
    560 /// of operands.
    561 def variable_ops;
    562 
    563 
    564 /// PointerLikeRegClass - Values that are designed to have pointer width are
    565 /// derived from this.  TableGen treats the register class as having a symbolic
    566 /// type that it doesn't know, and resolves the actual regclass to use by using
    567 /// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
    568 class PointerLikeRegClass<int Kind> {
    569   int RegClassKind = Kind;
    570 }
    571 
    572 
    573 /// ptr_rc definition - Mark this operand as being a pointer value whose
    574 /// register class is resolved dynamically via a callback to TargetInstrInfo.
    575 /// FIXME: We should probably change this to a class which contain a list of
    576 /// flags. But currently we have but one flag.
    577 def ptr_rc : PointerLikeRegClass<0>;
    578 
    579 /// unknown definition - Mark this operand as being of unknown type, causing
    580 /// it to be resolved by inference in the context it is used.
    581 class unknown_class;
    582 def unknown : unknown_class;
    583 
    584 /// AsmOperandClass - Representation for the kinds of operands which the target
    585 /// specific parser can create and the assembly matcher may need to distinguish.
    586 ///
    587 /// Operand classes are used to define the order in which instructions are
    588 /// matched, to ensure that the instruction which gets matched for any
    589 /// particular list of operands is deterministic.
    590 ///
    591 /// The target specific parser must be able to classify a parsed operand into a
    592 /// unique class which does not partially overlap with any other classes. It can
    593 /// match a subset of some other class, in which case the super class field
    594 /// should be defined.
    595 class AsmOperandClass {
    596   /// The name to use for this class, which should be usable as an enum value.
    597   string Name = ?;
    598 
    599   /// The super classes of this operand.
    600   list<AsmOperandClass> SuperClasses = [];
    601 
    602   /// The name of the method on the target specific operand to call to test
    603   /// whether the operand is an instance of this class. If not set, this will
    604   /// default to "isFoo", where Foo is the AsmOperandClass name. The method
    605   /// signature should be:
    606   ///   bool isFoo() const;
    607   string PredicateMethod = ?;
    608 
    609   /// The name of the method on the target specific operand to call to add the
    610   /// target specific operand to an MCInst. If not set, this will default to
    611   /// "addFooOperands", where Foo is the AsmOperandClass name. The method
    612   /// signature should be:
    613   ///   void addFooOperands(MCInst &Inst, unsigned N) const;
    614   string RenderMethod = ?;
    615 
    616   /// The name of the method on the target specific operand to call to custom
    617   /// handle the operand parsing. This is useful when the operands do not relate
    618   /// to immediates or registers and are very instruction specific (as flags to
    619   /// set in a processor register, coprocessor number, ...).
    620   string ParserMethod = ?;
    621 
    622   // The diagnostic type to present when referencing this operand in a
    623   // match failure error message. By default, use a generic "invalid operand"
    624   // diagnostic. The target AsmParser maps these codes to text.
    625   string DiagnosticType = "";
    626 
    627   /// Set to 1 if this operand is optional and not always required. Typically,
    628   /// the AsmParser will emit an error when it finishes parsing an
    629   /// instruction if it hasn't matched all the operands yet.  However, this
    630   /// error will be suppressed if all of the remaining unmatched operands are
    631   /// marked as IsOptional.
    632   ///
    633   /// Optional arguments must be at the end of the operand list.
    634   bit IsOptional = 0;
    635 
    636   /// The name of the method on the target specific asm parser that returns the
    637   /// default operand for this optional operand. This method is only used if
    638   /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
    639   /// where Foo is the AsmOperandClass name. The method signature should be:
    640   ///   std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
    641   string DefaultMethod = ?;
    642 }
    643 
    644 def ImmAsmOperand : AsmOperandClass {
    645   let Name = "Imm";
    646 }
    647 
    648 /// Operand Types - These provide the built-in operand types that may be used
    649 /// by a target.  Targets can optionally provide their own operand types as
    650 /// needed, though this should not be needed for RISC targets.
    651 class Operand<ValueType ty> : DAGOperand {
    652   ValueType Type = ty;
    653   string PrintMethod = "printOperand";
    654   string EncoderMethod = "";
    655   bit hasCompleteDecoder = 1;
    656   string OperandType = "OPERAND_UNKNOWN";
    657   dag MIOperandInfo = (ops);
    658 
    659   // MCOperandPredicate - Optionally, a code fragment operating on
    660   // const MCOperand &MCOp, and returning a bool, to indicate if
    661   // the value of MCOp is valid for the specific subclass of Operand
    662   code MCOperandPredicate;
    663 
    664   // ParserMatchClass - The "match class" that operands of this type fit
    665   // in. Match classes are used to define the order in which instructions are
    666   // match, to ensure that which instructions gets matched is deterministic.
    667   //
    668   // The target specific parser must be able to classify an parsed operand into
    669   // a unique class, which does not partially overlap with any other classes. It
    670   // can match a subset of some other class, in which case the AsmOperandClass
    671   // should declare the other operand as one of its super classes.
    672   AsmOperandClass ParserMatchClass = ImmAsmOperand;
    673 }
    674 
    675 class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
    676   : DAGOperand {
    677   // RegClass - The register class of the operand.
    678   RegisterClass RegClass = regclass;
    679   // PrintMethod - The target method to call to print register operands of
    680   // this type. The method normally will just use an alt-name index to look
    681   // up the name to print. Default to the generic printOperand().
    682   string PrintMethod = pm;
    683 
    684   // EncoderMethod - The target method name to call to encode this register
    685   // operand.
    686   string EncoderMethod = "";
    687 
    688   // ParserMatchClass - The "match class" that operands of this type fit
    689   // in. Match classes are used to define the order in which instructions are
    690   // match, to ensure that which instructions gets matched is deterministic.
    691   //
    692   // The target specific parser must be able to classify an parsed operand into
    693   // a unique class, which does not partially overlap with any other classes. It
    694   // can match a subset of some other class, in which case the AsmOperandClass
    695   // should declare the other operand as one of its super classes.
    696   AsmOperandClass ParserMatchClass;
    697 
    698   string OperandType = "OPERAND_REGISTER";
    699 }
    700 
    701 let OperandType = "OPERAND_IMMEDIATE" in {
    702 def i1imm  : Operand<i1>;
    703 def i8imm  : Operand<i8>;
    704 def i16imm : Operand<i16>;
    705 def i32imm : Operand<i32>;
    706 def i64imm : Operand<i64>;
    707 
    708 def f32imm : Operand<f32>;
    709 def f64imm : Operand<f64>;
    710 }
    711 
    712 // Register operands for generic instructions don't have an MVT, but do have
    713 // constraints linking the operands (e.g. all operands of a G_ADD must
    714 // have the same LLT).
    715 class TypedOperand<string Ty> : Operand<untyped> {
    716   let OperandType = Ty;
    717 }
    718 
    719 def type0 : TypedOperand<"OPERAND_GENERIC_0">;
    720 def type1 : TypedOperand<"OPERAND_GENERIC_1">;
    721 def type2 : TypedOperand<"OPERAND_GENERIC_2">;
    722 def type3 : TypedOperand<"OPERAND_GENERIC_3">;
    723 def type4 : TypedOperand<"OPERAND_GENERIC_4">;
    724 def type5 : TypedOperand<"OPERAND_GENERIC_5">;
    725 
    726 /// zero_reg definition - Special node to stand for the zero register.
    727 ///
    728 def zero_reg;
    729 
    730 /// All operands which the MC layer classifies as predicates should inherit from
    731 /// this class in some manner. This is already handled for the most commonly
    732 /// used PredicateOperand, but may be useful in other circumstances.
    733 class PredicateOp;
    734 
    735 /// OperandWithDefaultOps - This Operand class can be used as the parent class
    736 /// for an Operand that needs to be initialized with a default value if
    737 /// no value is supplied in a pattern.  This class can be used to simplify the
    738 /// pattern definitions for instructions that have target specific flags
    739 /// encoded as immediate operands.
    740 class OperandWithDefaultOps<ValueType ty, dag defaultops>
    741   : Operand<ty> {
    742   dag DefaultOps = defaultops;
    743 }
    744 
    745 /// PredicateOperand - This can be used to define a predicate operand for an
    746 /// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
    747 /// AlwaysVal specifies the value of this predicate when set to "always
    748 /// execute".
    749 class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
    750   : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
    751   let MIOperandInfo = OpTypes;
    752 }
    753 
    754 /// OptionalDefOperand - This is used to define a optional definition operand
    755 /// for an instruction. DefaultOps is the register the operand represents if
    756 /// none is supplied, e.g. zero_reg.
    757 class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
    758   : OperandWithDefaultOps<ty, defaultops> {
    759   let MIOperandInfo = OpTypes;
    760 }
    761 
    762 
    763 // InstrInfo - This class should only be instantiated once to provide parameters
    764 // which are global to the target machine.
    765 //
    766 class InstrInfo {
    767   // Target can specify its instructions in either big or little-endian formats.
    768   // For instance, while both Sparc and PowerPC are big-endian platforms, the
    769   // Sparc manual specifies its instructions in the format [31..0] (big), while
    770   // PowerPC specifies them using the format [0..31] (little).
    771   bit isLittleEndianEncoding = 0;
    772 
    773   // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
    774   // by default, and TableGen will infer their value from the instruction
    775   // pattern when possible.
    776   //
    777   // Normally, TableGen will issue an error it it can't infer the value of a
    778   // property that hasn't been set explicitly. When guessInstructionProperties
    779   // is set, it will guess a safe value instead.
    780   //
    781   // This option is a temporary migration help. It will go away.
    782   bit guessInstructionProperties = 1;
    783 
    784   // TableGen's instruction encoder generator has support for matching operands
    785   // to bit-field variables both by name and by position. While matching by
    786   // name is preferred, this is currently not possible for complex operands,
    787   // and some targets still reply on the positional encoding rules. When
    788   // generating a decoder for such targets, the positional encoding rules must
    789   // be used by the decoder generator as well.
    790   //
    791   // This option is temporary; it will go away once the TableGen decoder
    792   // generator has better support for complex operands and targets have
    793   // migrated away from using positionally encoded operands.
    794   bit decodePositionallyEncodedOperands = 0;
    795 
    796   // When set, this indicates that there will be no overlap between those
    797   // operands that are matched by ordering (positional operands) and those
    798   // matched by name.
    799   //
    800   // This option is temporary; it will go away once the TableGen decoder
    801   // generator has better support for complex operands and targets have
    802   // migrated away from using positionally encoded operands.
    803   bit noNamedPositionallyEncodedOperands = 0;
    804 }
    805 
    806 // Standard Pseudo Instructions.
    807 // This list must match TargetOpcodes.h and CodeGenTarget.cpp.
    808 // Only these instructions are allowed in the TargetOpcode namespace.
    809 let isCodeGenOnly = 1, isPseudo = 1, hasNoSchedulingInfo = 1,
    810     Namespace = "TargetOpcode" in {
    811 def PHI : Instruction {
    812   let OutOperandList = (outs unknown:$dst);
    813   let InOperandList = (ins variable_ops);
    814   let AsmString = "PHINODE";
    815 }
    816 def INLINEASM : Instruction {
    817   let OutOperandList = (outs);
    818   let InOperandList = (ins variable_ops);
    819   let AsmString = "";
    820   let hasSideEffects = 0;  // Note side effect is encoded in an operand.
    821 }
    822 def CFI_INSTRUCTION : Instruction {
    823   let OutOperandList = (outs);
    824   let InOperandList = (ins i32imm:$id);
    825   let AsmString = "";
    826   let hasCtrlDep = 1;
    827   let isNotDuplicable = 1;
    828 }
    829 def EH_LABEL : Instruction {
    830   let OutOperandList = (outs);
    831   let InOperandList = (ins i32imm:$id);
    832   let AsmString = "";
    833   let hasCtrlDep = 1;
    834   let isNotDuplicable = 1;
    835 }
    836 def GC_LABEL : Instruction {
    837   let OutOperandList = (outs);
    838   let InOperandList = (ins i32imm:$id);
    839   let AsmString = "";
    840   let hasCtrlDep = 1;
    841   let isNotDuplicable = 1;
    842 }
    843 def KILL : Instruction {
    844   let OutOperandList = (outs);
    845   let InOperandList = (ins variable_ops);
    846   let AsmString = "";
    847   let hasSideEffects = 0;
    848 }
    849 def EXTRACT_SUBREG : Instruction {
    850   let OutOperandList = (outs unknown:$dst);
    851   let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
    852   let AsmString = "";
    853   let hasSideEffects = 0;
    854 }
    855 def INSERT_SUBREG : Instruction {
    856   let OutOperandList = (outs unknown:$dst);
    857   let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
    858   let AsmString = "";
    859   let hasSideEffects = 0;
    860   let Constraints = "$supersrc = $dst";
    861 }
    862 def IMPLICIT_DEF : Instruction {
    863   let OutOperandList = (outs unknown:$dst);
    864   let InOperandList = (ins);
    865   let AsmString = "";
    866   let hasSideEffects = 0;
    867   let isReMaterializable = 1;
    868   let isAsCheapAsAMove = 1;
    869 }
    870 def SUBREG_TO_REG : Instruction {
    871   let OutOperandList = (outs unknown:$dst);
    872   let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
    873   let AsmString = "";
    874   let hasSideEffects = 0;
    875 }
    876 def COPY_TO_REGCLASS : Instruction {
    877   let OutOperandList = (outs unknown:$dst);
    878   let InOperandList = (ins unknown:$src, i32imm:$regclass);
    879   let AsmString = "";
    880   let hasSideEffects = 0;
    881   let isAsCheapAsAMove = 1;
    882 }
    883 def DBG_VALUE : Instruction {
    884   let OutOperandList = (outs);
    885   let InOperandList = (ins variable_ops);
    886   let AsmString = "DBG_VALUE";
    887   let hasSideEffects = 0;
    888 }
    889 def REG_SEQUENCE : Instruction {
    890   let OutOperandList = (outs unknown:$dst);
    891   let InOperandList = (ins unknown:$supersrc, variable_ops);
    892   let AsmString = "";
    893   let hasSideEffects = 0;
    894   let isAsCheapAsAMove = 1;
    895 }
    896 def COPY : Instruction {
    897   let OutOperandList = (outs unknown:$dst);
    898   let InOperandList = (ins unknown:$src);
    899   let AsmString = "";
    900   let hasSideEffects = 0;
    901   let isAsCheapAsAMove = 1;
    902   let hasNoSchedulingInfo = 0;
    903 }
    904 def BUNDLE : Instruction {
    905   let OutOperandList = (outs);
    906   let InOperandList = (ins variable_ops);
    907   let AsmString = "BUNDLE";
    908 }
    909 def LIFETIME_START : Instruction {
    910   let OutOperandList = (outs);
    911   let InOperandList = (ins i32imm:$id);
    912   let AsmString = "LIFETIME_START";
    913   let hasSideEffects = 0;
    914 }
    915 def LIFETIME_END : Instruction {
    916   let OutOperandList = (outs);
    917   let InOperandList = (ins i32imm:$id);
    918   let AsmString = "LIFETIME_END";
    919   let hasSideEffects = 0;
    920 }
    921 def STACKMAP : Instruction {
    922   let OutOperandList = (outs);
    923   let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
    924   let isCall = 1;
    925   let mayLoad = 1;
    926   let usesCustomInserter = 1;
    927 }
    928 def PATCHPOINT : Instruction {
    929   let OutOperandList = (outs unknown:$dst);
    930   let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
    931                        i32imm:$nargs, i32imm:$cc, variable_ops);
    932   let isCall = 1;
    933   let mayLoad = 1;
    934   let usesCustomInserter = 1;
    935 }
    936 def STATEPOINT : Instruction {
    937   let OutOperandList = (outs);
    938   let InOperandList = (ins variable_ops);
    939   let usesCustomInserter = 1;
    940   let mayLoad = 1;
    941   let mayStore = 1;
    942   let hasSideEffects = 1;
    943   let isCall = 1;
    944 }
    945 def LOAD_STACK_GUARD : Instruction {
    946   let OutOperandList = (outs ptr_rc:$dst);
    947   let InOperandList = (ins);
    948   let mayLoad = 1;
    949   bit isReMaterializable = 1;
    950   let hasSideEffects = 0;
    951   bit isPseudo = 1;
    952 }
    953 def LOCAL_ESCAPE : Instruction {
    954   // This instruction is really just a label. It has to be part of the chain so
    955   // that it doesn't get dropped from the DAG, but it produces nothing and has
    956   // no side effects.
    957   let OutOperandList = (outs);
    958   let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
    959   let hasSideEffects = 0;
    960   let hasCtrlDep = 1;
    961 }
    962 def FAULTING_OP : Instruction {
    963   let OutOperandList = (outs unknown:$dst);
    964   let InOperandList = (ins variable_ops);
    965   let usesCustomInserter = 1;
    966   let mayLoad = 1;
    967   let mayStore = 1;
    968   let isTerminator = 1;
    969   let isBranch = 1;
    970 }
    971 def PATCHABLE_OP : Instruction {
    972   let OutOperandList = (outs unknown:$dst);
    973   let InOperandList = (ins variable_ops);
    974   let usesCustomInserter = 1;
    975   let mayLoad = 1;
    976   let mayStore = 1;
    977   let hasSideEffects = 1;
    978 }
    979 def PATCHABLE_FUNCTION_ENTER : Instruction {
    980   let OutOperandList = (outs);
    981   let InOperandList = (ins);
    982   let AsmString = "# XRay Function Enter.";
    983   let usesCustomInserter = 1;
    984   let hasSideEffects = 0;
    985 }
    986 def PATCHABLE_RET : Instruction {
    987   let OutOperandList = (outs unknown:$dst);
    988   let InOperandList = (ins variable_ops);
    989   let AsmString = "# XRay Function Patchable RET.";
    990   let usesCustomInserter = 1;
    991   let hasSideEffects = 1;
    992   let isReturn = 1;
    993 }
    994 def PATCHABLE_FUNCTION_EXIT : Instruction {
    995   let OutOperandList = (outs);
    996   let InOperandList = (ins);
    997   let AsmString = "# XRay Function Exit.";
    998   let usesCustomInserter = 1;
    999   let hasSideEffects = 0; // FIXME: is this correct?
   1000   let isReturn = 0; // Original return instruction will follow
   1001 }
   1002 def PATCHABLE_TAIL_CALL : Instruction {
   1003   let OutOperandList = (outs unknown:$dst);
   1004   let InOperandList = (ins variable_ops);
   1005   let AsmString = "# XRay Tail Call Exit.";
   1006   let usesCustomInserter = 1;
   1007   let hasSideEffects = 1;
   1008   let isReturn = 1;
   1009 }
   1010 def PATCHABLE_EVENT_CALL : Instruction {
   1011   let OutOperandList = (outs);
   1012   let InOperandList = (ins ptr_rc:$event, i8imm:$size);
   1013   let AsmString = "# XRay Custom Event Log.";
   1014   let usesCustomInserter = 1;
   1015   let isCall = 1;
   1016   let mayLoad = 1;
   1017   let mayStore = 1;
   1018   let hasSideEffects = 1;
   1019 }
   1020 def FENTRY_CALL : Instruction {
   1021   let OutOperandList = (outs unknown:$dst);
   1022   let InOperandList = (ins variable_ops);
   1023   let AsmString = "# FEntry call";
   1024   let usesCustomInserter = 1;
   1025   let mayLoad = 1;
   1026   let mayStore = 1;
   1027   let hasSideEffects = 1;
   1028 }
   1029 
   1030 // Generic opcodes used in GlobalISel.
   1031 include "llvm/Target/GenericOpcodes.td"
   1032 
   1033 }
   1034 
   1035 //===----------------------------------------------------------------------===//
   1036 // AsmParser - This class can be implemented by targets that wish to implement
   1037 // .s file parsing.
   1038 //
   1039 // Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
   1040 // syntax on X86 for example).
   1041 //
   1042 class AsmParser {
   1043   // AsmParserClassName - This specifies the suffix to use for the asmparser
   1044   // class.  Generated AsmParser classes are always prefixed with the target
   1045   // name.
   1046   string AsmParserClassName  = "AsmParser";
   1047 
   1048   // AsmParserInstCleanup - If non-empty, this is the name of a custom member
   1049   // function of the AsmParser class to call on every matched instruction.
   1050   // This can be used to perform target specific instruction post-processing.
   1051   string AsmParserInstCleanup  = "";
   1052 
   1053   // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
   1054   // written register name matcher
   1055   bit ShouldEmitMatchRegisterName = 1;
   1056 
   1057   // Set to true if the target needs a generated 'alternative register name'
   1058   // matcher.
   1059   //
   1060   // This generates a function which can be used to lookup registers from
   1061   // their aliases. This function will fail when called on targets where
   1062   // several registers share the same alias (i.e. not a 1:1 mapping).
   1063   bit ShouldEmitMatchRegisterAltName = 0;
   1064 
   1065   // HasMnemonicFirst - Set to false if target instructions don't always
   1066   // start with a mnemonic as the first token.
   1067   bit HasMnemonicFirst = 1;
   1068 }
   1069 def DefaultAsmParser : AsmParser;
   1070 
   1071 //===----------------------------------------------------------------------===//
   1072 // AsmParserVariant - Subtargets can have multiple different assembly parsers
   1073 // (e.g. AT&T vs Intel syntax on X86 for example). This class can be
   1074 // implemented by targets to describe such variants.
   1075 //
   1076 class AsmParserVariant {
   1077   // Variant - AsmParsers can be of multiple different variants.  Variants are
   1078   // used to support targets that need to parser multiple formats for the
   1079   // assembly language.
   1080   int Variant = 0;
   1081 
   1082   // Name - The AsmParser variant name (e.g., AT&T vs Intel).
   1083   string Name = "";
   1084 
   1085   // CommentDelimiter - If given, the delimiter string used to recognize
   1086   // comments which are hard coded in the .td assembler strings for individual
   1087   // instructions.
   1088   string CommentDelimiter = "";
   1089 
   1090   // RegisterPrefix - If given, the token prefix which indicates a register
   1091   // token. This is used by the matcher to automatically recognize hard coded
   1092   // register tokens as constrained registers, instead of tokens, for the
   1093   // purposes of matching.
   1094   string RegisterPrefix = "";
   1095 
   1096   // TokenizingCharacters - Characters that are standalone tokens
   1097   string TokenizingCharacters = "[]*!";
   1098 
   1099   // SeparatorCharacters - Characters that are not tokens
   1100   string SeparatorCharacters = " \t,";
   1101 
   1102   // BreakCharacters - Characters that start new identifiers
   1103   string BreakCharacters = "";
   1104 }
   1105 def DefaultAsmParserVariant : AsmParserVariant;
   1106 
   1107 /// AssemblerPredicate - This is a Predicate that can be used when the assembler
   1108 /// matches instructions and aliases.
   1109 class AssemblerPredicate<string cond, string name = ""> {
   1110   bit AssemblerMatcherPredicate = 1;
   1111   string AssemblerCondString = cond;
   1112   string PredicateName = name;
   1113 }
   1114 
   1115 /// TokenAlias - This class allows targets to define assembler token
   1116 /// operand aliases. That is, a token literal operand which is equivalent
   1117 /// to another, canonical, token literal. For example, ARM allows:
   1118 ///   vmov.u32 s4, #0  -> vmov.i32, #0
   1119 /// 'u32' is a more specific designator for the 32-bit integer type specifier
   1120 /// and is legal for any instruction which accepts 'i32' as a datatype suffix.
   1121 ///   def : TokenAlias<".u32", ".i32">;
   1122 ///
   1123 /// This works by marking the match class of 'From' as a subclass of the
   1124 /// match class of 'To'.
   1125 class TokenAlias<string From, string To> {
   1126   string FromToken = From;
   1127   string ToToken = To;
   1128 }
   1129 
   1130 /// MnemonicAlias - This class allows targets to define assembler mnemonic
   1131 /// aliases.  This should be used when all forms of one mnemonic are accepted
   1132 /// with a different mnemonic.  For example, X86 allows:
   1133 ///   sal %al, 1    -> shl %al, 1
   1134 ///   sal %ax, %cl  -> shl %ax, %cl
   1135 ///   sal %eax, %cl -> shl %eax, %cl
   1136 /// etc.  Though "sal" is accepted with many forms, all of them are directly
   1137 /// translated to a shl, so it can be handled with (in the case of X86, it
   1138 /// actually has one for each suffix as well):
   1139 ///   def : MnemonicAlias<"sal", "shl">;
   1140 ///
   1141 /// Mnemonic aliases are mapped before any other translation in the match phase,
   1142 /// and do allow Requires predicates, e.g.:
   1143 ///
   1144 ///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
   1145 ///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
   1146 ///
   1147 /// Mnemonic aliases can also be constrained to specific variants, e.g.:
   1148 ///
   1149 ///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
   1150 ///
   1151 /// If no variant (e.g., "att" or "intel") is specified then the alias is
   1152 /// applied unconditionally.
   1153 class MnemonicAlias<string From, string To, string VariantName = ""> {
   1154   string FromMnemonic = From;
   1155   string ToMnemonic = To;
   1156   string AsmVariantName = VariantName;
   1157 
   1158   // Predicates - Predicates that must be true for this remapping to happen.
   1159   list<Predicate> Predicates = [];
   1160 }
   1161 
   1162 /// InstAlias - This defines an alternate assembly syntax that is allowed to
   1163 /// match an instruction that has a different (more canonical) assembly
   1164 /// representation.
   1165 class InstAlias<string Asm, dag Result, int Emit = 1> {
   1166   string AsmString = Asm;      // The .s format to match the instruction with.
   1167   dag ResultInst = Result;     // The MCInst to generate.
   1168 
   1169   // This determines which order the InstPrinter detects aliases for
   1170   // printing. A larger value makes the alias more likely to be
   1171   // emitted. The Instruction's own definition is notionally 0.5, so 0
   1172   // disables printing and 1 enables it if there are no conflicting aliases.
   1173   int EmitPriority = Emit;
   1174 
   1175   // Predicates - Predicates that must be true for this to match.
   1176   list<Predicate> Predicates = [];
   1177 
   1178   // If the instruction specified in Result has defined an AsmMatchConverter
   1179   // then setting this to 1 will cause the alias to use the AsmMatchConverter
   1180   // function when converting the OperandVector into an MCInst instead of the
   1181   // function that is generated by the dag Result.
   1182   // Setting this to 0 will cause the alias to ignore the Result instruction's
   1183   // defined AsmMatchConverter and instead use the function generated by the
   1184   // dag Result.
   1185   bit UseInstAsmMatchConverter = 1;
   1186 
   1187   // Assembler variant name to use for this alias. If not specified then
   1188   // assembler variants will be determined based on AsmString
   1189   string AsmVariantName = "";
   1190 }
   1191 
   1192 //===----------------------------------------------------------------------===//
   1193 // AsmWriter - This class can be implemented by targets that need to customize
   1194 // the format of the .s file writer.
   1195 //
   1196 // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
   1197 // on X86 for example).
   1198 //
   1199 class AsmWriter {
   1200   // AsmWriterClassName - This specifies the suffix to use for the asmwriter
   1201   // class.  Generated AsmWriter classes are always prefixed with the target
   1202   // name.
   1203   string AsmWriterClassName  = "InstPrinter";
   1204 
   1205   // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
   1206   // the various print methods.
   1207   // FIXME: Remove after all ports are updated.
   1208   int PassSubtarget = 0;
   1209 
   1210   // Variant - AsmWriters can be of multiple different variants.  Variants are
   1211   // used to support targets that need to emit assembly code in ways that are
   1212   // mostly the same for different targets, but have minor differences in
   1213   // syntax.  If the asmstring contains {|} characters in them, this integer
   1214   // will specify which alternative to use.  For example "{x|y|z}" with Variant
   1215   // == 1, will expand to "y".
   1216   int Variant = 0;
   1217 }
   1218 def DefaultAsmWriter : AsmWriter;
   1219 
   1220 
   1221 //===----------------------------------------------------------------------===//
   1222 // Target - This class contains the "global" target information
   1223 //
   1224 class Target {
   1225   // InstructionSet - Instruction set description for this target.
   1226   InstrInfo InstructionSet;
   1227 
   1228   // AssemblyParsers - The AsmParser instances available for this target.
   1229   list<AsmParser> AssemblyParsers = [DefaultAsmParser];
   1230 
   1231   /// AssemblyParserVariants - The AsmParserVariant instances available for
   1232   /// this target.
   1233   list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
   1234 
   1235   // AssemblyWriters - The AsmWriter instances available for this target.
   1236   list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
   1237 }
   1238 
   1239 //===----------------------------------------------------------------------===//
   1240 // SubtargetFeature - A characteristic of the chip set.
   1241 //
   1242 class SubtargetFeature<string n, string a,  string v, string d,
   1243                        list<SubtargetFeature> i = []> {
   1244   // Name - Feature name.  Used by command line (-mattr=) to determine the
   1245   // appropriate target chip.
   1246   //
   1247   string Name = n;
   1248 
   1249   // Attribute - Attribute to be set by feature.
   1250   //
   1251   string Attribute = a;
   1252 
   1253   // Value - Value the attribute to be set to by feature.
   1254   //
   1255   string Value = v;
   1256 
   1257   // Desc - Feature description.  Used by command line (-mattr=) to display help
   1258   // information.
   1259   //
   1260   string Desc = d;
   1261 
   1262   // Implies - Features that this feature implies are present. If one of those
   1263   // features isn't set, then this one shouldn't be set either.
   1264   //
   1265   list<SubtargetFeature> Implies = i;
   1266 }
   1267 
   1268 /// Specifies a Subtarget feature that this instruction is deprecated on.
   1269 class Deprecated<SubtargetFeature dep> {
   1270   SubtargetFeature DeprecatedFeatureMask = dep;
   1271 }
   1272 
   1273 /// A custom predicate used to determine if an instruction is
   1274 /// deprecated or not.
   1275 class ComplexDeprecationPredicate<string dep> {
   1276   string ComplexDeprecationPredicate = dep;
   1277 }
   1278 
   1279 //===----------------------------------------------------------------------===//
   1280 // Processor chip sets - These values represent each of the chip sets supported
   1281 // by the scheduler.  Each Processor definition requires corresponding
   1282 // instruction itineraries.
   1283 //
   1284 class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
   1285   // Name - Chip set name.  Used by command line (-mcpu=) to determine the
   1286   // appropriate target chip.
   1287   //
   1288   string Name = n;
   1289 
   1290   // SchedModel - The machine model for scheduling and instruction cost.
   1291   //
   1292   SchedMachineModel SchedModel = NoSchedModel;
   1293 
   1294   // ProcItin - The scheduling information for the target processor.
   1295   //
   1296   ProcessorItineraries ProcItin = pi;
   1297 
   1298   // Features - list of
   1299   list<SubtargetFeature> Features = f;
   1300 }
   1301 
   1302 // ProcessorModel allows subtargets to specify the more general
   1303 // SchedMachineModel instead if a ProcessorItinerary. Subtargets will
   1304 // gradually move to this newer form.
   1305 //
   1306 // Although this class always passes NoItineraries to the Processor
   1307 // class, the SchedMachineModel may still define valid Itineraries.
   1308 class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
   1309   : Processor<n, NoItineraries, f> {
   1310   let SchedModel = m;
   1311 }
   1312 
   1313 //===----------------------------------------------------------------------===//
   1314 // InstrMapping - This class is used to create mapping tables to relate
   1315 // instructions with each other based on the values specified in RowFields,
   1316 // ColFields, KeyCol and ValueCols.
   1317 //
   1318 class InstrMapping {
   1319   // FilterClass - Used to limit search space only to the instructions that
   1320   // define the relationship modeled by this InstrMapping record.
   1321   string FilterClass;
   1322 
   1323   // RowFields - List of fields/attributes that should be same for all the
   1324   // instructions in a row of the relation table. Think of this as a set of
   1325   // properties shared by all the instructions related by this relationship
   1326   // model and is used to categorize instructions into subgroups. For instance,
   1327   // if we want to define a relation that maps 'Add' instruction to its
   1328   // predicated forms, we can define RowFields like this:
   1329   //
   1330   // let RowFields = BaseOp
   1331   // All add instruction predicated/non-predicated will have to set their BaseOp
   1332   // to the same value.
   1333   //
   1334   // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
   1335   // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
   1336   // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
   1337   list<string> RowFields = [];
   1338 
   1339   // List of fields/attributes that are same for all the instructions
   1340   // in a column of the relation table.
   1341   // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
   1342   // based on the 'predSense' values. All the instruction in a specific
   1343   // column have the same value and it is fixed for the column according
   1344   // to the values set in 'ValueCols'.
   1345   list<string> ColFields = [];
   1346 
   1347   // Values for the fields/attributes listed in 'ColFields'.
   1348   // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
   1349   // that models this relation) should be non-predicated.
   1350   // In the example above, 'Add' is the key instruction.
   1351   list<string> KeyCol = [];
   1352 
   1353   // List of values for the fields/attributes listed in 'ColFields', one for
   1354   // each column in the relation table.
   1355   //
   1356   // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
   1357   // table. First column requires all the instructions to have predSense
   1358   // set to 'true' and second column requires it to be 'false'.
   1359   list<list<string> > ValueCols = [];
   1360 }
   1361 
   1362 //===----------------------------------------------------------------------===//
   1363 // Pull in the common support for calling conventions.
   1364 //
   1365 include "llvm/Target/TargetCallingConv.td"
   1366 
   1367 //===----------------------------------------------------------------------===//
   1368 // Pull in the common support for DAG isel generation.
   1369 //
   1370 include "llvm/Target/TargetSelectionDAG.td"
   1371 
   1372 //===----------------------------------------------------------------------===//
   1373 // Pull in the common support for Global ISel register bank info generation.
   1374 //
   1375 include "llvm/Target/GlobalISel/RegisterBank.td"
   1376 
   1377 //===----------------------------------------------------------------------===//
   1378 // Pull in the common support for DAG isel generation.
   1379 //
   1380 include "llvm/Target/GlobalISel/Target.td"
   1381 
   1382 //===----------------------------------------------------------------------===//
   1383 // Pull in the common support for the Global ISel DAG-based selector generation.
   1384 //
   1385 include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
   1386